人教版初三数学上册配方法解方程步骤
- 格式:ppt
- 大小:77.51 KB
- 文档页数:7
第二章一元二次方程2 •配方法(一)、学生知识状况分析学生的知识技能基础:学生在初二上学期已经学习过开平方,知道一个正数有两个平方根,会利用开方求一个正数的两个平方根,并且也学习了完全平方公式。
在本章前面几节课中,又学习了一元二次方程的概念,并经历了用估算法求一元二次方程的根的过程,初步理解了一元二次方程解的意义;学生活动经验基础:在相关知识的学习过程中,学生已经经历了用计算器估算一元二次方程解的过程,解决了一些简单的现实问题,感受到解一元二次方程的必要性和作用,基于学生的学习心理规律,在学习了估算法求解一元二次方程的基础上,学生自然会产生用简单方法求其解的欲望;同时在以前的数学学习中学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定的合作与交流的能力。
、教学任务分析教科书基于学生用估算的方法求解一元二次方程的基础之上,提出了本课的具体学习任务:用配方法解二次项系数为1且一次项系数为偶数的一元二次方程。
但这仅仅是这堂课具体的教学目标,或者说是一个近期目标。
而数学教学的远期目标,应该与具体的课堂教学任务产生实质性联系。
本课《配方法》内容从属于“方程与不等式”这一数学学习领域,因而务必服务于方程教学的远期目标:“让学生经历由具体问题抽象出方程的过程,体会方程是刻画现实世界中数量关系的一个有效模型,并在解一元二次方程的过程中体会转化的数学思想”,同时也应力图在学习中逐步达成学生的有关情感态度目标。
为此,本节课的教学目标是:21、会用开方法解形如(X • m)二n (n 一0)的方程,理解配方法,会用配方法解二次项系数为1, 一次项系数为偶数的一元二次方程;2、经历列方程解决实际问题的过程,体会一元二次方程是刻画现实世界中数量关系的一个有效模型,增强学生的数学应用意识和能力;3、体会转化的数学思想方法;4、能根据具体问题中的实际意义检验结果的合理性。
三、教学过程分析本节课设计了五个教学环节:第一环节:复习回顾;第二环节:情境引入;第三环节:讲授新课;第四环节:练习提高;第五环节:课堂小结;第六环节:布置作业。
第2讲 一元二次方程的解法(二)----配方法配方法:利用完全平方公式把一元二次方程转化成的形式,再利用直接开平方法解一元二次方程的方法叫做配方法.①当p >0时,方程有两个不等的实数根,;②当p=0时,方程有两个相等的实数根=-n ;③当p <0时,因为对任意实数x ,都有,所以方程无实数根. 知识要点梳理:完全平方公式:222)(2b a b ab a +=++ 222)(2b a b ab a -=+-尝试解方程:x 2-4x +3=0我们把方程x 2-4x +3=0变形为(x -2)2=1,它的左边是一个含有未知数的完全平方式,右边是一个非负常数.这样,就能应用直接开平方的方法求解.这种解一元二次方程的方法叫做配方法.练一练 :配方.填空:(1)x 2+6x +( )=(x + )2;(2)x 2-8x +( )=(x - )2;(3)x 2+23x +( )=(x + )2; 从这些练习中你发现了什么特点?(1)________________________________________________(2)________________________________________________经典例题例1. 用配方法解下列方程:(1)x 2-6x -7=0; (2)x 2+3x -1=0. 解(1)移项,得x 2-6x =____.方程左边配方,得x 2-2·x ·3+_ _2=7+___,即(____ __)2=__ __.所以 x -3=_______.原方程的解是x 1=_____,x 2=_____.(2)移项,得x 2+3x =1.方程左边配方,得x 2+3x +( )2=1+____,即 ____________________所以___________________原方程的解是: x 1=______________x 2=___________总结规律用配方法解二次项系数是1的一元二次方程?有哪些步骤?例2.用配方法解下列方程:(1)011242=--x x (2)03232=-+x x(3)03422=+-x x例3.当x 为何值时,代数式5x 2 +7x +1和代数式x 2 -9x +15的值相等?例4.求证:不论a 、b 取何实数,多项式a 2b 2 +b 2 -6ab -4b +14的值都不小于1.例5. 试证:不论k 取何实数,关于x 的方程 (k 2 -6k +12)x 2 = 3 - (k 2 -9)x 必是一元二次方程.