北师大版七年级上册数学一元一次方程应用题及复习资料
- 格式:pdf
- 大小:573.51 KB
- 文档页数:4
北师大版数学七年级上册第五章一元一次方程微专题——应用题动点类训练31.如图1,已知点C在线段AB上,线段AC=10厘米,BC=6厘米,点M,N分别是AC,BC的中点.(1)求线段MN的长度.(2)根据第(1)题的计算过程和结果,设AC=a,BC=b,其他条件不变,则MN=______ .(3)动点P、Q分别从A、B同时出发,点P以2cm/s的速度沿AB向右运动,终点为B,点Q以1cm/s 的速度沿AB向左运动,终点为A,当一个点到达终点,另一个点也随之停止运动.设点P的运动时间为t(s).当C、P、Q三点中,有一点恰好是以另外两点为端点的线段的中点时,求时间t.2.已知数轴上有两点A、B,点A表示的数是4,点B表示的数是−11,点C是数轴上一动点.(1)如图1,若点C在点B的左侧,且BC:AB=3:5,求点C到原点的距离.(2)如图2,若点C在A、B两点之间时,以点C为折点,将此数轴向右对折,当A、B两点之间的距离为1时,求C点在数轴上对应的数是多少?(3)如图3,在(1)的条件下,动点P、Q两点同时从C、A出发向右运动,同时动点R从点A向左运动,已知点P的速度是点R的速度的3倍,点Q的速度是点R的速度的2倍少5个单位长度/秒.经过4秒,点P、Q之间的距离是点Q、R之间距离的一半,求动点Q的速度.3.距离是天文学、物理学、数学,甚至哲学中的热门话题。
唯有深入了解距离,才能更好地把握宇宙尺度,把握做人做事的分寸。
研究数轴我们发现:若点A在数轴上对应的数为a,点B对应的数为b,则A、B两点之间的距离为AB=|a−b|。
已知如图,点O为原点,点A、B在数轴上对应的数分别为−2和6。
(1)①A,B两点之间的距离为__________;②点R是数轴上一点,若点R到点A的距离为6(RA=6),则点R在数轴上对应的数为___。
(2)数轴上有一动点T,当点T以每秒1个单位长度的速度从O点向左匀速运动时,点A也以每秒4个单位长度的速度向左匀速运动,同时点B也以每秒6个单位长度的速度向左匀速运动,若它们同时出发,则几秒后T点到A、B两点的距离相等?4.如图,动点A从原点出发向数轴负方向运动,同时,动点B也从原点出发向数轴正方向运动,运动到3秒钟时,两点相距15个单位长度.已知动点A、B的运动速度比之是3∶2(速度单位:1个单位长度/秒).(1)直接写出动点A的运动速度是___个单位长度/秒,动点B的运动速度是___个单位长度/秒;(2)A、B两点运动到3秒时停止运动,请在数轴上标出此时A、B两点的位置;(3)若A、B两点分别从(2)中标出的位置再次同时开始在数轴上运动,运动的速度不变,运动的方向不限,问:运动到几秒钟时,A、B两点之间相距4个单位长度?5.如图,AB=12cm,点C在线段AB上,AC=3BC,点P,Q在线段AB上来回运动,动点P从点A出发,以4cm/s的速度向右运动,到达点B之后立即返回,以4cm/s的速度向左运动;动点Q从点C出发,以1cm/s的速度向右运动,到达点B之后立即返回,以1cm/s的速度向左运动.设它们同时出发,运动时间为t秒,当第二次重合时,P、Q两点停止运动.(1)AC=______cm,BC=______cm;(2)当t=______秒时,点P与点Q第一次重合;当t=______秒时,点P与点Q第二次重合;(3)当t为何值时,AP=PQ?6.已知,线段AB上有三个点C、D、E,AB=18,AC=2BC,D、E为动点(点D在点E的左侧),并且始终保持DE=8.(1)如图1,当E为BC中点时,求AD的长;(2)如图2,点F为线段BC的中点,AF=3AD,求AE的长;(3)若点D从A出发向右运动(当点E到达点B时立即停止),运动的速度为每秒2个单位,当运动时间t为多少秒时,使AD、BE两条线段中,一条的长度恰好是另一条的两倍.7.如图,线段AB=36cm,动点P从A出发,以3cm/秒的速度沿射线AB运动,点M为AP的中点.(1)点P出发多少秒后,PB=2PM;(2)当点P在线段AB上运动时,试说明2BM−BP为定值;(3)当点P在线段AB延长线上运动,点N为BP的中点时,请判断线段MN的长度是否发生改变,若改变,请说明理由;若不改变,请求其值.8.已知a是最大的负整数,b是−6的相反数,c=−|−2|,且a、b、c分别是点A、B、C在数轴上对应的数.(1)a=______,b=______,c=______;(2)若动点P从点A出发沿数轴正方向运动,动点Q同时从点B出发也沿数轴正方向运动,点P的速度是每秒2个单位长度,点Q的速度是每秒1个单位长度,求运动几秒后,点P可以追上点Q?(3)在(2)的条件下,P、Q出发的同时,动点M从点C出发沿数轴正方向运动,速度为每秒5个单位长度,点M追上点Q后立即返回沿数轴负方向运动.求点M追上点Q后再经过几秒,MQ= 2MP9.【背景知识】数轴是初中数学的一个重要工具,利用数轴可以将数与形完美地结合.研究数轴我们发现了许多重要的规律:若数轴上点A、点B表示的数分别为a、b,则A,B两点之间的距离AB=|a−b|.如图,已知数轴上点A表示的数为8,B是数轴上位于点A左侧一点,如果把数轴沿表示−2的点对折A、B两点刚好重合.(1)数轴上点B表示的数是______;AB=______.(2)动点P从A点出发,以每秒2个单位长度的速度沿数轴向左匀速运动,动点Q从点B出发,以每秒8个单位长度的速度沿数轴向右匀速运动,若点P、Q同时出发,当P、Q之间的距离恰好等于2时求点P表示的数.(3)动点P从A点出发,以每秒2个单位长度的速度沿数轴向右匀速运动,动点Q从点B出发,以每秒8个单位长度的速度沿数轴向右匀速运动,当点Q到达点A时立即以每秒10个单位长度的速度沿数轴向左匀速运动,当点Q回到点B立即停止,若点P、Q同时出发,同时停止,求当PA=QA时,求点Q表示的数.10.如图,已知在原点为O的数轴上三个点A、B、C,OA=AB=BC=20cm,动点P从点O出发向右以每秒2cm的速度匀速运动;同时,动点Q从点C出发向左以每秒a cm的速度匀速运动.设运动时间为t秒.(1)当点P从点O运动到点C时,求t的值;(2)若a=3,那么经过多长时间P,Q两点相距20cm?(3)当PA+PB=40cm,|QB−QC|=10cm时,求a的值.11.已知数轴上A,B两点表示的数分别为−8和20,若A,B两点同时出发,A点运动速度为每秒3个单位,B点运动速度为每秒1个单位,设运动时间为t秒.(1)点A向右运动,B点向左运动,当t为何值时,A,B两点之间距离为8?(2)若A点和B点都向右运动,多少秒后,A,B两点之间距离为8?(3)在(2)的条件下,另一动点M同时从O点出发,以每秒2个单位的速度向右运动,多少秒后,点M到点A和点B的距离相等?12.已知数轴上点A表示的数为12,点B表示的数为−8.动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,同时动点Q从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)当点P与点Q关于原点O对称时,求t的值;(2)是否存在t的值,使得点P与点Q之间的距离为3个单位长度?若存在,请求出t的值;若不存在,请说明理由.13.阅读理解:如图①,数轴上线段的长度可以用线段端点表示的数进行减法运算得到,例如,线段AB=0−(−1)=1:线段:BC=2−0=2;线段AC=2−(−1)=3(大的数减去小的数).(1)数轴上点A、B表示的数分别是−3和2,则AB=______;(2)数轴上点M表示的数是−1,线段MN的长为2,则点N表示的数是______;(3)如图②,数轴上点A、B表示的数分别是−4和6,动点P从点A出发,沿AB方向以每秒2个单位长度的速度运动,点P运动多少秒时BP=4.并求此时点P表示的数是多少?14.已知a是最大的负整数,b=−|−5|,c是−4的相反数,且a,b,c分别是点A,B,C在数轴上对应的数.(1)则a=__________,b=__________,c=__________;(2)在数轴上,若点D到A的距离刚好是3,则D点叫做A的“幸福点”则A的幸福点D所表示的数应该是__________;(3)若动点P从点B出发以3个单位长度沿数轴向正方向运动,到达点C后立即原路返回,最后在B处停止运动.动点Q同时从点C出发每秒1个单位长度沿数轴向负方向运动,到达点A后停止运动.求运动几秒后,点P与点Q可以遇见?15.如图,在数轴上A点表示数a,B点表示数b,C点表示数c,且a、c满足|a+3|+|c−9|=0.若点A与点B之间的距离表示为AB=|a−b|,点B与点C之间的距离表示为BC=|b−c|,点B 在点A、C之间,且满足BC=2AB.(1)a=______,b=______,c=______;(2)若点P为数轴上一动点,其对应的数为x,当|x−a|=3时,x=______;当代数式|x−a|+ |x−c|取得最小值时,此时最小值为______.(3)动点M从B点位置出发,沿数轴以每秒1个单位的速度向终点C运动,同时动点N从A点出发,以每秒2个单位的速度沿数轴向C点运动,设运动时间为t秒.问:当t为何值时,M,N两点之间的距离为2个单位?16.已知:如图线段AB=15,C为线段AB上一点,且BC=6。
北师大版七年级上册数学重难点突破知识点梳理及重点题型巩固练习《一元一次方程》全章复习与巩固(基础)知识讲解【学习目标】1.经历建立方程模型、解方程和运用方程解决实际问题的过程,体会模型思想;2.了解一元一次方程、方程的解等基本概念,会解数字系数的一元一次方程,感受转化思想;3.能运用一元一次方程解决实际问题,能根据实际意义检验方程的合理性.【知识网络】【要点梳理】知识点一、一元一次方程的概念1.方程:含有未知数的等式叫做方程.2.一元一次方程:只含有一个未知数(元),未知数的次数都是1,这样的方程叫做一元一次方程.要点诠释:(1)一元一次方程变形后总可以化为ax+b=0(a≠0)的形式,它是一元一次方程的标准形式.(2)判断是否为一元一次方程,应看是否满足:①只含有一个未知数,未知数的次数为1; ②未知数所在的式子是整式,即分母中不含未知数.3.方程的解:使方程的左、右两边相等的未知数的值叫做这个方程的解.4.解方程:求方程的解的过程叫做解方程.知识点二、等式的性质与去括号法则1.等式的性质:等式的性质1:等式两边同时加上(或减去)同一个代数式,所得结果仍是等式.等式的性质2:等式两边乘同一个数,(或除以同一个不为0的数),所得结果仍是等式.2.合并法则:合并时,把系数相加(减)作为结果的系数,字母和字母的指数保持不变.3.去括号法则:(1)括号外的因数是正数,去括号后各项的符号与原括号内相应各项的符号相同.(2)括号外的因数是负数,去括号后各项的符号与原括号内相应各项的符号相反. 知识点三、一元一次方程的解法解一元一次方程的一般步骤:(1)去分母:在方程两边同乘以各分母的最小公倍数.(2)去括号:依据乘法分配律和去括号法则,先去小括号,再去中括号,最后去大括号.(3)移项:把含有未知数的项移到方程一边,常数项移到方程另一边.(4)合并:逆用乘法分配律,分别合并含有未知数的项及常数项,把方程化为ax =b(a ≠0)的形式.(5)系数化为1:方程两边同除以未知数的系数得到方程的解b x a=(a ≠0). (6)检验:把方程的解代入原方程,若方程左右两边的值相等,则是方程的解;若方程左右两边的值不相等,则不是方程的解.知识点四、用一元一次方程解决实际问题的常见类型1.等积变形:①形状面积变了,周长没变;②原体积=变化后体积.2.利润问题:商品利润=商品售价-商品进价3.行程问题:路程=速度×时间4.和差倍分问题:增长量=原有量×增长率5.工程问题:工作量=工作效率×工作时间,各部分劳动量之和=总量6.银行存贷款问题:本息和=本金+利息,利息=本金×利率×期数7.