2013-2014学年福州市第一学期九年级期末质检_数学试卷
- 格式:doc
- 大小:305.00 KB
- 文档页数:8
第1页 (共3页)2013-2014学年度第一学期期末调研测试九年级数学试卷评分标准一、选择题(本大题共12小题,每题3分,共36分。
下列各题的备选答案中,只有一个是正确的,请将正确答案的序号填入下表中相应题号下的空格内)题 号 1 2 3 4 5 6 7 8 9 10 11 12 答 案CACDABDBBDAC二、填空题(本大题共8小题,每题4分,共32分。
请将正确答案的填入下表中相应题号下的空格内)13、32 . 14、3≥x . 15、相交 . 16、101. 17、π , π2 . 18、5 ,4 . 19、600 , 1 . 20、 210 , < .三、解答题(本大题共8小题,共82分) 21计算:解:()226324÷-22632224÷-÷= ……………………… 3分3232-= ……………………… 7分 22解:(1) 2x (50-x ) ……… 2分 (2)由题意得:(50-x )(30+2x )=2100 ……… 4分化简得:x 2-35x +300=0解得:x 1=15, x 2=20 ……… 5分 ∵该商场为了尽快减少库存,则x =15不合题意,舍去. ∴x =20 ……… 6分 答:每件商品降价20元,商场日盈利可达2100元. …………… 7分 23、解:如图所示,△A'B'C'就是所画的三角形。
…………………………5分A'、B'、C'的坐标分别为:A'(4,-1)、B'(1,1)、C'(3,-2)…………………………8分yx12345–1–2–3–4–51234–1–2–3–4OABC A'B'C'第2页 (共3页) 24、解:(1)∵ 方程有实数根 ∴⊿=22-4(k +1)≥0 …………… 2分 解得 k ≤0 …………… 4分∴ K 的取值范围是k ≤0 …………… 5分(2)∵21x x 和是一元二次方程0122=+++k x x 的实数根∴221-=+x x , 121+=k x x …… 6分 ∴()122121+--=-+k x x x x ………… 7分 由已知12121-<-+x x x x ,得 ()112-<+--k 解得 k >-2 ………… 8分又由(1)k ≤0 ∴ -2<k ≤0 ……… 9分 ∵ k 为整数 ∴k 的值为-1和0. …………… 10分 25、 解:(1)因为5006.03= … 2分 所以在这个问题中,样本容量是50. … 4分(2)因为 1761410350=----, … 5分所以成绩在28-32这一组的频数17 … 6分 补全频数分布直方图如图所示。
第8题图2013~2014学年度第一学期期末质量检测试卷·九年级数学试卷·考生注意:1.本卷共八大题,计23小题,满分150分;2.答题前请将密封线内的项目填写清楚;3.考试过程中允许考生进行剪、拼、折叠等实验,但不得使用计算器哟!一、选择题(本题共10小题,每小题4分,满分40分)每一个小题都给出代号为A 、B、C 、D 的四个结论,其中只有一个是正确的,把正确结论的代号写在题后的括号内.每一小题:选对得4分,不选、选错或选出的代号超过一个的(不论是否写在括号内)一律得0分.1.下列根式中,不是..最简二次根式的是( ).A B C D 2 ).A .1到2之间;B .2到3之间;C .3到4之间;D . 4到5之间.3.下列汽车标志图形中,是中心对称图形的是( ).A .B .C .D .4.用配方法解一元二次方程01182=+-x x ,则方程可变形为( ).A .()542=-x ;B .()542=+x ;C .()582=+x ;D .()582=-x .5.下列成语所描述的事件是必然事件的是( ).A .瓮中捉鳖;B .拔苗助长;C .守株待兔;D .杯水车薪.6.已知关于x 的一元二次方程012)2(2=++-x x m 有两个不相等的实数解,则m 的取值范围是( ).A .3->m ;B .3<m ;C .3<m 且2≠m ;D .3->m且2≠m .7.小颍的哥哥在合肥工作,今年春节期间,她想让哥哥买几本复习资料带回家,于是发手机短信给哥哥,可一时记不清哥哥的手机号码后三位数的顺序,只记得是0、1、4三个数,则小颍给哥哥一次发短信成功的概率是( ).A .91B .61C .31D .218.如图,∠AOB =90°,∠B =30°,△A′OB′可以看作是由△AOB 绕点O 顺时针旋转α角度得到的,若使得点A′ 在AB 上,则旋转角α的大小可以是( ).第9题图 第10题图 A .30° B .45° C .60; D .90°9.已知函数y =x 2-2x -2的图象如图所示,根据其中提供的信息,可求得使y ≥1成立的x 的取值范围是( ).A .-1≤x ≤3;B .-3≤x ≤1;C . x ≥-3;D . x ≤-1或x ≥3.10.现有30%圆周的一个扇形彩纸片,该扇形的半径为40cm ,小红同学为了在庆祝澳门回归十周年联欢晚会上表演节目,她打算剪去部分扇形纸片后,利用剩下的纸片制作成一 个底面半径为10cm 的圆锥形纸帽(接缝处不重叠),那么剪去的扇形纸片的圆心角为( ).A . 9°B .18°C .63°D .72°二、填空题(本题共4小题,每小题5分,满分20分) 11.在我们刚刚学过的九年级数学下册课本第14页,用“描点法”画一个函数图象时,列了如下表格:根据表格上的信息回答问题:该二次函数在x =9时,y = .12.如图所示,矩形中长和宽分别为10cm 和6cm ,则阴影部分的面积为 .13.如图,四边形EFGH 是由四边形ABCD 经过旋转得到的.如果用有序数对(2,1)表示方格纸上A 点的位置,用(1,2)表示B 点的位置,那么四边形ABCD 旋转得到四边形EFGH 时的旋转中心用有序数对表示是 .14.如图,电路图上有四个开关A 、B 、C 、D 和一个小灯泡,闭合开关D 或同时闭合开关A 、B 、C ,都可以使小灯泡发光,任意闭合其中两个开关,则小灯泡发光的概率为 .第14题图 第13题图 第12题图第17题图15.计算:320-45-51+(5-2)(5+2) .16.解方程:2(3)4(3)0x x x -+-=.四、(本题共2小题,每小题8分,满分16分) 17.下面各图均为6⨯的正方形网格,点A B C 、、在格点上.试确定格点D ,并画出以A 、B 、C 、D 为顶点的四边形,使其为中心对称图形,画出两种不同的情况.18.如图:等腰△ABC,以腰AB 为直径作⊙O 交底边BC 于P ,PE ⊥AC ,垂足为E .求证:PE 是⊙O 的切线.C 第18题图19.如图,直角梯形OABC 中,O 为坐标原点,OC OA =,点C 的坐标是(08),,以点B为顶点的抛物线2y ax bx c =++经过原点和x 轴上的点A .求抛物线的解析式.20.无为县某乡镇改变农业生产模式为养殖螃蟹,为了加大投入,提高产出,某农户去年养殖了10亩螃蟹,亩产120kg ,今年初该农户扩大了养殖面积,并且改进了养殖方法,已知养殖面积的增长率是亩产量的增长率的2倍,今年螃蟹的总产量为3600kg ,求螃蟹亩产量的增长率.六、(本题满分12分) 21.在学习概率知识后,小明和小军共同做游戏,他们准备了四张形状、大小、颜色完全一样的卡片,分别在这四张卡片上面写上2、3、2、3四个数,放进一个盒子里摇匀,随机抽取一张记下数字,放回摇匀再随机抽取一张.游戏规定:若两次得到的数字的乘积是无理数,则小明得1分,否则小军得1分.请你为他们算一算这个游戏是否公平?若不公平,让你只改变其中一张卡片上的数字(数字可以改为任意实数),使游戏公平,但卡片数量、抽取方式以及游戏的规则都不变(只写出一种改变即可,不必再计算).