高光谱遥感 像元空间分辨率
- 格式:docx
- 大小:178.34 KB
- 文档页数:1
《遥感概论》作业参考答案一.填空题1.地面平台航空平台航天平台2.CCD3.直接标志间接标志。
4.1999中巴地球资源卫星5.传感器仪器本身产生的误差大气对辐射的影响6.暖阴影冷阴影7.监督分类非监督分类8.精确的定位能力准确定时及测速能力9.图像处理与特征提取子系统遥感图像解译知识获取系统狭义的遥感图像解译专家系统10.直方图最小值去除法回归分析法11.比值植被指数归一化植被指数差值植被指数正交植被指数12.瑞利散射米氏散射无选择性散射二.名词解释1.黑体:如果一个物体对于任何波长的电磁辐射都全部吸收,则这个物体是绝对黑体。
2.遥感平台:是搭载传感器的工具。
3.监督分类:包括利用训练样本建立判别函数的“学习”过程和把待分像元代入判别函数进行判别的过程。
4.遥感:遥远地感知。
5.解译标志:又称判读标志,指能够反映和表现目标地物信息的遥感影像各种特征,这些特征能帮助判读者识别遥感图像上目标地物或现象。
6.归一化植被指数(NVl):遥感影像中近红外波段的反射值减去红光波段的反射值的差与二者之和的比值7.电磁波谱:按电磁波在真空中传播的波长或频率,递增或递减排列,则构成了电磁波谱。
8.大气窗口:把电磁波通过大气层时较少被反射、吸收或散射的,透射率较高的波段称为大气窗口。
9.空间分辨率:像元所代表的地面范围的大小。
10.主动遥感:由探测器主动发射一定电磁波能量并接收目标的后向散射信号。
11.反射波谱:指地物反射率随波长的变化规律。
通常用平面坐标曲线表示,横坐标表示波长,纵坐标表示反射率。
12.波谱分辨率:是传感器在接收目标辐射的波谱时能分辨的最小波长间隔。
13.高光谱遥感:是高光谱分辨率遥感的简称。
就是在电磁辐射的可见光、近红外、中红外、远红外获取许多非常窄的光谱连续的影像数据技术。
三.简答题1.根据传感器所接受到的电磁波光谱特征的差异来识别地物。
(1)不同地物在不同波段反射率存在差异(2)同类地物的光谱是相似的,但随着该地物的内在差异而有所变化。
高光谱遥感技术的介绍及应用在20世纪,人类的一大进步是实现了太空对地观测,即可以从空中和太空对人类赖以生存的地球通过非接触传感器的遥感进行观测。
最近几十年,随着空间技术、电脑技术、传感器技术等与遥感密切相关学科技术的飞速发展,遥感正在进入一个以高光谱遥感技术、微波遥感技术为主要标志的时代。
本文简要介绍了高光谱遥感技术的特点、发展状况及其在一些领域的应用。
1 高光谱遥感简介1.1高光谱遥感概念所谓高光谱遥感,即高光谱分辨率遥感,指利用很多很窄的电磁波波段〔通常<10nm〕从感兴趣的物体获取有关数据;与之相对的则是传统的宽光谱遥感,通常>100nm,且波段并不连续。
高光谱图像是由成像光谱仪获取的,成像光谱仪为每个像元提供数十至数百个窄波段光谱信息,产生一条完整而连续的光谱曲线。
它使本来在宽波段遥感中不可探测的物质,在高光谱中能被探测。
高光谱遥感技术是近些年来迅速发展起来的一种全新遥感技术,它是集探测器技术、精密光学机械、微弱信号检测、电脑技术、信息处理技术于一体的综合性技术。
在成像过程中,它利用成像光谱仪以纳米级的光谱分辨率,以几十或几百个波段同时对地表地物像,能够获得地物的连续光谱信息,实现了地物空间信息、辐射信息、光谱信息的同步获取,因而在相关领域具有巨大的应用价值和广阔的发展前景。
1.2高光谱遥感数据的特点同其他常用的遥感手段相比,成像光谱仪获得的数据具有以下特点:1〕、多波段、波段宽度窄、光谱分辨率高。
波段宽度< 10 nm ,波段数较多光谱遥感(由几个离散的波段组成)大大增多,在可见光和近红外波段可达几十到几百个。
如A VIRIS在0. 4~214 波段范围内提供了224 个波段。
研究说明许多地物的吸收特征在吸收峰深度一半处的宽度为20~40 nm。