数字问题:多位数的表示方法:例如:32101010abcd a b c d =⨯+⨯+⨯+.8.方案问题:(1)运用一元一次方程解应用题的方法求解两种方案值相等的情况.(2)用特殊值试探法选择方案,取小于(或大于)一元一次方程解的值,比较两种方案的优劣性后下结论.【典型例题】类型一、一元一次方程的概念1.(2014•郸城县校级模拟)如果方程(k ﹣1)x |k|+3=0是关于x 的一元一次方程,那么k 的值是 .【思路点拨】根据一元一次方程的定义知|k|=1且未知数是系数k ﹣1≠0,据此可以求得k 的值.【答案】 ﹣1.【解析】解:∵方程(k﹣1)x|k|+3=0是关于x的一元一次方程,∴|k|=1,且k﹣1≠0,解得,k=﹣1;故答案是:﹣1.【总结升华】本题考查了一元一次方程的概念和解法.一元一次方程的未知数的指数为1,且未知数的系数不为零.举一反三:【变式】下列说法中正确的是( ).A.2a-a=a不是等式 B.x2-2x-3是方程 C.方程是等式 D.等式是方程【答案】C2. 若方程3(x-1)+8=2x+3与方程253x k x+-=的解相同,求k的值.【答案与解析】解:解方程3(x-1)+8=2x+3,得x=-2.将x=-2代入方程253x k x+-=中,得22253k-++=.解这个关于k的方程,得263k=.所以,263k=.【总结升华】由于两个方程的解相同,所以可以将其中一个方程的解代入另一个方程中,从而求得问题的答案.举一反三:【变式】(2015春•泉州期中)当x=时,代数式2x+1与5x﹣8的值相等.【答案】3.解:根据题意得:2x+1=5x﹣8,∴2x﹣5x=﹣8﹣1,∴﹣3x=﹣9,∴x=3.类型二、一元一次方程的解法3.解方程2351 46y y+--=【思路点拨】通过方程的同解原理(去分母,去括号,合并同类项,系数化为1),一步一步将一个复杂的方程转化成与它同解的最简的方程,从而达到求解的目的.【答案与解析】解:去分母,得3(y+2)-2(3-5y)=12去括号,得3y+6-6+10y=12合并同类项,得13y=12未知数的系数化为1,得1213 y=【总结升华】转化思想是初中数学中一种常见的思想方法,它能将复杂的问题转化为简单的问题,将生疏的问题转化为熟悉的问题,将未知转化为已知.事实上解一元一次方程就是利用方程的同解原理,将复杂的方程转化为简单的方程直至求出它的解.举一反三:【变式】解方程:解方程:0.10.050.20.0550.20.54x x+--+=【答案】解:把方程可化为:0.520.550 254x x+--+=再去分母得:232x=-解得:16x=-4.解方程:113(1)(1)2(1)(1)22x x x x+--=--+【思路点拨】本题按常规方法求解,比较繁锁,如能根据题目的特点,巧用“整体思维”,就能算得又快又对,起到事半功倍的效果.【答案与解析】解:113(1)(1)2(1)(1)22x x x x+++=-+-75(1)(1)22x x+=-7(1)5(1)x x+=-7755x x+=-212x=-x=-6【总结升华】直接去括号太繁琐,若将(x+1)及(x-1)看作一个整体,并移项合并同类项,解答十分巧妙,可免去去分母的步骤及简化去括号的过程.类型三、一元一次方程的应用5.甲车从A地出发以60 km/h的速度沿公路匀速行驶,0.5 h后,乙车也从A地出发,以80 km/h的速度沿该公路与甲车同向匀速行驶,求乙车出发后几小时追上甲车.【答案与解析】解:设乙车出发后x小时追上甲车,依题意得60×0.5+60x=80x,解得 x=1.5.答:乙车出发后1.5小时追上甲车.【总结升华】此题的等量关系为:甲前0.5 h的行程+甲后来的行程=乙的行程.6.如图,一个盛有水的圆柱形玻璃容器的内底面半径为10cm,原容器内水的高度为12cm,把一根半径为2cm的玻璃棒垂直插入水中后,问容器内的水将升高多少cm?(圆柱的体积=底面积×高)【思路点拨】根据题意,得等量关系为:容器的底面积×容器中水的原来高度+玻璃棒的截面积×(容器中水的高度+水增加的高度)=容器的底面积×(容器中水原来的高度+水增加的高度).【答案与解析】解:解:设容器内的水将升高xcm,据题意得:π•102×12+π•22(12+x)=π•102(12+x),1200+4(12+x)=100(12+x),1200+48+4x=1200+100x,96x=48,x=0.5.答:容器内的水将升高0.5cm.【总结升华】解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.本题也可以根据水面上升部分的体积等于插入水中玻璃棒的体积来列等量关系进行求解.7.某商品的进价为1500元,提高40%后标价,若打折销售,使其利润为20%,则此商品是按几折销售的?(结果精确到0.1)【答案与解析】举一反三:【变式】“五一”期间,某商场搞优惠促销活动,决定由顾客抽奖确定折扣,某顾客购买甲、乙两种商品,分别抽到七折(按原销售价70%销售)和九折,共付款386元,这两种商品原销售价之和为500元,问两种商品原销售价分别为多少元?【答案】解:设甲种商品原价x元,则乙种商品原价为(500-x)元,则:70%x+90%(500-x)=386,0.7x+450-0.9x=386,0.2x=64,x=320;乙种商品原价为500-320=180(元);答:甲种商品原价为320元,乙种商品原价为180元.。
期末专题复习:一元一次方程应用题培优练习题1.“十一”长假期间,小张和小李决定骑自行车外出旅游,两人相约一早从各自家中出发,已知两家相距10千米,小张出发必过小李家.(1)若两人同时出发,小张车速为20千米,小李车速为15千米,经过多少小时能相遇?(2)若小李的车速为10千米,小张提前20分钟出发,两人商定小李出发后半小时二人相遇,则小张的车速应为多少?2.A、B两地相距450千米,甲,乙两车分别从A、B两地同时出发,相向而行.已知甲车速度为120千米/时,乙车速度为80千米/时,经过多少小时两车相距50千米?4.某工程交由甲、乙两个工程队来完成,已知甲工程队单独完成需要60天,乙工程队单独完成需要40天(1)若甲工程队先做30天后,剩余由乙工程队来完成,还需要用时天(2)若甲工程队先做20天,乙工程队再参加,两个工程队一起来完成剩余的工程,求共需多少天完成该工程任务?5.如图,A,B两地相距450千米,两地之间有一个加油站O,且AO=270千米,一辆轿车从A地出发,以每小时90千米的速度开往B地,一辆客车从B地出发,以每小时60千米的速度开往A地,两车同时出发,设出发时间为t小时.(1)经过几小时两车相遇?(2)当出发2小时时,轿车和客车分别距离加油站O多远?(3)经过几小时,两车相距50千米?6.“水是生命之源”,市自来水公司为鼓励用户节约用水,按以下规定收取水费:(1)某用户1月份共交水费65元,问1月份用水多少吨?(2)若该用户水表有故障,每次用水只有60%记入用水量,这样在2月份交水费43.2元,该用户2月份实际应交水费多少元?7.某车间有22名工人,每人每天可以生产1200个螺钉或2000个螺母.1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套,应安排生产螺钉和螺母的工人各多少名?8.学校准备添置一批课桌椅,原计划订购60套,每套100元,店方表示:如果多购,可以优惠.结果校方实际订购了72套,每套减价3元,但商店获得了同样多的利润.(1)求每套课桌椅的成本;(2)求商店获得的利润.9.芜湖市一商场经销的A、B两种商品,A种商品每件售价60元,利润率为50%;B种商品每件进价50元,售价80元.(1)A种商品每件进价为元,每件B种商品利润率为.(2)若该商场同时购进A、B两种商品共50件,恰好总进价为2100元,求购进A种商品多少件?(3)在“春节”期间,该商场只对A、B两种商品进行如下的优惠促销活动:按上述优惠条件,若小华一次性购买A、B商品实际付款522元,求若没有优惠促销,小华在该商场购买同样商品要付多少元?10.元旦节前几天,两家商店的同一种彩电的价格相同.元旦节两家商店都有降价促销活动,甲商店的这种彩电降价500元,乙商店的这种彩电打9折.(1)若原价是2000元/台,到哪一家商店买更便宜?(2)当原价是多少时,降价后两家商店的价格仍然相等?11.列一元一次方程解应用题某商场以每件120元的价格购进某品牌的衬衫500件,以标价每件为180元的价格销售了400件,为了尽快售完,衬衫,商场进行降价销售,若商场销售完这批衬衫要达到盈利42%的目标,则每件衬衫降价多少元?12.某开发公司要生产若干件新产品,需要精加工后,才能投放市场,现有红星和巨星两个加工厂都想加工这批产品,已知红星厂单独加工这批产品比巨星厂单独加工这批产品多用20天,红星厂每天可加工16件产品,巨星厂每天可加工24件产品公司每天需付红星厂每天加工费80元,巨星厂每天加工费120元.(1)这个公司要加工多少件新产品?(2)在加工过程中,公司需另派一名工程师每天到厂家进行技术指导,并负担每天5元的午餐补助费,公司制定产品加工方案如下:可由一个厂单独加工完成,也可由两厂合作同时完成,请你帮助公司从所有可供选择的方案中选择一种即省钱,又省时间的加工方案.13.为发展校园足球运动,某县城区四校决定联合购买一批足球运动装备,市场调查发现:甲、乙两商场以同样的价格出售同种品牌的足球队服和足球,已知每套队服比每个足球多50元,两套队服与三个足球的费用相等,经洽谈,甲商场优惠方案是:每购买十套队服,送一个足球;乙商场优惠方案是:若购买队服超过80套,则购买足球打八折.(1)求每套队服和每个足球的价格是多少?(2)若城区四校联合购买100套队服和a个足球,请用含a的式子分别表示出到甲商场和乙商场购买装备所花的费用;(3)假如你是本次购买任务的负责人,你认为到哪家商场购买比较合算?14.某水果销售店用1000元购进甲、乙两种新出产的水果共140千克,这两种水果的进价、售价如表所示:(1)这两种水果各购进多少千克?(2)若该水果店按售价销售完这批水果,获得的利润是多少元?15.某地一家公司现有蔬菜140吨,准备加工后上市销售,该公司加工厂的生产能力是:如果对蔬菜进行粗加工,每天可以加工16吨,如果对蔬菜进行精加工,每天可加工6吨,但两种加工方式不能同时进行.受季节等条件限制,公司决定将一部分蔬菜进行精加工,其余蔬菜进行粗加工,并刚好15天加工完成,求精加工和粗加工蔬菜各多少吨?16.某校组织学生走上街头宜传雾霾的危害,他们要复印一部分宣传资料(不少于20页),校门口有两家复印店,甲店收费标准:复印页数不超过20时,每页收费0.2元,超过20时,超过部分每页收费将为0.09元乙店收费标准:不论复印多少页,每页收费01元(1)复印页数为多少时,两家店收费一样;(2)请你帮他们分析去哪家店比较合算.17.已知点A、B在数轴上表示的数分别为m、n.(1)对照数轴完成下表:(2)若A、B两点间的距离为d,试写出d与m、n之间数量关系,并用文字语言描述这个数量关系;(3)已知A、B两点在数轴上表示的数分别为x和﹣2,则A、B两点的距离d 可表示为;如果d=3,求x的值.(4)若数轴上表示数m的点位于表示数﹣5和3的点之间,求|m+5|+|m﹣3|的值(用含x的式子表示)18.“滚滚长江东逝水,……”在长江某段笔直的航道上依次有三个城市:A,O,B,水流方向为自西向东,水流速度为m个单位长度/小时,以O为原点建立数轴.A,B两城市所对应的数分别为a,b,满足2|200+2a|与3(|b|+2a)2互为相反数.(1)求A,B两点所对应的数.(2)有两艘轮船:P,Q,分别从A,B两个城市同时出发相向而行,两船在静水中的速度分别为30个单位长度/时,50单位长度/时,求P,Q两船相遇地点C所对应的数.(3)在(2)的条件下,当m=10时,P,Q两船继续按原速原方向行驶,当Q到达A城市后,立即返回,两船都向东一直行驶,从相遇时刻起,经过多长时间P,Q两船相距100个单位长度,并求出相应的P点所对应的数.19.