第19题图22.观察下列各式,通过分母有理化(把分母中的根号化去),把不是最简二次根式的化成最简二次根式:121212)12)(12()12(1121-=--=-+-⨯=+, 同理可得:23231-=+,34341-=+,……(1)从中你发现了什么规律,试用含n 的式子表示出来.(2)并利用这一规律计算:)12010)(200920101341231121(+++⋯⋯++++++ 的值.(3)分母有理化:1231-+.23.如图⑴,△ABC中,AB=AC=8,∠BAC=120°,D为BC上任意一点(不包括B、C),连接AD可得△ABD,将△ABD绕点A逆时针旋转120°,可形成四边形ADCF.(1)如图⑴,试确定△ABC周长与四边形ADCF周长的大小关系,并作简要说明.(2)试判断点D在何处时,四边形ADCF的周长最小(不需要说明理由)?并求出此时的四边形ADCF的周长.(下图供答题使用).(3)四边形ADCF能否为等腰梯形?若能,在下图中画出所有情况的图形,并直接写出∠BAD的度数;若不能,请说明理由.BAC DF第23⑴题图第23⑵题图第23⑶题备用图第23⑶题图。
2013-2014学年度第一学期九年级期末质量检查考试数学试卷考试时间:120分钟;命题人:游宝发学校:___________姓名:___________班级:___________考号:___________ 注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.下列式子中,属于最简二次根式的是(A )(B (C ) (D 2.下列图形中,中心对称图形有【 】A .1个B .2个C .3个D .4个 3.已知一元二次方程2x x 1 0+-=,下列判断正确的是( ) A.方程有两个相等的实数根 B.方程有两个不相等的实数根C.方程无实数根D.方程根的情况不确定4.一根水平放置的圆柱形输水管道横截面如图所示,其中有水部分水面宽0.8米,最深处水深0.2米,则此输水管道的直径是A .0.5B .1C .2D .45.已知⊙O 1和⊙O 2相切,两圆的圆心距为9cm ,⊙1O 的半径为4cm ,则⊙O 2的半径为( ) A .5cm B .13cm C .9 cm 或13cm D .5cm 或13cm 6.已知圆锥的母线长为5,底面半径为3,则圆锥的表面积...为( ) A .15π B .24π C .30π D .39π 7.下列事件是随机事件的为A 、度量三角形的内角和,结果是180︒B 、经过城市中有交通信号灯的路口,遇到红灯C 、爸爸的年龄比爷爷大D 、通常加热到100℃时,水沸腾 8.如果将抛物线2y x =向左平移2个单位,那么所得抛物线的表达式为A.22y x =+B.22y x =-C.2(2)y x =+D.2(2)y x =-9.如图,在平面直角坐标系中,抛物线2y 1x 2=经过平移得到抛物线21x 2y 2x =-,其对称轴与两段抛物线所围成的阴影部分的面积为A .2B .4C .8D .1610.如图,已知边长为2的正三角形ABC 顶点A 的坐标为(0,6),BC 的中点D 在y 轴上,且在A 的下方,点E 是边长为2,中心在原点的正六边形的一个顶点,把这个正六边形绕中心旋转一周,在此过程中DE 的最小值为A.3B.34-C.4D.326- 二、填空题11x 的取值范围是____________. 12.如果关于x 的方程220xx m -+=(m 为常数)有两个相等实数根,那么m =______.13.两块完全一样的含30°角的三角板重叠在一起,若绕长直角边中点M 转动,使上面一块的斜边刚好过下面一块的直角顶点,如图,∠A =30°,AC =10,则此时两直角顶点C 、C ′间的距离是_______. 14.如图,AB 为⊙O 的直径,点P 为其半圆上任意一点(不含A 、B ),点Q 为另一半圆上一定点,若∠POA 为x°,∠PQB 为y°,则y 与x 的函数关系是 . 15.如图,一条抛物线m x y +=241(m<0)与x 轴相交于A 、B 两点(点A 在点B 的左侧).若点M 、N 的坐标分别为(0,—2)、(4,0),抛物线与直线MN 始终有交点,线段AB 的长度的最小值为 .三、解答题16.计算:(1))323(235a bb a ab b ÷-⋅(2) 17.解方程:0822=--x x18.如图,在正方形网络中,△ABC 的三个顶点都在格点上,点A 、B 、C 的坐标分别为(-2,4)、(-2,0)、(-4,1),结合所给的平面直角坐标系解答下列问题:(1)画出△ABC 关于原点O 对称的△A 1B 1C 1; (2)平移△ABC,使点A 移动到点A 2(0,2),画出平移后的△A 2B 2C 2并写出点B 2、C 2的坐标; (3)△A 1B 1C 1与△A 2B 2C 2成中心对称,写出其对称中心的坐标. 19.某人定制了一批地砖,每块地砖(如图(1)所示)是边长为0.5米的正方形ABCD.点E 、F 分别在边BC 和CD 上,△CFE 、△ABE 和四边形AEFD 均由单一材料制成,制成△CFE 、△ABE 和四边形AEFD 的三种材料的价格依次为每平方米30元、20元、10元.若将此种地砖按图(2)所示的形式铺设,则中间的阴影部分组成正方形...EFGH.已知烧制该种地砖平均每块需加.工费..0.35元,要使BE 长尽可能小,且每块地砖的成本价为4元(成本价=材料费用+加工费用),则CE 长应为多少米?解:设 CE =x ,则S △CFE = ,S △ABE = S 四边形AEFD = (用含x 的代数式表示,不需要化简)。
2013-2014学年度第一学期期末考试初三数学试题卷(全卷共五个大题,满分150分,考试时间120分钟)参考公式:抛物线的2(0)y ax bx c a =++≠顶点坐标为24(,)24b ac b a a--,对称轴公式为2b x a=-。
一、选择题:(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑(或将正确答案的代号填入答题卷中对应的表格内). 1.在3,-1,0这四个数中,最小的数是( ) A. 3 B. -1 C. 02.下列图形是轴对称图形的是( )3.计算23(2)x 的结果是( )A .66x B. 58x C. 56x D. 68x4.如图,ABC ∆为O 的内接三角形,50ACB ∠=︒,则ABO ∠的度数等于( ) A.40° B.50° C.60° D.25° 5110,60E ︒∠=︒,则∠A. 30°B. 40°C. 50°D. 60° 6.下列调查适合全面调查(即:普查)的是( ) A.了解全国每天丢弃的塑料袋的数量 B.了解某种品牌的彩电的使用寿命 C.调查“神州9号”飞船各零部件的质量 D.了解浙江卫视“中国好声音”栏目的收视率7.若x = 2是关于x 的一元二次方程280x ax -+=的一个解,则a 的值是( ) A .2 B. 5 C. -6 D. 68.地铁1号线是贯穿渝中区和沙坪坝区的重要交通通道,1号线的开通极大的方便了市民的出行,小王下班后从渝中区较场口乘坐地铁回沙坪坝,他从公司出发,先匀速步行至较场口地铁站,等了一会儿,小王搭乘地铁1号线到达沙坪坝站,下面能反映在此过程中小王到沙坪坝的距离y 与时间x 的函数关系的大致图象是( )9.如图,以下各图都是由同样大小的图形①按一定规律组成,其中第①个图形中共有1个完整菱形,第②个图形中共有5个完整菱形,第③个图形中共有13个完整菱形,……,则第⑦个图形中完整菱形的个数为( )A.83B.84C.85D.8610.