经典练习一、选择题1.若x 2+6x+m 2是一个完全平方式,则m 的值是( )A .3B .-3C .±3D .以上都不对2. 若9x 2 -ax +4是一个完全平方式,则a 等于( );A. 12B. -12C. 12或-12D. 6或-63.用配方法将二次三项式a 2-4a+5变形,结果是( )A .(a-2)2+1B .(a+2)2-1C .(a+2)2+1D .(a-2)2-14.把方程x x 432=+,得( )A .(x-2)2=7B .(x+2)2=21C .(x-2)2=1D .(x+2)2=25.用配方法解方程x 2+4x=10的根为( )A .2±B .-2C .D .6.不论x 、y 为什么实数,代数式x 2+y 2+2x-4y+7的值( )A .总不小于2B .总不小于7C .可为任何实数D .可能为负数二、填空1.用适当的数填空:①、x 2+6x+ =(x+ )2; ②、x 2-5x+ =(x - )2; ③、x 2+ x+ =(x+ )2; ④、x 2-9x+ =(x - )2⑤ (x - )2 = x 2 - 32x + ;2.将二次三项式2x 2-3x-5进行配方,其结果为_________.3.已知4x 2-ax+1可变为(2x-b )2的形式,则ab=_______.4.将一元二次方程x 2-2x-4=0用配方法化成(x+a )2=b 的形式为_______,所以方程的根为_________.三.用配方法解方程:(1)x2+8x-2=0 (2)x2-5x-6=0.(3)2x2-x=6 (4)4x2-6x+()=4(x-)2=(2x-)2(5)x2+px+q=0(p2-4q≥0).四、用配方法求解下列问题(1)求2x2-7x+2的最小值;(2)求-3x2+5x+1的最大值。
第12章第2节一元二次方程的解法11.直接开平方法定义:方程左边是含有X 的完全平方式,右边是非负数,可以直接降次,转 化为两个一元一次方程,分别解两个一元一次方程,得出原方程的解。
平方根定义:若X 2 = a ,则X 叫a 的平方根,记作X = ±%,a (a > 0)。
3 .直接开平方法的使用条件: ①方程左边是含有未知数的完全平方的形式; ②方程右边是非负数。
4 .直接开平方法的各种形式:@(X + a )2 = p (p > 0)— X =±','p -a;④(ax + m )2 = (bx + n )2 — ax +m = ±(bx + n )。
5 .直接开方法的步骤:①左边开方;②右边先写“ 土 ”,再开方。
(如果有系数,对系数也要 开方)6 .易错点:①直接开方时,遗漏负的平方根;②遇字母不讨论范围。
题型一一: X 2 = p (p > 0)— X = 士 J p口例题一元二次方程X 2 = 1的解是( ) A. x = 1 B. x = -1C. x = 1, x = —1D. x = 0口练习1.方程X 2 = 4的解是()2.直接开平方法的理论根据 是:平方根的定义。
① X 2 = p (p > 0)— X = 士 W p ;③(mX + n )2 = p (p > 0)— X = -^A. x = 4, x = —4B. x = x = 22 .方程x 2 —3 = 0的根是( ) A. x = 3 B. x =3, x =- 33 . 一元二次方程:x 2= 9的解是( C. x 1 = 2,x 2 = —2 D. x 1 = 4,x 2 = 1C. x = v 3)D. x = J3,x =- J3D. 9题型二:(x + a )2 3 = p T x = ± %pp - a口例题方程(x + 2l = 4的根是( )A. x 1=4, x 2= - 4B. x 1=0, x 2= - 4口练习(mx + n \ = p f mx + n 二±4 P T x =-_n mC. x 1=0, x 2=2D. x 1=0, x 2=4A.x 『6, x 2= - 6 B. x I =x 2= - 6 C. x 『-3, x 2= - 9 D. x 『3, x 2= - 9D. x 『-1, x 2=5D x 1 =-7'2 -1, x 2 =-V2 +1题型三:(ax + m)2=(bx + n)2口例题方程Q - 2、=(2 x + 3)的根是(口练习1 .用直接开平方的方法解方程(2x +1) = x 2做法正确的是(2 .用直接开平方的方法解方程Q x +1] = 36做法正确的是(3 .方程(2x + 3、— 25 = 0的根为4 .方程(2x + 51 = 0的解是§知识小结 方法进行求解一元二次方程的方法。