如图1,有A、B两动点在线段MN上各自做不间断往返匀速运动(即只要动点与线段MN的某一端点重合则立即转身以同样的速度向MN的另一端点运动,与端点重合之前动点运动方向、速度均不改变),已知A的速度为3米/秒,B 的速度为2米/秒(1)已知MN=100米,若B先从点M出发,当MB=5米时A从点M出发,A出发后经过秒与B第一次重合;(2)已知MN=100米,若A、B同时从点M出发,经过秒A与B第一次重合;(3)如图2,若A、B同时从点M出发,A与B第一次重合于点E,第二次重合于点F,且EF=20米,设MN=s米,列方程求s.20.A、B、C为数轴上的三点,动点A、B同时从原点出发,动点A每秒运动x个单位,动点B每秒运动y个单位,且动点A运动到的位置对应的数记为a,动点B运动到的位置对应的数记为b,定点C对应的数为8.(1)若2秒后,a、b满足|a+8|+(b﹣2)2=0,则x= ,y= ,并请在数轴上标出A、B两点的位置.(2)若动点A、B在(1)运动后的位置上保持原来的速度,且同时向正方向运动z秒后使得|a|=|b|,使得z= .(3)若动点A、B在(1)运动后的位置上都以每秒2个单位向正方向运动继续运动t秒,点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC,点A与点B之间的距离为AB,且AC+BC=1. 5AB,则t= .参考答案1.解:(1)设经过t小时相遇,20t=15t+10,解方程得:t=2,所以两人经过两个小时后相遇;(2)设小张的车速为x,则相遇时小张所走的路程为+,小李走的路程为:10×=5千米,所以有: +=5+10,解得x=18千米.故小张的车速为18千米每小时.2.解:设第一次相距50千米时,经过了x小时.(120+80)x=450﹣50x=2.设第二次相距50千米时,经过了y小时.(120+80)y=450+50y=2.5经过2小时或2.5小时相距50千米.4.解:(1)设剩余由乙工程队来完成,还需要用时x天,依题意得: +=1解得x=20.即剩余由乙工程队来完成,还需要用时20天故答案是:20;(2)设共需x天完成该工程任务,根据题意得+=1解得x=36答:共需36天完成该工程任务.5.解:(1)根据题意,得:90t+60t=450,解得t=3,答:经过3小时两车相遇;(2)270﹣90×2=90(千米),180﹣60×2=60(千米),答:当出发2小时时,轿车距离加油站90千米、客车距离加油站60千米;(3)两车相遇前:90t+50+60t=450,解得t=;两车相遇后:90t﹣50+60t=450,解得t=;答:经过小时或小时两车相距50千米.6.解:(1))∵40×1+0.2×40=48<65,∴用水超过40吨,设1月份用水x吨,由题意得:40×1+(x﹣40)×1.5+0.2x=65,解得:x=50,答:1月份用水50吨.(2)∵40×1+0.2×40=48>43.2,∴用水不超过40吨,设2月份实际用水y吨,由题意得:1×60%y+0.2×60%y=43.2,解得:y=60,40×1+(60﹣40)×1.5+60×0.2=82(元),答:该用户2月份实际应交水费82元.7.解:设分配x名工人生产螺母,则(22﹣x)人生产螺钉,由题意得2000x=2×1200(22﹣x),解得:x=12,则22﹣x=10,答:应安排生产螺钉和螺母的工人10名,12名.8.解:(1)设每套课桌椅的成本为x元,根据题意得:60×100﹣60x=72×(100﹣3)﹣72x,解得:x=82.答:每套课桌椅的成本为82元.(2)60×(100﹣82)=1080(元).答:商店获得的利润为1080元.9.解:(1)设A种商品每件进价为x元,则(60﹣x)=50%x,解得:x=40.故A种商品每件进价为40元;每件B种商品利润率为(80﹣50)÷50=60%.故答案为:40;60%;(2)设购进A种商品x件,则购进B种商品(50﹣x)件,由题意得,40x+50(50﹣x)=2100,解得:x=40.即购进A种商品40件,B种商品10件.(3)设小华打折前应付款为y元,①打折前购物金额超过450元,但不超过600元,由题意得0.9y=522,解得:y=580;②打折前购物金额超过600元,600×0.8+(y﹣600)×0.7=522,解得:y=660.综上可得,小华在该商场购买同样商品要付580元或660元.10.解:(1)甲商店降价后每台彩电的价钱=2000﹣500=1500(元),乙商店打折后每台彩电的价钱=2000×0.9=1800(元).∴到甲商店买更便宜.(2)设当原价是x元时,降价后两家商店的价格仍然相等.依题意得x﹣500=0.9x,移项,得x﹣0.9x=500,合并同类项,得0.1x=500,系数化为1,得x=5000.答:当原价是5000元时,降价后两家商店的价格仍然相等.11.解:设每件衬衫降价x元,(180﹣120)×400+(500﹣400)(180﹣x﹣120)=120×500×42%解得,x=48,答:每件衬衫降价48元.12.解:(1)设这个公司要加工x件新产品,由题意得:﹣=20,解得:x=960(件),答:这个公司要加工960件新产品.(2)①由红星厂单独加工:需要耗时为=60天,需要费用为:60×(5+80)=5100元;②由巨星厂单独加工:需要耗时为=40天,需要费用为:40×(120+5)=5000元;③由两场厂共同加工:需要耗时为=24天,需要费用为:24×(80+120+5)=4920元.所以,由两厂合作同时完成时,既省钱,又省时间.13.解:(1)设每个足球的定价是x元,则每套队服是(x+50)元,根据题意得2(x+50)=3x,解得x=100,x+50=150.答:每套队服150元,每个足球100元;(2)到甲商场购买所花的费用为:150×100+100(a﹣)=100a+14000(元),到乙商场购买所花的费用为:150×100+0.8×100•a=80a+15000(元);(3)当在两家商场购买一样合算时,100a+14000=80a+15000,解得a=50.所以购买的足球数等于50个时,则在两家商场购买一样合算;购买的足球数多于50个时,则到乙商场购买合算;购买的足球数少于50个时,则到甲商场购买合算14.解:(1)设购进甲种水果x千克,则购进乙种水果(140﹣x)千克,根据题意得:5x+9(140﹣x)=1000,解得:x=65,∴140﹣x=75.答:购进甲种水果65千克,乙种水果75千克;(2)3×65+4×75=495(元)答:利润为495元.15.解:设精加工蔬菜x吨,则粗加工蔬菜(140﹣x)吨,根据题意得: +=15,解得:x=60,∴140﹣x=80.答:精加工蔬菜60吨,粗加工蔬菜80吨.16.解:(1)设复印页数为x页时,两家店收费一样.根据题意,得0.2×20+0.09(x﹣20)=0.1x解之,得x=220.答:当复印页数为220页时,两家店收费一样;(2)当复印页数小于220页时,去乙店合算.当复印页数大于220页时,去甲店合算.17.解:(1)M、N两点间的距离为5﹣2=3,3﹣(﹣4)=7,﹣2﹣(﹣4)=2,故答案为:3,7,2;(2)d与m、n之间数量关系为:d=|m﹣n|,文字描述为:数轴上两点间的距离d等于这两点表示的数之差的绝对值;(3)A、B两点的距离d表示为:|x+2|,如果d=3,那么3=|x+2|,解得,x=1或﹣5;故答案为:|x+2|;(4)根据题意得出:,|m+5|+|m﹣3|=m+5+3﹣m=8.18.解:(1)根据题意可得:2|200+2a|+3(|b|+2a)2=0,且a,b异号,∴a=﹣100,b=200∴A,B两点所对应的数分别是﹣100,200(2)设t小时相遇根据题意可得:(50﹣m+30+m)t=200﹣(﹣100)∴t=∴相遇地点C所对应的数=200﹣(50﹣m)=m(3)当m=10,即相遇地点C所对应的数为50.设经过x小时当Q到达A城市前,(30+10+50﹣10)x=100解得:x=点P所对应的数为:50+40×=100当Q到达A城市后,60(x﹣)+100=150+40x 或 60(x﹣)﹣100=150+40x解得:x=或x=点P点P所对应的数为:50+40×=600,或50+40×=100019.解:(1)设A出发后经过x秒与B第一次重合,依题意有(3﹣2)x=5,解得x=5.答:A出发后经过5秒与B第一次重合;(2)设经过y秒A与B第一次重合,依题意有(3+2)x=100×2,解得x=40.答:,经过40秒A与B第一次重合;(3)由于若A、B同时从点M出发,A与B第一次重合共走了2个MN,第二次重合共走了4个MN,可得ME=×2MN=MN,MF=2MN﹣×4MN=MN,依题意有: s﹣s=20,解得s=50.答:s=50米.20.解:(1)∵|a+8|+(b﹣2)2=0,∴a+8=0,b﹣2=0,即a=﹣8,b=2,则x=|﹣8|÷2=4,y=2÷2=1(2)动点A、B在(1)运动后的位置上保持原来的速度,且同时向正方向运动z秒后a=﹣8+4z,b=2+z,∵|a|=|b|,∴|﹣8+4z|=2+z,解得;(3)若动点A、B在(1)运动后的位置上都以每秒2个单位向正方向运动继续运动t秒后点A表示:﹣8+2t,点B表示:2+2t,点C表示:8,∴AC=|﹣8+2t﹣8|=|2t﹣16|,BC=|2+2t﹣8|=|2t﹣6|,AB=|﹣8+2t﹣(2+2t)|=10,∵AC+BC=1.5AB∴|2t﹣16|+|2t﹣6|=1.5×10,解得;。
北师大版七年级数学一元一次方程应用题精品型一、一般行程问题(相遇与追击问题)1、从甲地到乙地,某人步行比乘公交车多用3.6小时,已知步行速度为每小时8千米,公交车的速度为每小时40千米,设甲、乙两地相距x千米,则列方程为。
2、甲、乙两人在相距18千米的两地同时出发,相向而行,1小时48分相遇,如果甲比乙早出发40分钟,那么在乙出发1小时30分相遇,当甲比乙每小时快1千米时,求甲、乙两人的速度。
3、某人从家里骑自行车到学校。
若每小时行15千米,可比预定时间早到15分钟;若每小时行9千米,可比预定时间晚到15分钟;求从家里到学校的路程有多少千米?4、在800米跑道上有两人练习中长跑,甲每分钟跑320米,乙每分钟跑280米,两人同时同地同向起跑,t分钟后第一次相遇,t等于分钟。
5、一列客车车长200米,一列货车车长280米,在平行的轨道上相向行驶,从两车头相遇到两车车尾完全离开经过16秒,已知客车与货车的速度之比是3:2,问两车每秒各行驶多少米?6、与铁路平行的一条公路上有一行人与骑自行车的人同时向南行进。
行人的速度是每小时3.6km,骑自行车的人的速度是每小时10.8km。
如果一列火车从他们背后开来,它通过行人的时间是22秒,通过骑自行车的人的时间是26秒。
7、⑴行人的速度为每秒多少米?8、⑵这列火车的车长是多少米?7、休息日我和妈妈从家里出发一同去外婆家,我们走了1小时后,爸爸发现带给外婆的礼品忘在家里,便立刻带上礼品以每小时6千米的速度去追我们,如果我和妈妈每小时行2千米,从家里到外婆家需要1小时45分钟,问爸爸能在我和妈妈到外婆家之前追上我们吗?(提示:此题为典型的追击问题)8、一次远足活动中,一部分人步行,另一部分乘一辆汽车,两部分人同地出发。
汽车速度是60千米/时,步行的速度是5千米/时,步行者比汽车提前1小时出发,这辆汽车到达目的地后,再回头接步行的这部分人。
出发地到目的地的距离是60千米。