二次函数2(0)y ax bx c a =++≠的图象如图所示, 则下列结论中,正确的是( ) A.0abc >B.24ac b > C.20a b -=D.420a b c ++>二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡(卷)中对应的横线上.11.据统计,重庆市2011年全市地方财政收入超过29000000万元,将数29000000用科学记数法表示为 . 12.已知ABC ∆∽DEF ∆,ABC ∆的周长为2,DEF ∆的周长为4,则ABC ∆与DEF ∆的面积之比为 . 13.在体育中招考试的跳绳项目考试中,我校两个小组共8位同学的成绩分别如下:(单位:个/分钟)154、187、173、205、197、177、185、188,则这组数据的中位数是 . 14.已知扇形的圆心角为120°,半径为9cm ,则扇形的面积为 cm 2.(结果保留π) 15.在一个不透明的盒子里装有5个分别写有数字-2,-1,0,1,2的小球,它们除数字不同外其余全部相同. 现从盒子里随机取出一个小球,将该小球上的数字作为a 的值,将该数字加3作为b 的值,则(a ,b )使得关于x 的不等式组3(2)0,0x a x x b --≥⎧⎨-+>⎩恰好有3个整数解的概率是 .16.甲、乙两车在一个环形跑道内进行耐力测试,两车从同一地点同时起步后,乙车速超过甲车速,在第8分钟时甲车提速,在第12分钟时甲车追上乙车并且开始超过乙,在第17分钟时,甲车再次追上乙车. 已知在测试中甲、乙两车均是匀速行驶,那么如果甲车不提速,乙车首次超过甲车是在第 分钟.三、解答题:(本大题4个小题,每小题6分,共24分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡(卷)中对应的位置上. 17.计算:120131(5)()(1)|4|2π--++---18.如图,AD = BC ,,12A B ∠=∠∠=∠,求证:PA = PB.19.解方程:42233x x x-+=--.20.如图,在ABC ∆中,60,C AD BC ∠=︒⊥,垂足为D,若2AD BD CD ==,求ABC ∆的周长(结果保留根号).四、解答题:(本大题4个小题,每小题10分,共40分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡(卷)中对应的位置上.21.先化简22144(1)11x x x x -+-÷--,再从不等式组203(1)21x x x +>⎧⎨-≤-⎩的解集中选取一个合适的整数解作为x 的值代入求值.22.如图,一次函数y ax b =+的图象与反比例函数ky=交于A ,B 两点,与y 交于C ,与x 轴交于点D ,已知OA =(1)求反比例函数和一次函数的解析式;(2)求AOB ∆的面积. 23.重庆市物价局发出通知,从2011年2月18日起降低部分抗生素药品和神经系统类药品最高零售价格,共涉及162个品种,某药房对售出的抗生素药品A 、B 、C 、D 、E 的销量进行统计,绘制成如下统计图:(1)补全折线统计图;(2)计算2月份售出各类抗生素销量的极差为 ;(3)2月份王老师到药房买了抗生素类药D 、E 各一盒,若D 中有两盒是降价药,E 中有一盒是降价药,请用画树状图或列表法求出他买到两盒都是降价药的概率。
2013-2014学年度第一学期阶段性测试九年级数学(北师大版)本试题分第1卷(选择题)和第II卷(非选择题)两部分,第1卷共2页,满分为36分;第II卷共6页,满分为84分.本试题共8页,满分为120分.考试时间为120分钟.答卷前,请考生务必将自己的姓名、准考证号、座号、考试科目涂写在答题卡上,并同时将考点、姓名、准考证号、座号填写在试卷规定的位置,考试结束后,将本试卷和答题卡一并交回,本考试不允许使用计算器.第1卷(选择题共36分)注意事项:第1卷为选择题,每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑:如需改动,用橡皮擦干净后,再选涂其他答案标号.答案写在试卷上无效,一、选择题(本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.)I.点A(-3,4)所在象限为A.第一象限 B.第二象限 C.第三象限 D.第四象限2.-个正比例函数的图象经过点(2,-1),那么这个正比例函数的表达式为3.若直线则直线不经过A.第一象限 B.第二象限 C.第三象限 D.第四象限4.某反比例函数的图象经过点(一l,6),下列各点也在该函数图象上的是A.(一3,2)B.(3,2)C.(2,3)D.f6,1)5.如图,已知AB为圆O的直径,点C在圆O上,∠C=15o,则∠BOC的度数为A. 150B. 300C. 450D. 6006.下列二次函数的图象中,开口向上的有:A. 1个 B.2个 C.3个 D.4个7.已知二次函数的图象如图所示,则下列结论正确的是A. a>0 B.b<0C. c<0D. b2-4ac>08.如图,4为反比例函数图象上一点,ABIx轴于点召,若则后的值为A.6 B. 3 D.无法确定9.如图,在4x4的正方形网格中,cosa的值为10.油箱中存油20升,油从油箱中均匀流出,流速为0.2升/分钟,则油箱中剩余油量Q(升)与流出时间“分钟)的函数关系是A.Q=0.2tB.Q=20-0.2tC.卢0.2QD. t=20-0.2Q11.有下列四个命题:①直径是弦;②经过三个点一定可以作圆;③三角形的外心到三角形各顶点的距离都相等;④平分弦的直径垂直于弦.其中正确的有A.4个 B.3个 C. 2个 D. 1个12.如图,的半径为2,点A的坐标为直线AB为的切线,曰为切点.则曰点的坐标为第1I卷(非选择题共84分)注意事项:1.第1I卷为非选择题,请考生用蓝、黑色钢笔(签字笔)或圆珠笔直接在试卷上作答. 2.答卷前,请考生先将考点、姓名、准考证号、座号填写在试卷规定的位置.二、填空题(本大题共6个小题,每小题3分,共1 8分j巴答案填在题中横线上.)13. cos600=14.如图,AB为的直径,点C在上,∠A=300,则∠B的度数为15.一次函数y=(k-2)x+b的图象如图所示,则K的取值范围是____.16.已知:线段AB=3cm,半径分别是lcm和4cm,则的位置关系是17.抛物线y= kx2 -3x -3的图象和x轴有交点,则K的取值范围是18.如图,把矩形纸片OABC放入平面直角坐标系中,使OA,OC分别落在x轴、y轴上,连接AC,将矩形纸片OABC沿AC折叠,使点B落在点D的位置,若B(1,2),则点D的横坐标是三、解答题(本大题共9个小题,共66分.解答应写出文字说明,证明过程或演算步骤.)19.(本小题满分6分)20.(本小题满分6分)若反比例函数与一次函数,y=2x-4的图象都经过点A(a,2).(1)求a的值.(2)求反比例函数的解析式;21.(本小题满分6分)如图,已知AB是求AB的长.22.(本小题满分7分)如图,热气球的探测器显示,从热气球A看一栋大楼顶部B的俯角为300,看这栋大楼底部C的俯角为600.热气球A的高度为240米,求这栋大楼的高度.23.(本小题满分7分)某商店以每件60元的价格购进一批商品,若以单价80元销售,每月可售出300件,调查表明;单价每上涨1元,该商品每月的销量就减少10件.(l)请写出每月销售该商品的利润y(元)与单价上涨x(元)的函数关系式:(2)单价定为多少元时,每月销售该商品的利润最大?最大利润为多少?24.(本小题满分8分)已知的直径AB的长为4cm,C是上一点,过点C作的切线交AB的延长线于点P,求BP的长.25.(本小题满分8分)如图,已知在(l)求图中阴影部分的面积;(2)若用阴影扇形OBD围成一个圆锥侧面,请求出这个圆锥的底面圆的半径^第25题圈26.(本小题满分9分)如图,直线y= - 2x+2与x轴、y轴分别交于A、B两点,将△OAB绕点D逆时针方向旋转900后得到△OCD.(1)填空:点C的坐标是(__ __,_ _),点D的坐标是(_ __,_ );(2)设直线CD与AB交于点M,求线段BM的长;27.(本小题满分9分)如图所示,抛物线与x轴交于A、B两点,直线BD的函数表达式为抛物线的对称轴l与冉线BD交于点C、与x轴交于点E.(1)求A、B、C三个点的坐标.(2)点P为线段AB上的一个动点(与点A 、点B不重合),以点A为圆心、以AP为半径的圆弧与线段AC交于点M,以点B为圆心、以BP为半径的圆弧与线段BC交于点N,分别连接AN、BM、MN.①求证:AN=BM.②在点P九年级数学试题参考答案与评分标准运动的过程中,四边形AMNB的面积有最大值还是有最小值?并求出该最大值或最小值.。
