∴ PB=13 cm.
. A.
0
P
课堂练习
1. ⊙O1 和⊙O2的半径分别为3厘米和4厘米, 在下列条件下,求⊙O1 和⊙O2的位置关系:
(1)O1O2=8厘米 (2)O1O2=7厘米 (3)O1O2=5厘米 (4)O1O2=1厘米 (5)O1O2=0.5厘米 (6)O1和O2重合
外离 外切 相交 内切 内含
∴ R=24 cm r=16cm ∵ 两圆相交 R-r<d<R+r ∴ 8cm<d<40cm
思考题 已知⊙01和⊙02的半径分别为R和r(R>r),
圆心距为d,若两圆相交,试判定关于x的方
程x2-2(d-R)x+r2=0的根的情况。
解 ∵两圆相交 ∴R- r<d<R+r △ =b2-4ac=[-2(d-R)]2-4r2 =4(d-R)2-4r2 =4(d-R+r)(d-R-r) =4[d-(R-r)][d-(R+r)]
A
B
设⊙A的半径为R,⊙B的半径为r,圆心距为d
⊙A和⊙B外切 d=R+r
A
B
设⊙A的半径为R,⊙B的半径为r,圆心距为d
⊙A和⊙B相交R-r <d<R+r
AB
设⊙A的半径为R,⊙B的半径为r,圆心距为d
⊙A和⊙B内切 d=R-r
AB
设⊙A的半径为R,⊙B的半径为r,圆心距为d
⊙A和⊙B内含 d<R-r
并且除了这个点这外, 每一个圆上的点都在另 一个圆的外部, 叫做这两圆外切。这个相交
第四种情况
特点:两圆有唯一的公共点, 除了这个点以外,一个 圆上一的所有点在另一 个圆的内部,