一元一次方程的应用【考纲要求】本节课重点复习一元一次方程的应用,树立初步的方程思想.一元一次方程的应用非常广泛,不是人为分类固定模式,而是学会分析简单问题中的数量关系,建立方程解决问题;认识到利用方程解决问题的关键是寻找等量关系.主要利用:等积变形、行程、调配、销售以及与图表、图形等有关问题,达到提高我们能力的目的.要学习、解决这些问题,首先需把握以下几个基本量及基本数量关系:行程问题:(1)基本量:路程、时间、速度(2)基本数量关系: .销售问题:(1)基本量:商品进价、商品售价或标价、商品利润、商品利润率(2)基本数量关系:① .② .【教学重难点】等量关系发找方程解决应用题【本讲命题方向】填空题、选择题和应用题约3~5%【典型题例精讲】(一)等积问题造成一个底面边长为3米的正方形的长方体,求锻造后长方体的高为多少米?2.桌面上有甲、乙、丙三个圆柱形的杯子,杯深均为15公分,各装有10公分高的水,且表记录了甲、乙、丙三个杯子的底面积.今小明将甲、乙两杯内一些水倒入丙杯,过程中水没溢出,使得甲、乙、丙三杯内水的高度比变为3︰4︰5.若不计杯子厚度,则甲杯内水的高度变为多少公分?( )A.5.4 B.5.7 C.7.2 D.7.5【反思与小结】列方程解应用题的关键步骤是找出相等关系,在解决等积变形问题时利用的相等关系是 .(二)调配问题【例2】1.(2016•哈尔滨)某车间有26名工人,每人每天可以生产800个螺钉或1000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套.设安排x名工人生产螺钉,则下面所列方程正确的是()A.2×1000(26﹣x)=800x B.1000(13﹣x)=800xC.1000(26﹣x)=2×800x D.1000(26﹣x)=800x2.用正方形硬纸板做三棱柱盒子,每个盒子由3个矩形侧面和2个正三角形底面组成。
硬纸板以如图所示两种方法剪裁。
教师讲义同步练习1某队有林场108公顷,牧场54公顷,现在要栽培一种新果树,把一局部牧场改为林场,使牧场面积只占林场面积的20%,改为林场的牧场面积是多少公顷?五、课堂小结学生总结,老师补充六、家庭作业一、选择题1、方程2x=1,那么的值为〔〕A、B、C、2D、﹣22、以下写法中正确的选项是〔〕A、直线a,b相交于点nB、直线AB,CD相交于点MC、直线ab,cd相交于点MD、直线AB,CD相交于m3、在一张挂历上,任意圈出同一列上的三个数的和不可能是〔〕A、27B、33C、40D、514、一种小麦的出粉率是80%,那么200千克这种小麦可出粉〔〕A、80千克B、160千克C、200千克D、100千克5、一批200千克的种子中有190千克出芽,照这样算发芽率应为〔〕A、5%B、95%C、190%D、100%6、一件风衣,按本钱价提高50%后标价,后因季节关系按标价的8折出售,每件卖180元,这件风衣的本钱价是〔〕A、150元B、80元C、100元D、120元x+4=〔40-x〕-8x+4=32-xx+x=32-42x=28x=14∴乙池原有水量为:40-x=40-14=26〔吨〕〔检验:甲池注水4吨后的水量:14+4=18〔吨〕;乙池出水不吨后的水量为:26-8=18〔吨〕,注出水之后,甲、乙池的水量相等,符合题意。
〕答:甲池原有14吨水,那么乙池原有26吨水。
【例8】解:设较小一块的面积为x平方米,那么较大一块的面积为5/3x平方米,根据题意,得:x+5/3x=16008/3x=1600x=1600÷8/3x=1600×3/8x=600那么:较大的一块面积为5/3x=5/3×600=1000〔平方米〕答:较小一块的面积为600平方米,较大一块的面积为1000平方米.同步练习1解:设改为林场的牧场面积是x公顷,根据题意,得:54-x=108×20%54-x==x=xx=答:改为林场的牧场面积是公顷。
北师大版七年级数学上册第五章《一元一次方程》应用:行程类专项训练(含答案)1.已知某铁路桥长1000米,现有一列火车匀速从桥上通过,火车从车头上桥到车尾离桥共用了1分钟,整列火车完全在桥上的时间为40秒,求火车的长度及其行驶速度.2.A、B两地相距1000千米,甲列车从A地开往B地;2小时后,乙列车从B地开往A地,经过4小时与甲列车相遇.已知甲列车比乙列车每小时多行50千米.甲列车每小时行多少千米?3.一只汽艇从A码头顺流航行到B码头用2小时,从B码头返回到A码头,用了2.5小时,如果水流速度是3千米/时,求:(1)汽艇在静水中的速度;(2)A、B两地之间的距离.4.甲、乙两车从相距360千米的A、B两地匀速相向而行,甲车从A地出发,乙车从B地出发.(1)若甲车比乙车先出发1小时,则两车在乙车出发后经2小时相遇;若乙车比甲车先出发2.5小时,则两车在甲车出发后经1.5小时相遇.问甲、乙两车每小时各行驶多少千米?(2)若甲车先出发,3小时后乙车也出发.甲车到达B地后立即返回(忽略掉头等时间),结果与乙车同时到达A地.已知甲车速度是乙车速度的1.25倍,问乙车出发后多少时间两车第一次相遇?5.甲、乙两汽车从A市出发,丙汽车从B市出发,甲车每小时行驶40千米,乙车每小时行驶45千米,丙车每小时行驶50千米.如果三辆汽车同时相向而行,丙车遇到乙车后10分钟才能遇到甲车,问何时甲丙两车相距15千米?6.A、B两地相距360km,甲、乙两车分别沿同一条路线从A地出发驶往B地,已知甲车的速度为60km/h,乙车的速度为90km/h,甲车先出发1h后乙车再出发,乙车到达B地后在原地等甲车.(1)求乙车出发多长时间追上甲车?(2)求乙车出发多长时间与甲车相距50km?7.甲、乙两人骑自行车分别从相距36km的两地匀速同向而行,如果甲比乙先出发半小时,那么他们在乙出发后经3小时甲追上乙;如果乙比甲先出发1小时,那么他们在甲出发后经5小时甲才能追上乙.请问:甲、乙两人骑自行车每小时各行多少千米?8.列方程解应用题:如图,现有两条乡村公路AB、BC,AB长为1200米,BC长为1600,一个人骑摩托车从A处以20m/s的速度匀速沿公路AB、BC向C处行驶;另一人骑自行车从B处以5m/s的速度从B向C行驶,并且两人同时出发.(1)求经过多少秒摩托车追上自行车?(2)求两人均在行驶途中时,经过多少秒两人在行进路线上相距150米?9.列方程解应用题:甲列车从A地开往B地,每小时行驶60千米,乙列车同时从B地开往A地,每小时行驶90千米.已知A,B两地相距200km.(1)经过多长时间两车相遇;(2)两车相遇的地方离A地多远?10.列方程解应用题:某校全校学生从学校步行去烈士陵园扫墓,他们排成长为250米的队伍,以50米/分钟的平均速度行进,当排头出发20分钟后,学校有一份文件要送给带队领导,一名教师骑自行车以150米/分钟的平均速度按原路追赶学生队伍,学校离烈士陵园2千米.(1)教师能否在排头队伍到达烈士陵园前送到在排头前带队领导手里?(2)送信教师和带队领导停下来交谈了一分钟,交谈过程中队伍继续前进,然后领导要求送信老师马上赶到队尾,防止有意外情况发生,他按追赶时的平均速度需要多少时间就可以赶到队尾;(3)送信教师赶到队尾后,和最后的同学一起走,送信老师还需要多少时间可到达烈士陵园.11.钱塘江江面宽阔,水流速度也有很大不同.在江面的中间,水的速度是每小时45里,沿岸的地方水的速度是每小时25里.今有一汽船顺江的中间往下游行驶,4小时行驶了440里,问从沿岸返回原处需几小时?12.从甲地到乙地的长途汽车原行驶7小时可以到达,开通高速公路后,路程缩短10千米,车速平均每小时增加50千米,结果只需4小时即可到达.求汽车在高速公路上平均每小时可以行驶多少千米?13.已知从河中A地到海口60千米,如船顺流而下,4小时可到海口,已知水速为每小时6千米,船返回已航行4小时后,因河水涨潮,由海向河的水速为每小时3千米,此船回到原地,还需再行多少小时?14.小刘开着小桥车,其平均速度为100km/h,小张开着大货车,都从A地去B地,小刘比小张晚出发1小时,最后两车同时到达B地,已知:小轿车的平均速度是大货车的平均速度的2倍.(1)A地到B地的路程是多少?(列方程解答)(2)当小刘出发时,求小张离B地还有多远?15.“今有善行者行一百步,不善行者行六十步.”(出自《九章算术》)意思是:同样时间段内,走路快的人能走100步,走路慢的人只能走60步.假定两者步长相等,据此回答以下问题:(1)今不善行者先行一百步,善行者追之,不善行者再行六百步,问孰至于前,两者几何步隔之?即:走路慢的人先走100步,走路快的人开始追赶,当走路慢的人再走600步时,请问谁在前面,两人相隔多少步?(2)今不善行者先行两百步,善行者追之,问几何步及之?即:走路慢的人先走200步,请问走路快的人走多少步才能追上走路慢的人?参考答案1.解:方法一:设火车行驶速度为x米/秒,由题意得:60x﹣1000=1000﹣40x,解得:x=20,火车的长为=200(米).方法二:设火车的速度为x米/秒,火车长为y米,则,解得:.答:火车的长度为200米,速度为20米/秒.2.解:设甲列车每小时行x千米,可得:4(x﹣50+x)+2x=1000.4x﹣200+4x+2x=1000,10x=1200,x=120.答:甲车每小时行120千米3.解:(1)设汽艇在静水中的速度为xkm/h.由题意,得2(x+3)=2.5(x﹣3)﹣0.5x=﹣13.5x=27.答:汽艇在静水中的平均速度是27千米/小时;(2)由题意,得2(x+3)=2(27+3)=60(千米)答:A、B两地之间的距离是60千米.4.解:(1)设甲车每小时行驶x千米,乙车每小时行驶y千米,由题意得:解得:答:甲车每小时行驶80千米,乙车每小时行驶60千米.(2)设乙车每小时行驶m千米,则甲车每小时行驶1.25m千米,由题意得:=∴720﹣3.75m=360×1.25解得:m=72经检验,m=72是原方程的解∴1.25m=1.25×72=90360﹣90×3=90(km)∴90÷(90+72)=(小时)答:乙车出发后小时两车第一次相遇.5.【解答】解:设t小时后乙、丙两汽车相遇,则(50+45)t=(40+50)(t+),解得t=3.故(50+45)t=95×3=285(千米).即:A、B两市的距离是285千米.设x小时甲、丙两车相距15千米.①当甲、丙两车相遇前相距15千米,由题意,得(40+50)x=285﹣15解得x=3.②当甲、丙两车相遇后相距15千米,由题意,得(40+50)x=285+15解得x=.综上所述,3或小时后,甲丙两车相距15千米.6.解:(1)设乙车出发x小时追上甲车,由题意得:60+60x=90x解得x=2故乙车出发2小时追上甲车.(2)乙车出发后t小时与甲车相距50km,存在以下三种情况:①乙车出发后在追上甲车之前,两车相距50km,则有:60+60t=90t+50 解得t=;②乙车超过甲车且未到B地之前,两车相拒50km,则有:60+60x+50=90t解得t=;③乙车到达B地而甲车未到B地,两车相距50km,则有:60+60t+50=360 解得t=.故乙车出发小时、小时或小时与甲车相距50km.7.解:设甲骑自行车每小时行x千米,乙骑自行车每小时行(x﹣12)千米,依题意得:5x﹣(5+1)(x﹣12)=36,解得:x=18,x﹣12=21﹣12=9.答:甲骑自行车每小时行18千米,乙骑自行车每小时行9千米.8.解:(1)设经过x秒摩托车追上自行车,20x=5x+1200,解得x=80.答:经过80秒摩托车追上自行车.(2)设经过y秒两人相距150米,第一种情况:摩托车还差150米追上自行车时,20y﹣1200=5y﹣150解得y=70.第二种情况:摩托车超过自行车150米时,20y=150+5y+1200解得y=90.答:经过70秒或90秒两人在行进路线上相距150米.9.解:(1)设经过x小时两车相遇,根据题意得:(60+90)x=200,解得:x=,答:经过小时两车相遇;(2)根据题意得:60×=80(千米),答:两车相遇的地方离A地80千米.10.解:(1)2000÷50=40(分钟),2000÷150+20=(分钟),∵40>,∴教师能在排头队伍到达烈士陵园前送到在排头前带队领导手里.(2)设送信教师按追赶时的平均速度需要x分钟就可以赶到队尾,根据题意得:(150+50)x=250﹣50×1,解得:x=1.答:他按追赶时的平均速度需要1分钟就可以赶到队尾.(3)设送信教师需要y分钟可追上带队领导,根据题意得:(150﹣50)y=50×20,解得:y=10,∴(2000+250)÷50﹣20﹣y﹣2=13.答:送信老师还需要13分钟可到达烈士陵园.11.解:设从沿岸返回原处需x小时,由题意得:(440÷4﹣45﹣25)x=440∴(110﹣70)x=440∴40x=440∴x=11答:从沿岸返回原处需11小时.12.解:设汽车原来平均每小时可以行驶x千米.根据题意,有7x﹣10=4(x+50).解得,x=70.∴x+50=120.答:汽车在高速公路上平均每小时可以行驶120千米.13.解:船的速度为:60÷4﹣6=9(千米/时),设此船回到原地,还需再行x小时,60﹣4×(9﹣6)=(9+3)x,解得,x=4,答:此船回到原地,还需再行4小时.14.解:(1)设小张时间为xh,由题意得:100(x﹣1)=(100÷2)x,解得:x=2,100×(2﹣1)=100(km),答:娄A地到B地的路程是100km;(2)100﹣100÷2×1=50(km),答:当小刘出发时,小张离长沙还有50km.15.解:(1)设当走路慢的人再走600步时,走路快的人的走x步,由题意得x:600=100:60∴x=1000∴1000﹣600﹣100=300答:当走路慢的人再走600步时,走路快的人在前面,两人相隔300步.(2)设走路快的人走y步才能追上走路慢的人,由题意得y=200+y∴y=500答:走路快的人走500步才能追上走路慢的人.。