2013年福州市初中毕业班质检数学模拟试卷及参考答案数 学 试 卷(完卷时间:120分钟 满分:150分)一.选择题(每小题4分,满分40分;请在答题卡的相应位置填涂) 1.-2的相反数是( )A .2B .-2C .21 D .21-2.地球距离月球表面约为383900千米,那么这个数据用科学记数法表示为( )A .410839.3⨯B .510839.3⨯C .610839.3⨯D .41039.38⨯ 3.如图,下列几何体中主视图、左视图、俯视图都相同的是( )A .半圆B .圆柱C .球D .六棱柱 4.如图,直线a ∥b ,直线c 与a 、b 均相交,如果︒=∠501,那么∠2的度数是( )A .︒50B .︒100C .︒130D .︒150 5.下列计算正确的是( )A .632a a a =⋅ B .ba b a 22)(=C .623)(ab ab =D .426a a a =÷ 6.“a 是实数,0≥a ”这一事件是( )A .必然事件B .不确定事件C .不可能事件D .随机事件7.一条排水管的截面如图所示,已知排水管的截面圆半径10=OB ,截面圆圆心O 到水面的距离OC 是6,则水面宽AB 是( ) A .8 B .10 C .12 D .16 8.下列四边形中,对角线不可能...相等的是( ) A .直角梯形 B .正方形 C .等腰梯形 D .长方形12abc(第4题)(第7题)9.如图,直线233+-=x y 与x 轴、y 轴分别交于A 、B 两点,把△AOB 绕点A 顺时针旋转︒60后得到△B O A ''的坐标是( )A .(4,32)B .(32,4)C .(3,3)D .(232+,32)10.方程0132=-+x x 的根可看作是函数3+=x y 的图象与函数xy 1=的图象交点的横坐标,那么用此方法可推断出方程013=--x x 的实数根0x 所在的范围是( )A .010<<-xB .100<<xC .210<<xD .320<<x 二.填空题(共5小题,每题4分,满分20分;请将正确答案填在答题卡相应位置) 11.分解因式:=-92x ____________. 12.已知23=a ,则=a ____________.13.从分别标有1到9序号的9张卡片中任意抽取一张,抽到序号是4的倍数的概率是____________. 14.已知1-=x 是一元二次方程02=++n mx x的一个根,则222n mn m +-的值为____________. 15.如图,︒=∠30AOB ,n 个半圆依次外切,它们的圆心都在射线OA 上并与射线OB 相切,设半圆1C 、 半圆2C 、半圆3C ……、半圆n C 的半径分别是1r 、 2r 、3r ……、n r ,则=20112012r r ____________.三、解答题(满分90分;请将正确答案及解答过程填在答题卡相应位置,作图或添辅助线用铅笔画完,再用黑色签字笔描黑) 16.(每小题7分,共14分) (1)计算:10)21()14.3(8211---++-(2)先化简,再求值:)2()1(2-++x x x ,其中2=x 。
2013-2014学年度第一学期期末考试九年级数学试题注意事项:本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共120分,考试时间120分钟.第Ⅰ卷(选择题 共45分)一、选择题(本大题共15小题,每小题3分,共45分,在每小题给出的四个选项中,只有一项符合题目要求,请将正确答案填在后面的表格中...) 1.一元二次方程0)1(=-x x 的解是 A.0=xB.1=xC.0=x 或1=xD.0=x 或1-=x2.下面四个几何体中,俯视图为四边形的是3.抛物线()212y x =-+的对称轴为A .直线1x =B .直线1x =-C .直线2x =D .直线2x =- 4.如图,在8×4的矩形网格中,小正方形的边长都是1,若△ABC 的三个顶点在图中相应的格点上,则tan ∠ACB 的值为A .1B .13C .12D .25.如图,在□ABCD 中,添加下列条件不能判定□ABCD 是菱形的是 A. AB =BCB. AC ⊥BDC. BD 平分∠ABCD. AC =BD6.用配方法将2611y x x =-+化成2()y a x h k =-+的形式为 A .2(3)2y x =++ B .2(3)2y x =-- C .2(6)2y x =-- D .2(3)2y x =-+7.若3是关于方程x 2-5x +c =的一个根,则这个方程的另一个根是A .-2B .2C .-5D .58.由若干个相同的小立方体搭成的几何体的三视图如图所示, 则搭成这个几何体的小立方体的个数是A .3B .4C .5D .6A B C D主视图 左视图 俯视图DAB CDO B 1 C 1D 19.某校安排三辆车,组织九年级学生团员去敬老院参加学雷锋活动,其中小亮与小菲都可以从这三辆车中任选一辆搭乘,则小亮与小菲同车的概率为A .13B .19C .12D .2310.如图,一个小球由地面沿着坡度i =1∶2的坡面向上前进了10 m ,此时小球距离地面的高度为A .5 mB .52mC .54mD .310m 11.某商店购进一种商品,单价为30元.试销中发现这种商品每天的销售量P (件)与每件的销售价x (元)满足关系:1002P x =-.若商店在试销期间每天销售这种商品获得200元的利润,根据题意,下面所列方程正确的是A .(30)(1002)200x x --=B .(1002)200x x -=C .(30)(1002)200x x --=D .(30)(2100)200x x --= 12.若点(-3,y 1)、(-2,y 2)、(1,y 3)在反比例函数xy 2=的图象上,则下列结论正确的是A .y 1> y 2> y 3B .y 2> y 1> y 3C .y 3> y 1> y 2D .y 3> y 2> y 1 13.如图所示,在平面直角坐标系中,菱形MNPO 的顶点P 坐标是(3,4),则顶点M 、N 的坐标分别是A .M (5,0),N (8,4)B .M (4,0),N (8,4)C .M (5,0),N (7,4)D .M (4,0),N (7,4)14.如图,边长为1的正方形ABCD 绕点A 逆时针旋转45º得到正方形AB 1C 1D 1,边B 1C 1与CD 交于点O ,则四边形AB 1OD 的 周长是A . 2B .2 2C .1+ 2D .315.