这是传统的多光谱等遥感技术所不能分辨的(多光谱遥感波段宽度在100~200 nm 之间),而高光谱遥感甚至光谱分辨率更高的超光谱遥感却能对地物的吸收光谱特征进行很好的识别,这使得过去以定性、半定量的遥感向定量遥感发展的进程被大大加快。
1、多波段遥感:探测波段在可见光与近红外波段范围内,再分为若干窄波段来探测目标。
2、维恩位移定律:黑体辐射光谱中最强辐射的波长与黑体的绝对温度成反比。
黑体的温度越高,其曲线的峰顶就越往左移,即往短波方向移动。
3、瑞利散射与米氏散射:前者是指当大气中的粒子直径比波长小得多的时候所发生的大气散射现象。
后者是指气中的粒子直径与波长相当时发生的散射现象。
4、大气窗口;太阳辐射通过大气时,要发生反射、散射、吸收,从而使辐射强度发生衰减。
对传感器而言,某些波段里大气的投射率高,成为遥感的重要探测波段,这些波段就是大气窗口。
5、多源信息复合:遥感信息图遥感信息,以及遥感信息与非遥感信息的复合。
6、空间分辨率与波谱分辨率:像元多代表的地面范围的大小。
后者是传感器在接收目标地物辐射的波谱时,能分辨的最小波长间隔。
7、辐射畸变与辐射校正:图像像元上的亮度直接反映了目标地物的光谱反射率的差异,但也受到其他严肃的影响而发生改变,这一改变的部分就是需要校正的部分,称为辐射畸变。
通过简便的方法,去掉程辐射,使图像的质量得到改善,称为辐射校正。
8、平滑与锐化;图像中某些亮度变化过大的区域,或出现不该有的亮点时,采取的一种减小变化,使亮度平缓或去掉不必要的“燥声”点,有均值平滑和中值滤波两种。
锐化是为了突出图像的边缘、线状目标或某些亮度变化大的部分。
9、多光谱变换;通过函数变换,达到保留主要信息,降低数据量;增强或提取有用信息的目的。
本质是对遥感图像实行线形变换,使多光谱空间的坐标系按照一定的规律进行旋转。
10、监督分类:包括利用训练样本建立判别函数的“学习”过程和把待分像元代入判别函数进行判别的过程。
1、遥感与遥感技术系统:遥远地感知;目标地物的电磁波,信息获取,信息接受,信息处理,信息应用。
2、动遥感与被动遥感:前者是探测器主动发射电磁波并接受信息。
后者是被动接受目标地物的电磁波。
3、磁波与电磁波谱:电磁振动的传播;按电磁波在真空中的传播的波长排列。
高光谱遥感的特征
高光谱遥感是一种通过收集大量的连续、窄带光谱数据来获取地物光谱信息的遥感技术。
其特征包括以下几个方面:
1. 光谱分辨率高:高光谱遥感能够获取几百到上千个连续光谱波段的信息,使得不同地物具有不同的光谱响应特征可以被有效地区分和识别。
2. 空间分辨率适中:高光谱遥感通常具有中等的空间分辨率,不同波段的图像可以提供关于地物的精细细节信息。
3. 数据多样性:高光谱遥感数据能够提供丰富多样的信息,包括光谱信息、空间信息以及时间信息,可以支持多种遥感应用和科学研究。
4. 光谱特征敏感性:高光谱遥感数据对地物的光谱特征非常敏感,不同地物在光谱上呈现出独特的波谱特征,因此可以对地物进行精确的分类和识别。
5. 特征提取能力强:高光谱遥感数据可以通过光谱分析、像元反演等方法,从数据中提取出多种地物属性特征,如植被指数、地表覆盖类型等,具有较高的特征提取能力。
总之,高光谱遥感具有多光谱波段、高光谱分辨率、适中的空间分辨率和丰富的信息内容等特征,因此在环境监测、农业、地质勘查、城市规划等领域具有广泛
的应用前景。
高光谱遥感的像元空间分辨率通常取决于所使用的传
感器和成像方式。
一般来说,高光谱遥感图像的空间分辨率较高,可以达到米级甚至厘米级。
这是因为高光谱遥感图像是在非常精细的波段上获取的,可以提供更多的光谱信息,从而提高了空间分辨率。
然而,需要注意的是,像元空间分辨率并不是越高越好,还需要考虑其他因素,如光谱分辨率、信噪比、辐射分辨率等。
因此,在实际应用中,需要根据具体需求和条件选择合适的传感器和成像方式,以达到最佳的空间分辨率和其他性能指标。