第五章一元一次方程第3节应用一元一次方程-水箱变高了课后练习学校:___________姓名:___________班级:___________考生__________评卷人得分一、单选题1.内径为300 mm,内高为32 mm的圆柱形玻璃杯内盛满水,倒入内径为120 mm的圆柱形玻璃杯,刚好倒满,则内径为120 mm玻璃杯的内高为().A.150 mm B.200 mm C.250 mm D.300 mm 2.一个长方形的周长为26cm,这个长方形的长减少1cm,宽增加2cm,就可成为一个正方形,设长方形的长为xcm,则可列方程()A.x﹣1=(26﹣x)+2B.x﹣1=(13﹣x)+2C.x+1=(26﹣x)﹣2D.x+1=(13﹣x)﹣23.学校组织植树活动,已知在甲处植树的有23人,在乙处植树的有17人.现调20人去支援,使在甲处植树的人数是乙处植树人数的2倍.设调往甲处植树x人,则可列方程()A.23﹣x=2(17+20﹣x)B.23﹣x=2(17+20+x)C.23+x=2(17+20﹣x)D.23+x=2(17+20+x)4.某班组每天需生产50个零件才能在规定的时间内完成一批零件任务,实际上该班组每天比计划多生产了6个零件,结果比规定的时间提前3天并超额生产120个零件,若设该班组要完成的零件任务为x个,则可列方程为()A.120350506x x+-=+B.350506x x-=+C.120350650x x+-=+D.120350506x x+-=+5.在一次革命传统教育活动中,有n位师生乘坐m辆客车.若每辆客车乘60人,则还有10人不能上车,若每辆客车乘62人,则最后一辆车空了8个座位.在下列四个方程①60m+10=62m﹣8;①60m+10=62m+8;①1086062n n-+=;①1086062n n+-=中,其中正确的有()A.① ①B.① ①C.① ①D.① ①6.中国明代数学著作《算法统宗》中有这样一首古诗:“巍巍古寺在山中,不知寺内有多僧?三百六十四只碗,恰好用尽不用争,三人共餐一碗饭,四人共尝一碗羹,请问先生能算者,算出寺内几多僧?”其大意是,某古寺用餐,3个和尚吃一碗饭,4个和尚合分一碗汤,一共用了364只碗,问有多少个和尚?根据题意,可以设和尚的个数为x ,则得到的方程是( ) A .34364x x +=B .1136434x x +=C .143643x x +=D .133644x x +=7.我国明朝珠算发明家程大位,他完成的古代数学名著《直指算法统宗》,详述了传统的珠算规则,确立了算盘用法.书中记载如下问题:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁.意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,大、小和尚各有多少人?设大和尚有x 人,则可列方程为( )A .13(100)1003x x +-=B .33(100)100x x +-=C .13(100)1003x x +-=D .1(100)1003x x +-=8.甲班有54人,乙班有48人,要使甲班人数是乙班的2倍,设从乙班调往甲班人数x ,可列方程( )A .54+x=2(48﹣x )B .48+x=2(54﹣x )C .54﹣x=2×48D .48+x=2×549.铜仁市对城区主干道进行绿化,计划把某一段公路的一侧全部栽上桂花树,要求路的两端各栽一棵,并且每两棵树的间隔相等.如果每隔5米栽1棵,则树苗缺21棵;如果每隔6米栽1棵,则树苗正好用完.设原有树苗x 棵,则根据题意列出方程正确的是( )A .5(211)6(1)x x +-=-B .5(21)6(1)x x +=-C .5(211)6x x +-=D .5(21)6x x +=10.用一根铁丝围成一个长24cm ,宽12cm 的长方形,现将它拉成正方形,则这个正方形的边长是( ) A .9cm B .10cmC .18cmD .20cm评卷人 得分二、填空题 11.钢锭的截面是正方形,其边长是20厘米,要锻造成长、宽、高分别为40厘米,30厘米,10厘米的长方体,应截取这种钢锭的长度为________厘米.12.班级筹备运动会,要做直角边分别为0.4米和0.3米的三角形小旗,共做64面,要用长1.6米、宽1.2米的长方形红纸________张.13.某小组计划做一批中国结,如果每人做6个,那么比计划多做了9个;如果每人做4个,那么比计划少7个.设计划做x个中国结,可列方程______.14.某部队开展植树活动,甲队35 人,乙队27 人,现另调28 人去支援,使两队的人数相等,设应调往甲队x 人,依题意列方程为___________15.浙江农村地区向来有打年糕的习俗,糯米做成年糕的过程中重量会增加20%.如果原有糯米a斤,做成年糕后重量为______斤.16.众所周知,中华诗词博大精深,集大量的情景、情感于短短数十字之间,或豪放,或婉约,或思民生疾苦,或抒发己身豪情逸致,文化价值极高.而数学与古诗词更是有着密切的联系.古诗中,五言绝句是四句诗,每句都是五个字;七言绝句是四句诗,每句都是七个字.有一本诗集,其中五言绝句比七言绝句多13首,总字数反而少了20个字.根据题意可知七言绝句有____首.17.某车间原计划用13小时生产一批零件,后来每小时多生产10个,用了12小时,不但完成了任务,而且还多生产零件60个,设原计划每小时生产零件x个,则可列方程为_______.18.将一个底画积为232cm,高为24cm的长方体金属熔铸成一个底面长6cm,宽4cm 的长方体零件毛坯,则这个长方体零件毛坯的高是______cm.19.甲、乙两个图形的面积之和是2150cm,面积之比为7:3,则较大图形的面积是____2cm.评卷人得分三、解答题20.一个长方形的养鸡场的长边靠墙,墙长14米,其他三边用竹篱笆围成,现有长为35米的竹篱笆,小王打算用它围成一个养鸡场,其中长比宽多5米;小赵也打算用它围成一个养鸡场,其中长比宽多2米.你认为谁的设计符合实际?按照他的设计,养鸡场的面积是多少?21.《孙子算经》是中国传统数学的重要著作之一,其中记载的“荡杯问题”很有趣.《孙子算经》记载“今有妇人河上荡杯.津吏问曰:‘杯何以多?’妇人曰:‘家有客.’津吏曰:‘客几何?’妇人曰:‘二人共饭,三人共羹,四人共肉,凡用杯六十五.’不知客几何?”译文:“2人同吃一碗饭,3人同吃一碗羹,4人同吃一碗肉,共用65个碗,问有多少客人?”22.我国明代数学家程大为曾提出过这样一个有趣的问题:有一个人赶着一群羊在前面走,另一个人牵着一只羊跟在后面.后面的人问赶羊的人说:“你这群羊有一百只吗?”赶羊的人回答:“我如果再得这么一群羊,再得这么一群羊的一半,又得这群羊的四分之一,把你牵的羊也给我,我恰好有一百只.”请问这群羊有多少只?请设未知数,列出方程.23.有一位旅客携带了30kg重的行李从上海乘飞机去北京,按民航总局规定:旅客最多可免费携带20kg重的行李,超重部分每千克按飞机票价格1.5%购买行李票,现该旅客购买了180元的行李票,则飞机票价格应是多少元?24.甲仓库有水泥100吨,乙仓库有水泥80吨,要全部运动A、B两工地,已知A工地需要70吨,B工地需要110吨,甲仓库运到A、B两工地的运费分别是140元/吨、150元/吨,乙仓库运到A、B两工地的运费分别是200元/吨、80元/吨,本次运送水泥总运费需要25900元,问甲仓库运到A工地水泥的吨数.(运费:元/吨,表示运送每吨水泥所需的人民币)(1)设甲仓库运到A工地水泥的吨数为x吨,请在下面表格中用x表示出其他未知量.甲仓库乙仓库A工地xB工地x+10(2)用含x的代数式表示运送甲仓库100吨水泥的运费为元.(写出化简后的结果)(3)请根据题目中的等量关系和以上的分析列出方程.(只列出方程即可,写成ax+b=0的形式,不用解)25.(教材P144T3变式)如图所示,小明将一个正方形纸片剪去一个宽为8cm的长条后,再从剩下的长方形纸片上剪去一个宽为10cm的长条,如果两次剪下的长条面积正好相等,那么每一个长条的面积为多少?参考答案:1.B【解析】【详解】试题分析:设内径为120 mm玻璃杯的内高为x mm.由题意本题的等量关系为两个圆柱形玻璃杯容积相同,则可列方程组π×1502×32=π×602x,解得即可.解:设内径为120 mm玻璃杯的内高为x mm.由题意得π×1502×32=π×602x,解得x=200(mm).即内径为120 mm玻璃杯的内高为200 mm.故选B.2.B【解析】【详解】根据题意可得:长方形的宽为(13-x)cm,根据题意可得:x-1=(13-x)+2.故选B.考点:一元一次方程的应用3.C【解析】【分析】设应调往甲处x人,则调往乙处(20-x)人,根据使在甲处植树的人数是乙处植树人数的2倍,即可得出关于x的一元一次方程,此题得解.【详解】解:设应调往甲处植树x人,则调往乙处植树(20﹣x)人,根据题意得:23+x=2(17+20﹣x).故选C.【点睛】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.4.D【解析】根据零件任务÷原计划每天生产的零件个数-(零件任务+120)÷实际每天生产的零件个数=3【详解】解:实际完成的零件的个数为x+120,实际每天生产的零件个数为50+6,所以根据时间列的方程为:1203 50506x x+-=+,故选:D.【点睛】本题考查了一元一次方程的应用,根据时间得到相应的等量关系是解决本题的关键.5.A【解析】【分析】首先要理解清楚题意,知道总的客车数量及总的人数不变,然后采用排除法进行分析从而得到正确答案.【详解】解:根据总人数列方程,应是60m+10=62m﹣8,根据客车数列方程,应该为:108 6062n n-+=,故选A.【点睛】此题主要考查了由实际问题抽象出一元一次方程,关键是正确理解题意,能够根据不同的等量关系列方程.6.B【解析】【分析】设和尚的个数为x位,根据共有三百六十四只碗,三人共餐一碗饭,四人共尝一碗羹列出方程.【详解】设和尚的个数为x位.可列方程11364 34x x+=;故答案为B.本题考查由实际问题列一元一次方程,解题的关键是理解题意找出等量关系列方程. 7.A 【解析】 【分析】根据题意, 大和尚有x 人,共分馒头3x 个,小和尚有()100x -人,3人分1个,每人分13个,共分()11003x -个,再根据大小和尚得到的馒头之和为100,列出方程. 