如图,点A ,B 的坐标分别为(1, 4)和(4, 4),抛物线n m x a y +-=2)(的顶点在线段AB 上运动,与x 轴交于C 、D 两点(C 在D 的左侧),点C 的横坐标最小值为3-,则点D 的横坐标最大值为A .3B.5 C .8 D .9第10题图一、选择题答题表:第Ⅱ卷(非选择题,共75分)二、填空题(本大题共6小题,每小题3分,共18分,把答案填写在题中横线上)16.反比例函数y =kx的图象经过点P(-4,3),则k 的值为 .17.有一箱规格相同的红、黄两种颜色的小塑料球共1000个.为了估计这两种颜色的球各有多少个,小明将箱子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回箱子中,多次重复上述过程后.发现摸到红球的频率约为0.6,据此可以估计红.球.的个数约为 . 18.如图,热气球的探测器显示,从热气球看一栋高楼的顶部B的仰角为45°,看这栋高楼底部C 的俯角为60°,热气球与高楼的水平 距离AD 为50m ,则这栋楼的高度为___________.19.如果关于x 的方程220x x m -+=(m 为常数)有两个相等实数根,那么m =_________.20.如同,矩形纸片ABCD 中,AB =2cm ,点E 在BC 上,且AE=EC .若将纸片沿AE 折叠,点B 恰好与AC 上的点'B 重合,则AC = cm.21.如图,已知二次函数c bx x y ++=2的图象经过点(-1,0),(1,-2),当y 随x 的增大而增大时,x 的取值范围是 .(第21题)cA E BCFD7小题,共57分,解答应写出文字说明和运算步骤)22.(本小题7分)完成下列各题:(1)解方程:1042=+x x(2)计算:26tan 30cos45︒︒-︒. 23.(本小题7分)完成下列各题: (1)在□ABCD 中,E 、F 分别是AB 、CD 的中点,连接AF 、CE .求证:四边形AECF 是平行四边形(2)已知:如图,在Rt △ABC 中,∠C =90°,∠ABC =60°,AC ,D 为CB 延长线上一点,且BD =2AB .求AD 的长.24.(本小题8分)我市某楼盘准备以每平方米6000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,房地产开发商为了加快资金周转,对价格经过两次下调后,决定以每平方米4860元的均价开盘销售.(1)求平均每次价格下调的百分率.(2)某人准备以开盘价均价购买一套100平方米的住房,开发商给予以下两种优惠方案以供选择:①打9.8折销售;②不打折,一次性送装修费每平方米80元,试问哪种方案更优惠?25.(本小题8分)端午节吃粽子是中华民族的传统习俗,一超市为了吸引消费者,增加销售量,特此设计了一个游戏,其规则是:分别转动如图所示的两个可以自由转动的转盘各一次,每次指针落在每一字母区域的机会均等(若指针恰好落在分界线上则重转),当两个转盘的指针所指字母都相同时,消费者就可以获得一次八折优惠价购买粽子的机会.(1)用树状图或列表的方法表示出游戏可能出现的所有结果;(2)若一名消费者只能参加一次游戏,则他能获得八折优惠价购买粽子的概率是多少?转盘1转盘226.(本小题9分)对于抛物线243y x x=-+.(1)它与x轴交点的坐标为,与y轴交点的坐标为,顶点坐标为;(2)在坐标系中利用描点法画出此抛物线;(3)利用以上信息解答下列问题:若关于x的一元二次方程2430x x t-+-=(t为实数)在1-<x<72的范围内有解,则t的取值范围是.27.(本小题9分)如图,在直角坐标系中,O 为坐标原点. 已知反比例函数ky x=(k>0)的图象经过点A (2,m ),过点A 作AB ⊥x 轴于点B ,且△AOB 的面积为12.(1)求k 和m 的值;(2)点C (x ,y )在反比例函数ky x=的图象上,求当 1≤x ≤3时函数值y 的取值范围; (3)过原点O 的直线l 与反比例函数ky x=的图象交于P 、 Q 两点,试根据图象直接写出线段PQ 长度的最小值.BOA28.(本小题9分)已知直角坐标系中菱形ABCD 的位置如图,C ,D 两点的坐标分别为(4,0),(0,3).现有两动点P ,Q 分别从A ,C 同时出发,点P 沿线段AD 向终点D 运动,点Q 沿折线CBA 向终点A 运动,设运动时间为t 秒. (1)填空:菱形ABCD 的边长是 ;面积是 ;高BE 的长是 ; (2)若点P 的速度为每秒1个单位,点Q 的速度为每秒2个单位.当点Q 在线段BA 上时,求△APQ 的面积S 关于t九年级数学试题参考答案一、选择题:(每小题3分)C D A B D D B A A B A C A B C 二、填空题:(每小题3分)16. -12 17. 600 18. 50+ 19. 1 20. 4 21. x >21三、解答题:22.(1)解:244104x x ++=+2(2)14x +=…………………………..1分2x +=分2x =-∴12x =-+22x =-分(2)解:26tan 30cos45︒︒-︒26=⨯分32=-12= ………………………………………………7分23.(1)证明:∵四边形ABCD 是平行四边形∴AB=CD ,AB ∥CD ……………………………………1分 ∵E 、F 分别是AB 、CD 的中点∴AE =CF ,且AE ∥CF ………………………………..2分 ∴四边形AECF 是平行四边形…………………………..3分(2)解:在Rt △ABC 中,∠C =90°,∠ABC =60°,AC , ∴ 2sin 60ACAB ==︒,BC =1.……………………5分 ∵ D 为CB 延长线上一点,BD =2AB ,∴ BD =4,CD =5. …………………………………6分∴AD =.……………………7分24.解:(1)设平均每次下调的百分率x ,则6000(1-x )2=4860……………………………………3分 解得:x 1=0.1 x 2=1.9(舍去)……………………….…..4分∴平均每次下调的百分率10%..........................................................5分(2)方案①可优惠:4860×100×(1-0.98)=9720元………6分 方案②可优惠:100×80=8000元……………………………….7分∴方案①更优惠………………………………………………8分25.解: (1)解法一:--------------4分 --------------6分 解法二:分(2)∵共有6种结果,两个转盘的指针所指字母都相同时的结果只有一种,∴P (字母相同)=16-----------------------------8分 26.解:(1)它与x 轴交点的坐标为(1,0),(3,0),与y 轴交点的坐标为(0,3),顶点坐标为(2,1)-; ………………………………………3分(2)列表:分图象如图所示. 分 (3)t 的取值范围是18t -≤<.……………………9分……数学试题 第 11 页 (共 8 页)27.解:(1)∵A (2,m ) , ∴OB =2 ,AB =m∴S △AOB =21•OB •AB =21×2×m =21 ∴m =21.............................................................................................................2分 ∴点A 的坐标为(2,21),把A (2,21)代入y=x k ,得21=2k ∴k =1 …………………………………………………………………………4分(2)∵当x =1时,y =1;当x =3时,y =31………………………………….6分 又∵反比例函数y =x1在x >0时,y 随x 的增大而减小 ∴当1≤x ≤3时,y 的取值范围为31≤y ≤1………………………………..7分 (3)由图象可得,线段PQ 长度的最小值为22……………………….9分28.解:(1)5 , 24, 524…………………………………3分 (2)①由题意,得AP =t ,AQ =10-2t. …………………………………………4分如图1,过点Q 作QG ⊥AD ,垂足为G ,由QG ∥BE 得△AQG ∽△ABE ……………………………5分 ∴BA QA BE QG =, ∴QG =2548548t -, …………………………6分 ∴t t QG AP S 5242524212+-=⋅=(25≤t ≤5). ……7分 ∵6)25(25242+--=t S (25≤t ≤5). ∴当t =25时,S 最大值为6.…………………9分。