【详解】解:设大和尚有x 人,则小和尚有()100x -人, 据题意得,13(100)1003x x +-=.故选:A. 【点睛】本题主要考查一元一次方程解决问题中的分配问题,理解题意,找到数量关系是解答关键. 8.A 【解析】 【详解】解:设从乙班调入甲班x 人,则乙班现有48﹣x 人,甲班现有54+x 人.此时,甲班人数是乙班的2倍,所以所列的方程为:54+x =2(48﹣x ),故选A . 9.A 【解析】 【分析】利用两种不同栽法的总路程都是某一段公路的一侧的长,总长度等于(棵数-1)×每两棵之间的距离,列方程即可 【详解】解:设原有树苗x 棵,每隔5米栽1棵,则树苗缺21棵; 5(x+21-1), 每隔6米栽1棵,则树苗正好用完.6(x-1), 由题意得:5(211)6(1)x x+-=-.故选A.【点睛】本题考查列一元一次方程解应用题,抓住等量关系两种不同栽法总长度一样,总长度=(棵数-1)×每两棵之间的距离列方程是解题关键.10.C【解析】【详解】设正方形的边长为xcm,依题意有24×2+12×2=4x,解得x=18,故正方形的边长为18cm.11.30【解析】【详解】试题分析:设应截取这种钢锭的长度为x厘米,则截取的钢锭的体积为20×20x立方厘米,锻造成长方体后体积为40×30×10立方厘米,根据锻造前后体积不变列方程求解即可.解:设应截取这种钢锭的长度为x厘米,则截取的钢锭的体积为20×20x立方厘米,锻造成长方体后体积为40×30×10立方厘米,根据题意得20×20x=40×30×10,解得x=30(厘米).故答案为30.12.2【解析】【详解】试题分析:设要用长1.6米、宽1.2米的长方形红纸x张,求出x张长方形红纸的面积,根据等量关系:长方形红纸做成三角形小旗后总面积不变,列方程求解即可.解:设要用长1.6米、宽1.2米的长方形红纸x张,则长方形红纸面积为1.6×1.2x平方米,做成的三角形小旗总面积为12×0.4×0.3×64平方米,根据题意得1.6×1.2x=12×0.4×0.3×64,解得x=2.故答案为2.13.7 4 x-【解析】【详解】设计划做x个“中国结”,根据每人做6个,那么比计划多做了9个,每人做4个,那么比计划少7个,列方程即可.解答:解:设计划做x个“中国结”,由题意得,96x+=74x-.14.35+x=27+(28-x)【解析】【分析】设应调往甲队x人,乙队(28-x)人,根据人数相等可得.【详解】设应调往甲队x人,乙队(28-x)人.由题意得:35+x=27+(28-x),故答案为:35+x=27+(28-x)【点睛】考核知识点:一元一次方程应用.理解题意是关键.15.1.2a(或120%a)【解析】【分析】根据增加20%,列出代数式即可.【详解】解:①糯米做成年糕的过程中重量会增加20%,①a增加20%后为(1+20%)a=1.2a(或120%a).【点睛】本题考查了代数式的表示,属于简单题,将数学语言转换成符号语言是解题关键. 16.35【解析】【详解】解:设七言绝句有x首,根据题意,可列方程为:28x﹣20(x+13)=20.解得x=35故答案为35.17.12(x+10)=13x+60.【解析】【详解】解:设原计划每小时生产零件x个,则实际每小时生产零件(x+10)个.根据等量关系列方程得:12(x+10)=13x+60.故答案为12(x+10)=13x+60.点睛:此题主要考查了由实际问题抽象出一元一次方程,关键是正确理解题意,找出题目中的等量关系,然后再列出方程.18.32【解析】【详解】设这个长方体零件毛坯的高是xcm,由题意得:32×24=6×4×x,解得x=32,故答案为32.19.105【解析】【详解】设较大图形的面积为x2cm,则较小图形的面积为(150-x)2cm,由题意得:x:(150-x)=7:3,解得x=105,即较大图形的面积是1052cm20.小赵的设计符合要求.按他的设计养鸡场的面积是143米2.【解析】【分析】根据小王的设计可以设宽为x 米,长为(x +5)米,根据“墙长14米,其它三边用竹篱笆围成,现有长为35米的竹篱笆”即可列方程求得小王的设计,根据小赵的设计可以设宽为y 米,长为(y +2)米,根据“墙长14米,其它三边用竹篱笆围成,现有长为35米的竹篱笆”即可列方程求得小赵的设计,从而可以作出判断.【详解】解:根据小王的设计可以设宽为x 米,长为(x +5)米,根据题意得2x +(x +5)=35解得x=10.因此小王设计的长为x +5=10+5=15(米),而墙的长度只有14米,小王的设计不符合实际的.根据小赵的设计可以设宽为y 米,长为(y +2)米,根据题意得2y +(y +2)=35解得y=11.因此小王设计的长为y +2=11+2=13(米),而墙的长度只有14米,显然小赵的设计符合要求,此时鸡场的面积为11×13=143(平方米).【点睛】 本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.21.x =60【解析】【分析】设有x 个客人,根据题意列出方程,解出方程即可得到答案.【详解】解:设有x 个客人,则65234x x x ++= 解得:x =60;①有60个客人.【点睛】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解22.11110024x x x x++++=【解析】【详解】试题分析:根据“如果再得这么一群羊,再得这么一群羊的一半,又得这群羊的四分之一,把你牵的羊也给我,我恰好有一百只”这一等量关系列出方程即可.试题解析:解:设这群羊有x只,根据题意得:x+x+12x+14x+1=100.23.飞机票价格应是1200元.【解析】【详解】试题分析:设飞机票价格应是x元,根据该旅客购买了180元的行李票,列方程求解.试题解析:解:设飞机票价格应是x元,由题意得:(30﹣20)×1.5% x=180,解之得:x=1200.答:飞机票价格应是1200元.24.(1)填表见解析;(2)﹣10x+15000;(3)﹣130x+3900=0.【解析】【详解】试题分析:(1)根据题意填写表格即可;(2)根据表格中的数据,以及已知的运费表示出总运费即可;(3)根据本次运送水泥总运费需要25900元列方程化简即可.试题解析:解:(1)设甲仓库运到A工地水泥的吨数为x吨,则运到B地水泥的吨数为(100﹣x)吨,乙仓库运到A工地水泥的吨数为(70﹣x)吨,则运到B地水泥的吨数为(x+10)吨,补全表格如下:(2)运送甲仓库100吨水泥的运费为140x+150(100﹣x)=﹣10x+15000,故答案为﹣(3)140x +150(100﹣x )+200(70﹣x )+80(x +10)=25900,整理得:﹣130x +3900=0. 点睛:此题考查了一元一次方程的应用,弄清题意找到相等关系是解本题的关键 25.每一个长条的面积都是2320cm .【解析】【详解】试题分析:经分析显然要设正方形的边长是xcm .根据“两次剪下的长条面积正好相等”这一关系列出方程即可.试题解析:设正方形的边长是cm x ,根据题意得()8108x x =-,解方程得40x =,()28320cm x =, 所以每一个长条的面积都是2320cm .。
一元一次方程应用题行程问题专题讲解行程问题中最核心的数量关系就是:路程=速度×时间,当然由于所处的背景会发生变化,所以公式在不同情况下会进行延伸性的发展,那么在做这类题的时间首先要根据题目来确定是何种类型,数量关系具体如何表示的。
今天针对行程问题来进行分类讲解:题型一:相向而行(相遇问题)例1:A、B 两站相距300 千米,一列快车从A 站开出,行驶速度是每小时60 千米,一列慢车从B 站开出,行驶速度是每小时40 千米,快车先开15 分钟,两车相向而行,快车开出几小时后两车相遇?训练1.小李和小刚家距离900 米,两人同时从家出发相向行,小李每分走60 米,小刚每分走90 米,几分钟后两人相遇?2.小明和小刚家距离900 米,两人同时从家出发相向行,5 分钟后两人相遇,小刚每分走80 米,小明每分走多少米?3.王强和赵文从相距2280 米的两地出发相向而行,王强每分行60 米,赵文每分行 80 米,王强出发3 分钟后赵文出发,几分钟后两人相遇?4.两辆车从相距360 千米的两地出发相向而行,甲车先出发,每小时行60 千米,1 小时后乙车出发,每小时行40 千米,乙车出发几小时两车相遇?5.两村相距35千米,甲乙二人从两村出发,相向而行,甲每小时行5千米,乙每小时行4千米,甲先出发1小时后,乙才出发,当他们相距9千米时,乙行了多长时间?6.甲乙二人从相距45千米的两地同时出发相向而行,甲比乙每小时多行1千米,5小时后二人相遇,求两人的速度。
7.甲乙二人从相距100千米的两地出发相向而行,甲先出发1小时,他们在乙出发4小时后相遇,已知甲比乙每小时多行2千米,求两人的速度。
8.AB两地相距900米。
甲乙二人同时从A点出发,同向而行,甲每分行70米,乙每分行50米,甲到达A点后马上返回与乙在途中相遇,两人从出发到相遇一共用了多少时间?题型二:同向而行(追及问题)例2:A、B两地相距64千米,甲从A地出发,每小时行14千米,乙从B地出发,每小时行18千米.(1)若两人同时出发相向而行,则需经过几小时两人相遇?(2)若两人同时出发相向而行,则需几小时两人相距16千米?(3)若甲在前,乙在后,两人同时同向而行,则几小时后乙超过甲10千米?训练1.姐姐步行速度是75米分,妹妹步行速度是45米/分。
《一元一次方程》应用题分类:数轴类综合练习(一)1.在数轴上,|a|表示数a的点到原点的距离.如果数轴上两个点A、B分别对应数a、b,那么A、B两点间的距离为:AB=|a﹣b|,这是绝对值的几何意义.已知如图,点A在数轴上对应的数为﹣3,点B对应的数为2.(1)求线段AB的长;(2)若点C在数轴上对应的数为x,且是方程x+1=x﹣2的解,在数轴上是否存在点M,使MA+MB=AB+BC?若存在,求出点M对应的数;若不存在,说明理由.(3)若点N是数轴上在点A左侧的一点,线段BN的中点为点Q,点P为线段AN的三等分点且靠近于点N,当点N在点A左侧的数轴上运动时,请直接判断AP﹣NQ的值是否变化,如果不变请直接写出其值,如果变化请说明理由.2.阅读思考:小明在学习过程中,发现“数轴上两点间的距离”可以用“表示这两点数的差”来表示,如图1所示,线段AB,BC,CD的长度可表示为:AB=3=4﹣1;BC=5=4﹣(﹣1);CD=3=(﹣1)﹣(﹣4);于是他归纳出这样的结论:如果点A表示的数为a,点B表示的数为b,当b>a时,AB =b﹣a(较大数﹣较小数).(1)尝试应用:①如图2所示,计算:OE=,EF=;②把一条数轴在数m处对折,使表示﹣20和2020两数的点恰好互相重合,则m=;(2)问题解决:①如图3所示,点P表示数x,点M表示数﹣2,点N表示数2x+8,且MN=4PM,求出点P和点N分别表示的数;②在上述①的条件下,是否存在点Q,使PQ+QN=3QM?若存在,求出点Q所表示的数;若不存在,请说明理由.3.如图,已知数轴上点A表示的数为6,点B是数轴上在点A左侧的一点,且A、B两点间的距离为10,动点P从点A出发,以每秒6个单位长度的速度沿数轴向左匀速运动.(1)数轴上点B表示的数是;(2)运动1秒时,点P表示的数是;(3)动点Q从点B出发,以每秒4个单位长度的速度沿数轴向左匀速运动,若点P、Q 同时出发.求:①当点P运动多少秒时,点P与点Q相遇?②当点P运动多少秒时,点P与点Q的距离为8个单位长度.。
新北师大版数学七年级上册一元一次方程专题复习一、选择题:1.下边的等式中,是一元一次方程的为( )A . 3x + 2y = 0B . 3+ m = 10C . 2+ 1=xD . a 2= 16x2.以下结论中,正确的选项是()A .由 5÷ x = 13,可得 x = 13÷ 5B .由 5 x =3 x + 7,可得 5 x +3 x = 79 D .由 5 x = 8- 2x ,可得 5 x + 2 x =8C .由 9 x =- 4,可得 x =-43.以下方程中,解为 x = 2 的方程是( )A . 3x = x +3B .- x + 3= 0C . 2x =6D . 5x - 2= 84.解方程时,去分母得()A . 4( x + 1)= x - 3( 5x - 1)B . x + 1= 12x - (5x -1)C . 3(x + 1)= 12x -4(5x - 1)D . 3(x + 1)= x - 4(5x - 1)1与 3- 2y 互为相反数 , 则 y 等于 ()5.若 (y + 1)3A .- 2B . 2C .8D .-8776.对于 y 的方程 3y + 5= 0 与 3y + 3k =1 的解完整同样 , 则 k 的值为 ( )A .- 2B .3C . 2D .-4437.父亲现年 32 岁 , 儿子现年 5 岁 ,x 年前 , 父亲的年纪是儿子年纪的10 倍 , 则 x 应知足的方程是 ( )A . 32- x =5- xB . 32-x = 10(5- x)C . 32- x = 5×10D . 32+ x = 5× 108.小华在某月的月历中圈出几个数 , 算出这三个数的和是 36, 那么这个数阵的形式可能是( )A .B .C .D .9.某商品的售价比原售价降低了 15%,现售价是 34 元 , 那么本来的售价是 ( ) A . 28 元B . 32 元C . 36 元D .40 元10.用 72cm 长的铁丝做一个长方形的教具 , 要使宽为 15cm,那么长是 ()A . 28. 5cmB . 42cmC .21cmD . 33. 5cm二、填空题:11.设某数为 x ,若它的 3 倍比这个数自己大 2,则可列出方程 ___________.12.将方程 3x - 7=- 5x + 3 变形为 3x +5x = 3+ 7,这个变形过程叫做 ______.13.当 y =______时,代数式与1 y +5 的值相等 .414.若与1互为倒数,则 x = ______.15.三个连续奇数的和是 75,则这三个数分别是 ___________.16. 一件商品的成本是200 元,提升 30%后标价,而后打九折销售,则这件商品的收益为______ 元.17.若 x=- 3 是对于 x 的方程 3x- a= 2x+ 5 的解,则 a 的值为 ______.18.单项式- 3a x+1b4与 9a2x-1b4是同类项,则 x=______.19. 一只轮船在 A、B 两码头间航行,从 A 到 B 顺流需 4 小时,已知 A、B 间的行程是80 千米,水流速度是 2 千米 / 时,则从 B 返回 A 用 ______小时 .三、解方程:2x-1x+2( 1) 9-10x=10-9x(2) 2(x+3)- 5(1-x)=3(x- 1)(3)3= 2 +1( 4)31()x 1 x 331120.4 0.30.01() [ x( x 1)]( x 1) 420.2223( 1)和、差、倍、分问题此问题中常用“多、少、大、小、几分之几”或“增添、减少、减小”等等词语体现等量关系。
北师大版七年级数学上册第五章 一元一次方程 专题复习练习题专题1 一元一次方程的解法1.解下列方程:(1)10x +7=12x -5;(2)3(5x -6)=3-20x ;(3)4x -3(20-2x)=10;(4)x -22=4x +15;(5)107x -17-20x 3=1;(6)2x -13-2x -34=1;(7)2(x +3)5=32x -2(x -7)3.2.解下列方程:(1)119x +27=29x -57;(2)32[23(x 4-1)-2]-x =2;(3)2x 0.3-1.6-3x 0.6=31x +83.专题2 利用一元一次方程的解求方程中待定字母的值1.已知关于x 的一元一次方程2(x -1)+3a =3的解为x =4,则a 的值是( )A .-1B .1C .-2D .-32.若关于x 的一元一次方程2x a -2+m =4的解为x =1,则a +m 的值为( )A .9B .8C .5D .43.方程2x -■3-x -32=1中有一个数字被墨水盖住了,查后面的答案,知道这个方程的解是x =-1,那么墨水盖住的数字是( )A.27 B .1 C .-1311D .0 4.若关于x 的方程kx -1=2x 的解为正整数,则正整数k 的值是_____.5.当k 为何值时,关于x 的方程2x +k 3+1=1-x 2+k 的解为x =-1?6.当m 为何值时,关于x 的方程4x -2m =3x +1的解是x =2x -3m 的解的2倍?7.已知关于x 的方程2x -a 3-x -a 2=x -1与方程3(x -2)=4x -5有相同的解,求a 的值.8.关于x 的方程2(x -1)=3m -1与3x +2=-2(m +1)的解互为相反数,求m 的值.9.小明解关于y 的一元一次方程3(y +a)=2y +4,在去括号时,将a 漏乘了3,得到方程的解是y =3.(1)求a 的值;(2)求该方程正确的解.专题3 章末易错题集训1.下列说法正确的是( )A .等式ab =ac 两边都除以a ,得b =cB .等式a(c 2+1)=b(c 2+1)两边都除以c 2+1,得a =bC .等式b a =c a两边都除以a ,得b =c D .等式2x =2a -b 两边都除以2,得x =a -b2.一商家进行促销活动,某商品的优惠措施是“第二件商品半价”.现购买2件该商品,相当于这2件商品共打了( )A .5折B .5.5折C .7折D .7.5折3.若方程(m -2)x |m -3|-x =4是关于x 的一元一次方程,则m =____.4.一辆慢车从A 地开往300 km 外的B 地,同时,一辆快车从B 地开往A 地,已知慢车速度为40 km/h ,快车速度是慢车速度的1.5倍,它们出发____.后两车相距100 km.5.小李骑自行车从甲地到乙地,出发40分钟后,小王骑电动车从甲地出发,两人同时到达乙地,已知小李骑自行车的速度是15千米/时,小王骑电动车的速度是小李骑自行车的速度的3倍,则甲、乙两地的距离为____.千米.6.阅读下列解题过程.解方程:2(x -1)-1=3(x -1)-1.解:方程两边同时加上1,得2(x -1)=3(x -1),(第一步)方程两边同除以(x -1),得2=3.(第二步)上面的解答过程正确吗?如果不正确,请指出它错在了哪一步,说明理由并给出正确的解答过程.7.解下列方程:(1)4x -3(20-x)=3;(2)3x -14-5x -76=1;(3)x 0.2-1=2x -0.80.3.8.如图,长方形纸片的长为15 cm ,在这张纸片的长和宽上各剪去一个宽3 cm 的纸条,剩余部分(阴影部分)的面积是108 cm 2,求原长方形纸片的宽.解:设原长方形纸片的宽为x cm ,根据题意,得15x -15×3-3x =108.解得x =15312. 答:原长方形纸片的宽为15312cm. 上面的解答正确吗?若不正确,请指出错误的原因,并给出正确的解答过程.参考答案专题1 一元一次方程的解法1.解下列方程:(1)10x +7=12x -5;解:10x -12x =-7-5,-2x =-12,x =6.(2)3(5x -6)=3-20x ;解:15x -18=3-20x ,15x +20x =3+18,35x =21,x =35.(3)4x -3(20-2x)=10;解:4x -60+6x =10,4x +6x =60+10,10x =70,x =7.(4)x -22=4x +15; 解:5(x -2)=2(4x +1),5x -10=8x +2,5x -8x =10+2,-3x =12,x =-4.(5)107x -17-20x 3=1;解:30x -7(17-20x)=21,30x -119+140x =21,30x +140x =119+21,170x =140,x =1417.(6)2x -13-2x -34=1; 解:4(2x -1)-3(2x -3)=12,8x -4-6x +9=12,8x -6x =4-9+12,2x =7,x =72.(7)2(x +3)5=32x -2(x -7)3. 解:12(x +3)=45x -20(x -7),12x +36=45x -20x +140,12x -45x +20x =-36+140,-13x =104,x =-8.2.解下列方程:(1)119x +27=29x -57; 解:119x -29x =-57-27, x =-1.(2)32[23(x 4-1)-2]-x =2; 解:x 4-1-3-x =2, -34x =6, x =-8.(3)2x 0.3-1.6-3x 0.6=31x +83. 解:20x 3-16-30x 6=31x +83, 40x -(16-30x)=2(31x +8),40x -16+30x =62x +16,40x +30x -62x =16+16,8x =32,x =4.专题2 利用一元一次方程的解求方程中待定字母的值1.已知关于x 的一元一次方程2(x -1)+3a =3的解为x =4,则a 的值是(A)A .-1B .1C .-2D .-32.若关于x 的一元一次方程2x a -2+m =4的解为x =1,则a +m 的值为(C)A .9B .8C .5D .43.方程2x -■3-x -32=1中有一个数字被墨水盖住了,查后面的答案,知道这个方程的解是x =-1,那么墨水盖住的数字是(B)A.27 B .1 C .-1311D .0 4.若关于x 的方程kx -1=2x 的解为正整数,则正整数k 的值是3.5.当k 为何值时,关于x 的方程2x +k 3+1=1-x 2+k 的解为x =-1? 解:将x =-1代入方程2x +k 3+1=1-x 2+k 中,得 -2+k 3+1=1+k. 解得k =-1.6.当m 为何值时,关于x 的方程4x -2m =3x +1的解是x =2x -3m 的解的2倍? 解:因为x =2x -3m 的解是x =3m ,所以4x -2m =3x +1的解是x =6m.将x =6m 代入4x -2m =3x +1,得24m -2m =18m +1.移项、合并同类项,得4m =1.解得m =14.7.已知关于x 的方程2x -a 3-x -a 2=x -1与方程3(x -2)=4x -5有相同的解,求a 的值. 解:解方程3(x -2)=4x -5,得x =-1.将x =-1代入方程2x -a 3-x -a 2=x -1中,得 -2-a 3--1-a 2=-1-1. 解得a =-11.8.关于x 的方程2(x -1)=3m -1与3x +2=-2(m +1)的解互为相反数,求m 的值.解:由2(x -1)=3m -1,解得x =3m +12. 由3x +2=-2(m +1),解得x =-2m -43. 因为两个方程的解互为相反数,所以3m +12+-2m -43=0. 移项,得32m -23m =-12+43. 合并同类项,得56m =56. 系数化为1,得m =1.9.小明解关于y 的一元一次方程3(y +a)=2y +4,在去括号时,将a 漏乘了3,得到方程的解是y =3.(1)求a 的值;(2)求该方程正确的解.解:(1)由题意,得y =3是方程3y +a =2y +4的解,所以3×3+a =2×3+4,解得a =1.(2)由(1)得a =1,所以原方程为3(y +1)=2y +4,解得y =1.故该方程正确的解是y =1.专题3 章末易错题集训1.下列说法正确的是(B)A .等式ab =ac 两边都除以a ,得b =cB .等式a(c 2+1)=b(c 2+1)两边都除以c 2+1,得a =bC .等式b a =c a两边都除以a ,得b =c D .