学校:____________ 班级:_____________ 姓名:_____________ 座号:_____________---------------密----------------------封-----------------------线-----------------------内---------------------不-----------------------准--------------------------答----- -----------------------题-------------------------------2013~2014学年度第一学期期末联合调研测试九 年 级 数 学亲爱的同学,诚信是我们中华民族的传统美德。
诚信应考,是责任感的体现;诚信应考,是人格魅力的体现。
当你手捧着充满“诚信”的答卷,面对老师,面对父母时,他们一定会因你拥有的人格魅力而骄傲,同时,你也会为自己感到自豪。
亲爱的同学,相信在本场考试中,你的数学知识水平和探究能力一定会有很好的发挥。
特别提醒你要仔细审题。
祝你取得好成绩!并请你注意:1.答卷前,请你用钢笔(圆珠笔)将自己的校名、班级、姓名、座号填在密封线内。
2.答卷时,请按题目的要求作答。
3.试卷共6页,考试时间90分钟,满分150分。
题号 一题36分 二题32分 三题 82分 总分 21题 7分 22题 7分 23题 8分 24题 10分 25题 12分 26题12分 27题 12分 28题 14分 得分一、选择题(本大题共12小题,每题3分,共36分。
下列各题的备选答案中,只有一个是正确的,请将正确答案的序号填入下表中相应题号下的空格内)题号 1 2 3 4 5 6 7 8 9 10 11 12 答案1、下列二次根式中,最简二次根式是( )A.51B. 5.0C. 5D. 50 2、“a 是实数, ||0a ≥”这一事件是 ( )A. 必然事件B. 不确定事件C. 不可能事件D. 随机事件 3、方程x x 22=的根为( )A. 2=xB. 0=xC.2021==x x ,D. 2021-==x x , 4、如图,⊙O 的半径OC 垂直弦AB 于D ,若AB=8,OD=3 则⊙O 的直径为( )A.5B. 6C. 8D. 105、抛物线()21-=x y 的顶点坐标是( ) A .(1,0) B .(-1,0)C .(-2,1)D .(2,-1)6、已知正六边形的边心距为3,则它的周长是( ) A. 6 B. 12 C.36 D. 3127、二次函数2)1(2+-=x y 的最小值是( ) A. -2 B. -1 C. 1 D. 28、如图,小圆的半径为7,大圆的半径为9,则圆环的面积为( ) A.17π B.32π C. 49πD. 80πD OB第4题AC 79第8题2013-2014学年度第一学期期末调研测试 九年级 数学9、下列图形中,是中心对称图形的是( )A .B .C .D .10、如图所示,将矩形纸片先沿虚线AB 按箭头方向向右..对折,接着将对折后的纸片沿虚线CD 向下对折,然后剪下一个小三角形,再将纸片打开,则打开后的展开图是( )A .B .C .D .11、若114<<a ,则()()22114-+-a a 化简后为( )A. 7B. -7C. 152-aD. 无法确定12、已知抛物线()02≠++=a c bx ax y 在平面直角坐标系中的位置如图所示,则下列结论中正确的是( )A . 0>aB . 0<bC . 0>cD . 0<++c b a 二、填空题(本大题共8小题,每题4分,共32分。
福州市2013—2014学年第一学期九年级期末质量检测数学试卷参考答案及评分标准一、选择题(每小题4分,共40分)1.B 2.D 3.A 4.C 5.B 6.C 7.A 8.A 9.D 10.D二、填空题(每小题4分,共20分):11.x ≥1 12. 1 6 13.1 14.100 15.7; 21 4(正确一个得2分) 三、解答题:(满分90分)16.(每小题7分,共14分)解:(1) 8×12×18÷27=22×23×32÷3 3 ……………………………………………………………4分 =8. ……………………………………………………………………………………7分 (2) 9x +6 x 4-2x 1 x=3x +3x -2x ……………………………………………………………………6分=4x . …………………………………………………………………………………7分17.解:(1) △A 1B 1C 1如右下图; ………………………………………………………………3分(2) A 1(1,3),B 1(1,0),C 1(3,0); …………………………………………………6分(3) 由抛物线y =ax 2+bx +c 经过点C 、B 1、C 1,可得:⎩⎪⎨⎪⎧c =3a +b +c =09a +3b +c =0, ………………………………………………………………9分 解得:⎩⎪⎨⎪⎧a =1b =-4c =3, …………………………………10分 ∴抛物线的解析式为:y =x 2-4x +3. ……………11分(答案用一般式或顶点式表示,否则扣2分) (4) 表格填写合理正确得2分,图像正确得2分.x… 0 1 2 3 4 … y =x 2-4x+3 … 3 0 -1 0 3 … 二次函数y =x 2-4x +3的图像如右图. 18.解:(1) 列树状图如下:………………3分由树状图可知:所有可能出现的结果共12种情况,并且每种情况出现的可能性相等.其中x 与y 的积为偶数有6种. …………………………………………………………………………………4分∴小明获胜的概率P (x 与y 的积为偶数)=6 12 = 1 2. ………………………………6分 (2) 列树状图如下:……………9分A B C O xy A 1 B 1 C 1 y =x 2-4x +3 1 2 35 1 2 3 5 1 2 3 5 1 2 3 5 小明 小强小明 小强 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5由树状图可知,所有可能出现的结果共16种情况,并且每种情况出现的可能性相等.其中x与y的积为偶数有7种. (10)分∴小明获胜的概率P(x与y的积为偶数)=716 <12,……………………………11分(或证明716 ≠916 也可)∴游戏规则不公平.……………………………………………………………………12分19.解:(1) 设这两年该县旅游纯收入的年平均增长率为x.根据题意得:………………1分2000(1+x)2=2880.…………………………………………………………4分解得:x1=0.2=20%,x2=-2.2 (不合题意,舍去).