等式2x =2a -b 两边都除以2,得x =a -b2.一商家进行促销活动,某商品的优惠措施是“第二件商品半价”.现购买2件该商品,相当于这2件商品共打了(D)A .5折B .5.5折C .7折D .7.5折3.若方程(m -2)x |m -3|-x =4是关于x 的一元一次方程,则m =2或4.4.一辆慢车从A 地开往300 km 外的B 地,同时,一辆快车从B 地开往A 地,已知慢车速度为40 km/h ,快车速度是慢车速度的1.5倍,它们出发2或4h 后两车相距100 km.5.小李骑自行车从甲地到乙地,出发40分钟后,小王骑电动车从甲地出发,两人同时到达乙地,已知小李骑自行车的速度是15千米/时,小王骑电动车的速度是小李骑自行车的速度的3倍,则甲、乙两地的距离为15千米.6.阅读下列解题过程.解方程:2(x -1)-1=3(x -1)-1.解:方程两边同时加上1,得2(x -1)=3(x -1),(第一步)方程两边同除以(x -1),得2=3.(第二步)上面的解答过程正确吗?如果不正确,请指出它错在了哪一步,说明理由并给出正确的解答过程.解:不正确,解答过程第二步出错.理由:方程两边不能同除以(x -1),x -1可能为0.正解:2(x -1)-1=3(x -1)-1.2x -2-1=3x -3-1,2x -3x =-3-1+2+1,-x =-1,x =1.7.解下列方程:(1)4x -3(20-x)=3;解:去括号,得4x -60+3x =3.移项,得4x +3x =3+60.合并同类项,得7x =63.方程两边同除以7,得x =9.(2)3x -14-5x -76=1; 解:去分母,得3(3x -1)-2(5x -7)=1×12.去括号,得9x -3-10x +14=12.移项,得9x -10x =12+3-14.合并同类项,得-x =1.方程两边同除以-1,得x =-1.(3)x 0.2-1=2x -0.80.3. 解:方程变形,得10x 2-1=20x -83. 去分母,得15x -3=20x -8.移项,得15x -20x =-8+3.合并同类项,得-5x =-5.方程两边同除以-5,得x =1.8.如图,长方形纸片的长为15 cm ,在这张纸片的长和宽上各剪去一个宽3 cm 的纸条,剩余部分(阴影部分)的面积是108 cm 2,求原长方形纸片的宽.解:设原长方形纸片的宽为x cm ,根据题意,得15x -15×3-3x =108.解得x =15312. 答:原长方形纸片的宽为15312cm. 上面的解答正确吗?若不正确,请指出错误的原因,并给出正确的解答过程.解:不正确.错因分析:审题不清.实际上,两次剪去的纸条面积并不等于(15×3+3x)cm,内有重叠计算部分,重叠部分的面积为3×3=9(cm).正解:设原长方形纸片的宽为x cm,两次剪去纸条后,剩余的长方形纸片的长是15-3=12(cm),宽为(x-3)cm.根据题意,得12(x-3)=108.解得x=12.答:原长方形纸片的宽为12 cm.。
一元一次方程之应用:工程类类专项训练1.为庆祝建国七十周年,南岗区准备对某道路工程进行改造,若请甲工程队单独做此工程需4个月完成,若请乙工程队单独做此工程需6个月完成,若甲、乙两队合作2个月后,甲工程队到期撤离,则乙工程队再单独需几个月能完成?2.由于地铁施工,需要拆除我校图书馆,七年级同学主动承担图书馆整理图书的任务,如果由一个人单独做要用30小时完成,现先安排一部分人用1小时整理,随后又增加6人和他们一起又做了2小时,恰好完成整理工作,假设每个人的工作效率相同,那么先按排整理的人员有多少?3.一项工程,甲工程队单独做要10天完成,乙工程队单独做要15天完成,甲乙两工程队先合作若干天后,再由乙工程队单独做了5天,此时还有三分之一的工程没有完成,求甲乙两工程队先合作了几天?4.某公司有甲、乙两个装修队,共同承担生产一种零件的任务,甲、乙两队共60人,甲队平均每人每天生产零件25个,乙队平均每人每天生产零件15个,甲队每天生产总数与乙队每天生产总数之和为1100(1)求甲、乙两队各多少人?(2)公司改进技术,在甲、乙两队总人数不变的情況下,从乙队调出一部分人到甲队,调整后甲队平均每人每天生产30个零件,乙队平均每人每天生产20个零件,若甲队每天生产零件总数与乙车间每天生产零件总数之和为1450个,求从乙队调出多少人到甲队?5.要铺设一条长650米的地下管道,由甲乙两个工程队从两端相向施工,甲队每天铺设48米,乙队比甲队每天多铺设22米,如果乙队比甲队晚开工1天,那么乙队开工多少天,两队能完成整个铺设的80%?(必须列一元一次方程)6.某厂接到长沙市一所中学的冬季校服订做任务,计划用A、B两台大型设备进行加工.如果单独用A型设备需要90天做完,如果单独用B型设各需要60天做完,为了同学们能及时领到冬季校服,工厂决定由两台设备同时赶制.(1)两台设备同时加工,共需多少天才能完成?(2)若两台设备同时加工30天后,B型设备出了故障,暂时不能工作,此时离发冬季校服时间还有13天.如果由A型设备单独完成剩下的任务,会不会影响学校发校服的时间?请通过计算说明理由.7.甲乙丙三人合做一批零件,完工时甲做的零件数是乙丙两人所做零件总数的,乙做了这批零件的多100个,乙和丙所做零件个数的比是5:4.这批零件共有多少个?8.某林场有一批造林任务,原计划由30人在一定时间内完成,实际造林时更换了劳动工具,使每个人的劳动效率都提高了1倍.现只派20人去工作,结果还提前2天完成任务,原计划多少天完成任务?9.一项工程,甲单独做要8天完成,乙单独做要24天完成,两人合做3天后,剩下的部分由乙单独做,还需要几天完成.10.一项筑路工程,甲队单独完成需要80天,乙队单独完成需要120天.(1)求甲,乙两队每天的工作量之比;(2)若甲队每天比乙队多筑路50米,求这项工程共需筑路多少米?(3)在(2)的条件下,甲,乙两队合作12天;12天后,乙队引进先进设备提高了筑路速度,甲队因部分工人另有任务,筑路速度为原来的,当两队合作完成此项工程的时,甲队比乙队少筑路,求提速后的乙队每天比甲队原来每天多筑路百分之几?11.为实施乡村振兴战略,解决某山区老百姓出行难的问题,当地政府决定修建一条高速公路.其中一段长为146米的山体隧道贯穿工程由甲乙两个工程队负责施工.甲工程队独立工作2天后,乙工程队加入,两工程队又联合工作了1天,这3天共掘进26米.已知甲工程队每天比乙工程队多掘进2米,按此速度完成这项隧道贯穿工程,甲乙两个工程队还需联合工作多少天?12.一项工程,甲单独完成要9天,乙单独完成要12天,丙单独完成要15天.若甲、丙先做3天后,甲因故离开,由乙接替甲的工作,问:还要多少天能完成这项工程的?13.某中学库存若干套桌凳,准备修理后支援贫困山区学校,现有甲、乙两木工组,甲每天修桌凳16套,乙每天修桌凳比甲多8套,甲单独修完这些桌凳比乙单独修完多用20天,学校每天付甲组80元修理费,付乙组120元修理费.(1)问该中学库存多少套桌凳?(2)在修理过程中,学校要派一名工人进行质量监督,学校负担他每天10元生活补助费,现有三种修理方案:①由甲单独修理;②由乙单独修理;③甲、乙合作同时修理.你认为哪种方案省时又省钱,为什么?14.甲组的4名工人3月份完成的总工作量比此月人均定额的4倍多20件,乙组的5名工人3月份完成的总工作量比此月人均定额的6倍少20件.(1)如果两组工人实际完成的此月人均工作量相等,那么此月人均定额是多少件?(2)如果甲组工人实际完成的此月人均工作量比乙组的多2件,则此月人均定额是多少件?(3)如果甲组工人实际完成的此月人均工作量比乙组的少2件,则此月人均定额是多少件?15.整理一批图书,如果由一个人单独做要花60小时.现先由一部分人用一小时整理,随后增加15人和他们一起又做了两小时,恰好完成整理工作.假设每个人的工作效率相同,那么先安排整理的人员有多少人?参考答案1.解:设乙工程队再单独需x个月能完成,由题意,得2×++x=1.解得x=1.答:乙工程队再单独需1个月能完成.2.解:设先安排整理的人员有x人,根据题意得: x+×2(x+6)=1,解得:x=6.答:先安排整理的人员有6人.3.解:设甲乙两工程队先合作了x天,由题意,得+=1﹣.解得x=2.答:甲乙两工程队先合作了2天.4.解:(1)设甲队有x人,则乙队有(60﹣x)人,25x+15(60﹣x)=1100,解得,x=20,∴60﹣x=40,答:甲队有20人,乙队有40人;(2)设从乙队调出a人到甲队,30(20+a)+20(40﹣a)=1450,解得,a=5,答:从乙队调5人到甲队.5.解:设乙队开工x天两队能完成整个铺设任务的80%,由题意得,甲队每天铺设48米,乙队每天铺设70米,则48(x+1)+70x=650×80%,解得:x=4.答:乙队开工4天两队能完成整个铺设任务的80%.6.解:(1)设共需x天才能完成,根据题意得:(+)x=1,解得x=36,答:两台设备同时加工,共需36天才能完成;(2)由A型设备单独完成剩下的任务需要y天才能完成,依题意得:(+)×30+=1,解得y=15>13答:会影响学校发校服的时间.7.解:∵乙和丙所做零件个数的比是5:4,∴设乙做了5x个,丙做了4x个,甲做了(5x+4x)=x个,由题意得:(5x+4x+)+100=5x,∴×x+100=5x,∴x=128,∴这批零件共有:128×5+128×4+×128=1440(个),答:这批零件共有1440个.8.解:设原计划x天完成任务,则实际(x﹣2)天完成任务,依题意,得:30x=20×2(x﹣2),解得:x=8.答:原计划8天完成任务9.解:设还需要x天完成,由题意得3×(+)+=1,解得x=12.答:还需要12天完成.10.解:(1)甲,乙两队的筑路时间之比为80:120=2:3.所以甲,乙两队每天筑路工作量之比3:2;(2)设乙队每天修x米路,则甲每天修(x+50)米路,依题意得:80(x+50)=120x解得:x=100.故120x=12 000(米).这项工程共需筑路12 000米;(3)由(2)知,甲队每天筑路150米,乙队每天筑路100米.两队合作完成此项工作的时,乙队完成(12000×)÷(1+1﹣)=3600(米)两队合作完成此项工作的时,甲队完成12000×﹣3600=2400(米)甲队部分工人完成另外任务到两队合作完成此项工作的一半甲队筑路(2400﹣12×150)÷(150×)=10(天)乙队提速后每天筑路(3600﹣12×100)÷10=240(米)提速后的乙队每天比甲队原来每天多筑路(240﹣150)÷150=60%.提速后的乙队每天比甲队原来每天多筑路60%.11.解:设甲工程队每天掘进x米,则乙工程队每天掘进(x﹣2)米,由题意,得2x+(x+x﹣2)=26,解得x=7,所以乙工程队每天掘进5米,(天)答:甲乙两个工程队还需联合工作10天.12.解:设还需x天完成这项工程的,根据题意得:,解得:x=2答:还需2天能完成这项工程的.13.解:(1)设该中学库存x套桌凳,甲需要天,乙需要天,由题意得:﹣=20,解方程得:x=960.经检验x=960是所列方程的解,答:该中学库存960套桌凳;(2)设①②③三种修理方案的费用分别为y1、y2、y3元,则y1=(80+10)×=5400y2=(120+10)×=5200y3=(80+120+10)×=5040综上可知,选择方案③更省时省钱.14.解:设此月人均定额为x件,则甲组的总工作量为(4x+20)件,人均为件;乙组的5名工人3月份完成的总工作量比此月人均定额的6倍少20件,乙组的总工作量为(6x﹣20)件,乙组人均为件.(1)∵两组人均工作量相等,∴=,解得:x=45.所以,此月人均定额是45件;(2)∵甲组的人均工作量比乙组多2件,∴,解得:x=35,所以,此月人均定额是35件;(3)∵甲组的人均工作量比乙组少2件,∴=﹣2,解得:x=55,所以,此月人均定额是55件.15.解:设先安排整理的人员有x人,依题意得:.解得:x=10.答:先安排整理的人员有10人.。