………………………6分答:这两年该县旅游纯收入的年平均增长率为20%.………………………7分(2) 如果到2015年仍保持相同的年平均增长率,则2015年该县旅游纯收入为2880(1+0.2)2=4147.2(万元).………………………9分答:预测2015年该县旅游纯收入约4147.2万元.………………………10分20.解:(1) 连接OC.…………………………………………1分∵AB是⊙O的直径,∴∠ACB=90°,即∠ACO+∠OCB=90°.………2分∵OA=OC,∴∠A=∠ACO,………………………………3分∵∠A=∠PCB,∴∠ACO=∠PCB.………………………………4分∴∠PCB+∠OCB=∠ACO+∠OCB=90°,即∠PCO=90°.∴PC⊥OC.………………………………5分又∵OC为⊙O的半径,∴PC是⊙O的切线.………………………………6分(2) ∵AC=PC,∴∠A=∠P,………………………………………7分∴∠PCB=∠A=∠P.∴BC=BP=1.………………………………………8分∴∠CBO=∠P+∠PCB=2∠PCB.又∵∠COB=2∠A=2∠PCB,∴∠COB=∠CBO,…………………………………9分∴BC=OC.又∵OB=OC,∴OB=OC=BC=1,即△OBC为等边三角形.……10分∴∠COB=60°.………………………………11分∴l⌒BC=1×60π180=13π.……………………………12分21.解:(1) DC+CE=2;…………………………………3分(2) 结论成立.连接PC,如图.…………………………4分∵△ABC是等腰直角三角形,P是AB的中点,∴CP=PB,CP⊥AB,∠ACP=12∠ACB=45°.ABCOPABCDEP∴∠ACP =∠B =45°,∠CPB =90°. …………………5分∴∠BPE =90°-∠CPE .又∵∠DPC =90°-∠CPE ,∴∠DPC =∠EPB . ………………………………6分∴△PCD ≌△PBE .∴DC =EB , …………………………………………7分∴DC +CE =EB +CE =BC =2. ……………………8分(3) △CMN 的周长为定值,且周长为2. …………9分在EB 上截取EF =DM ,如图, …………………10分由(2)可知:PD =PE ,∠PDC =∠PEB , ∴△PDM ≌△PEF , ………………………………11分∴∠DPM =∠EPF ,PM =PF .∵∠NPF =∠NPE +∠EPF =∠NPE +∠DPM =∠DPE -∠MPN=45°=∠NPM .∴△PMN ≌△PFN ,∴MN =NF . ……………………………………………12分∴MC +CN +NM =MC +CN +NE +EF=MC +CE +DM=DC +CE=2.∴△CMN 的周长是2. …………………………………13分22.解:(1) 令y =0,得:x 2-4x +1=0, …………………1分解得:x 1=2+3,x 2=2-3. …………………3分 ∴点A 的坐标为(2-3,0),点B 的坐标为(2+3,0). …4分∴AB 的长为23. ………………………………5分(由韦达定理求出AB 也可)(2) 由已知得点C 的坐标为(0,1),由y =x 2-4x +1=(x ―2)2―3, 可知抛物线的对称轴为直线x =2, ……………………6分设△ABC 的外接圆圆心D 的坐标为(2,n ),连接AD 、CD ,∴DC =DA ,即22+(n -1)2=[2―(2―3)]2+n 2,……………8分解得:n =1, …………………………………………9分∴点D 的坐标为(2,1),∴△ABC 的外接圆⊙D 半径为2. ……………………10分(3) 解法一:由(2)知,C 是弧MN 的中点.在半径DN 上截取EN = MG , ……………………11分又∵DM =DN ,∴DG =DE .则点G 与点E 关于点D 对称,连接CD 、CE 、PD 、PE .由圆的对称性可得:图形PMC 的面积与图形PECN 的面积相等. …………………………………………12分由PC 把图形PMCN (指圆弧⌒MCN 和线段PM 、PN 组成的图形)分成两部分,这两部分面积之差为4.可知△PCE 的面积为4.设点P 坐标为(m ,n ) A B C D E M P N F A BC O x yD A B CO xyD EMP N G∴S △CEP =2S △CDP =2× 1 2·CD ·n -1=4, ∴n 1=3,n 2=-1. ……………………………………13分 由点P 在抛物线y =x 2-4x +1上,得:x 2-4x +1=3,解得:x 1=2+6,x 2=2-6(舍去);或x 2-4x +1=-1,解得:x 3=2+2,x 4=2-2(舍去).∴点P 的坐标为(2+2,-1)或(2+6,3). ……………14分 解法二:设点P 坐标为(m ,n ),点G 坐标为(2,c ),直线PC 的解析式为y =kx +b ,得:⎩⎨⎧b =1n =km +b ,解得:⎩⎪⎨⎪⎧k =n -1 m b =1, ∴直线PC 的解析式为y = n -1 m x +1. …………………11分当x =2时,c = 2(n -1) m +1.由(2)知,C 是弧MN 的中点,连接CD , 图形PCN 的面积与图形PMC 的面积差为:=S 扇形DCN +S △GCD +S △PGN -(S 扇形MCD -S △GCD +S △PMG )=2S △GCD +S △PGN -S △PMG=2×12 ×2(c -1)+1 2 (1+c )(m ―2)―12 (3―c )(m ―2)=2(c -1)+12 (2c ―2)(m ―2)=(c -1)(2+m ―2)=[ 2(c -1) m +1―1]m=2(n -1)=4.∴n 1=3,n 2=-1. ……………………………………13分 由点P 在抛物线y =x 2-4x +1上,得:x 2-4x +1=3,解得:x 1=2+6,x 2=2-6(舍去);或x 2-4x +1=-1,解得:x 3=2+2,x 4=2-2(舍去).∴点P 的坐标为(2+2,-1)或(2+6,3). ……………14分A B C O x y D M P N G。
初三上数学模拟试卷一、选择题1、32-、5.0-25中,最简二次根式的个数是( ) A 、1 B 、2 C 、3 D 、42.某厂一月份的总产量为500吨,三月份的总产量达到为720吨.若平均每月增长率是x ,则可以列方程( )A .500(12)720x +=B .2500(1)720x +=C .2500(1)720x +=D .2720(1)500x +=3.如果关于x 的一元二次方程210ax x +-=有实数根,则a 的取值范围是( )A .14a >-B .14a ≥-且0a ≠C .14a ≥-D .14a >-且0a ≠ 4.如图,下列图形中,是中心对称图形的是A .B .C .D .5.下列事件是随机事件的为A 、度量三角形的内角和,结果是180︒B 、经过城市中有交通信号灯的路口,遇到红灯C 、爸爸的年龄比爷爷大D 、通常加热到100℃时,水沸腾6.将二次函数y =x 2-2x +3化为y =(x -h)2+k 的形式结果为 ( )A .y =(x +1)2+4B .y =(x -1)2+4C .y =(x +1)2+2D . y =(x -1)2+27.已知一个圆锥的侧面积是150π,母线为15,则这个圆锥的底面半径是(A )5 (B )10 (C )15 (D )208.如果将抛物线2y x =向左平移2个单位,那么所得抛物线的表达式为A.22y x =+B.22y x =-C.2(2)y x =+D.2(2)y x =-9.如图,CD 是⊙O 的直径,AB 是弦(不是直径),AB ⊥CD 于点E ,则下列结论正确的是( )A .AE > BEB .C .∠AEC =2∠DD .∠B=∠C.10.根据下列表格对应值:判断关于x 的方程20(0)ax bx c a ++=≠的一个解x 的范围是( )A .x <3.24B .3.24<x <3.25C .3.25<x <3.26D .3.25<x <3.28二、填空题11x 的取值范围是 .12.请你写出一个有一根为1的一元二次方程: .13.如图,在矩形ABCD 中,AB=1,AD=2,将AD 绕点A 顺时针...旋转,当点D 落在BC 上点D ′14.如图在68⨯的网格图(每个小正方形的边长均为1个单位长度)中,⊙A 的半径为2个单位长度,⊙B 的半径为1个单位长度,要使运动的⊙B 与静止的⊙A 内切,应将⊙B 由图示位置向左平移 个单位长度.15.如图,用3个边长为1的正方形组成一个轴对称图形,则能将其完全覆盖的圆的最小半径为 .三、解答题16.(1(2)解方程:(x+4)2=5(x+4).17.如图,已知ABC △的三个顶点的坐标分别为(23)A -,、(60)B -,、(10)C -,.(1)请直接写出点A 关于原点O 对称的点的坐标;(2)将ABC △绕坐标原点O 逆时针旋转90°.画出图形,直接写出点B 的对应点的坐标;(3)请直接写出:以A B C 、、为顶点的平行四边形的第四个顶点D 的坐标.18.设点A 的坐标(x ,y ),其中横坐标x 可取-1,2,纵坐标y 可取-1,1,2,(1)求出点A 的坐标的所有等可能结果(用树形图或列表法求解);(2)求点A 与点B (1,-1)关于原点对称的概率。
19.如图,OC 平分∠MON ,点A 在射线OC 上,以点A 为圆心,半径为2的⊙A 与OM 相切与点B ,连接BA 并延长交⊙A 于点D ,交ON 于点E .(1)求证:ON 是⊙A 的切线;(2)若∠MON=60°,求图中阴影部分的面积.(结果保留π)20.为了落实国务院的指示精神,某地方政府出台了一系列“三农”优惠政策,使农民收入大幅度增加.某农户生产经销一种农产品,已知这种产品的成本价为每千克20元,市场调查发现,该产品每天的销售量y(千克)与销售价x (元/千克)有如下关系:y=﹣2x+80.设这种产品每天的销售利润为w元.(1)求w与x之间的函数关系式.(2)该产品销售价定为每千克多少元时,每天的销售利润最大?最大利润是多少元?(3)如果物价部门规定这种产品的销售价不高于每千克28元,该农户想要每天获得150元的销售利润,销售价应定为每千克多少元?21.如图1,点O是边长为1的等边△ABC内的任一点,设∠AOB=α°,∠BOC=β°(1)将△BOC绕点C沿顺时针方向旋转60°得△ADC,连结OD,如图2所示. 求证:OD=OC。
(2)在(1)的基础上,将△ABC绕点C沿顺时针方向旋转60°得△EAC,连结DE,如图3所示. 求证:OA=DE (3)在(2)的基础上,当α、β满足什么关系时,点B、O、D、E在同一直线上。
并直接写出AO+BO+CO的最小值。
22.如图,在平面直角坐标系xOy中,将抛物线C1:y=x2+3先向右平移1个单位,再向下平移7个单位得到抛物线C2。
C2的图象与x轴交于A、B两点(点A在点B的左侧)。
(1)求抛物线C2的解析式;(2)若抛物线C2的对称轴与x轴交于点C,与抛物线C2交于点D,与抛物线C1交于点E,连结AD、DB、BE、EA,请证明四边形ADBE是菱形,并计算它的面积;(3)若点F为对称轴DE上任意一点,在抛物线C2上是否存在这样的点G,使以O、B、F、G四点为顶点的四边形是平行四边形,如果存在,请求出点G的坐标,如果不存在,请说明理由。
参考答案1.A .2.D.3.B.4.A5.B6.D7.B8.C9.B10.B.11.5x ≤.12.21x =.(答案不唯一)13.32-14.4或6151617.x=-4或x=118.(2,-3)19.略20.(-7,3) (3,3) (-5,-3)21.(1)如图所示:∴点A 的坐标,所求可能结果有6种,分别是(-1,-1)、(-1,1)、(-1,2)、(2,-1)、(2,1)、(2,2);(2)1=6A P 。
22.(1)见解析 (2)23π23.解:(1)由题意得:()()()2w x 20y x 202x 802x 120x 1600=-⋅=--+=-+-,本卷由【在线组卷网 】自动生成,请仔细校对后使用,答案仅供参考。
∴w 与x 的函数关系式为:2w 2x 120x 1600=-+-。
(2)()22w 2x 120x 16002x 30200=-+-=--+,∵﹣2<0,∴当x=30时,w 有最大值.w 最大值为200。
答:该产品销售价定为每千克30元时,每天销售利润最大,最大销售利润200元。
(3)当w=150时,可得方程﹣2(x ﹣30)2+200=150,解得x 1=25,x 2=35。
∵35>28,∴x 2=35不符合题意,应舍去。
答:该农户想要每天获得150元的销售利润,销售价应定为每千克25元。
24.(1)根据旋转的性质可得CO=CD ,∠DOC=60°,即得△COD 是等边三角形,问题得证;(2)根据旋转的性质可得△ADC ≌△BOC ,△EAC ≌△ABC ,则可得AD=BO ,∠DAC=∠OBC ,EA=AB ,∠EAC=∠ABC ,即可证得△EAD ≌△ABO ,问题得证;(325.(12)∠BEC =90(3)当0<r <2时,⊙O 与⊙A 相切4次;当r =2时,⊙O 与⊙A 相切3次;当r =8时,⊙O 与⊙A 相切3次;当r >8时,⊙O 与⊙A 相切4次.26.解:(1)∵将抛物线C 1:y =x 2+3先向右平移1个单位,再向下平移7个单位得到抛物线C 2,∴抛物线C 1的顶点(0,3)向右平移1个单位,再向下平移7个单位得到(1,-4)。
∴抛物线C 2的顶点坐标为(1,-4)。
∴抛物线C 2的解析式为()2y x 14=--,即2y x 2x 3=--。
(2)证明:由2x 2x 30--=解得12x 1x 3=-=,,∵点A 在点B 的左侧,∴A (-1,0),B (3,0),AB=4。
∵抛物线C 2的对称轴为x 1=,顶点坐标D 为(1,-4),∴CD=4。
AC=CB=2。
将x 1=代入y =x 2+3得y =4,∴E (1, 4),CE=DE 。
∴四边形ADBE 是平行四边形。
∵ED ⊥AB ,∴四边形ADBE 是菱形。
ADBE 11S 2AB CE 2441622=⨯⨯⨯=⨯⨯⨯=菱形。
(3)存在。
分AB 为平行四边形的边和对角线两种情况:①当AB 为平行四边形的一边时,如图,设F (1,y ),∵OB=3,∴G 1(-2,y )或G 2(4,y )。
∵点G 在2y x 2x 3=--上,∴将x=-2代入,得y 5=;将x=4代入,得y 5=。
∴G 1(-2,5),G 2(4,5)。
②当AB 为平行四边形的一对角线时,如图,设F (1,y ),OB 的中点M ,过点G 作GH ⊥OB 于点H ,∵OB=3,OC=1,∴OM=32,CM=12。
本卷由【在线组卷网 】自动生成,请仔细校对后使用,答案仅供参考。
∵△CFM ≌△HGM (AAS ),∴HM=CM=12。
∴OH=2。
∴G 3(2,-y )。
∵点G 在2y x 2x 3=--上, ∴将(2,-y )代入,得y 3-=-,即y 3=。
∴G 3(2,-3)。
综上所述,在抛物线C 2上是否存在这样的点G ,使以O 、B 、F 、G 四点为顶点的四边形是平行四边形,点G 的坐标为G 1(-2,5),G 2(4,5),G 3(2,-3)。