6-4 锐角三角函数 三年模拟精选
- 格式:doc
- 大小:229.50 KB
- 文档页数:5
锐角三角函数练习题锐角三角函数练习题三角函数是数学中重要的概念之一,它们在几何、物理、工程等领域中都有广泛的应用。
锐角三角函数是其中的一种,它们是指对于一个锐角(小于90度)所定义的三角函数。
在学习锐角三角函数时,我们需要通过大量的练习题来加深对其概念和性质的理解。
下面我将给出一些锐角三角函数的练习题,希望能帮助大家更好地掌握这一知识点。
题目一:已知一个锐角的正弦值为0.6,求其余弦值、正切值和余切值。
解析:根据三角函数的定义,正弦值是对边与斜边的比值。
设对边为a,斜边为c,则正弦值为a/c。
已知正弦值为0.6,可以设对边为6,斜边为10。
根据勾股定理,可以求得余边的长度为8。
所以,余弦值为8/10=0.8。
正切值为对边与邻边的比值,即6/8=0.75。
余切值为邻边与对边的比值,即8/6=1.33。
题目二:已知一个锐角的余弦值为0.8,求其正弦值、正切值和余切值。
解析:根据三角函数的定义,余弦值是邻边与斜边的比值。
设邻边为a,斜边为c,则余弦值为a/c。
已知余弦值为0.8,可以设邻边为8,斜边为10。
根据勾股定理,可以求得对边的长度为6。
所以,正弦值为6/10=0.6。
正切值为对边与邻边的比值,即6/8=0.75。
余切值为邻边与对边的比值,即8/6=1.33。
题目三:已知一个锐角的正切值为1.5,求其正弦值、余弦值和余切值。
解析:根据三角函数的定义,正切值是对边与邻边的比值。
设对边为a,邻边为b,则正切值为a/b。
已知正切值为1.5,可以设对边为1.5x,邻边为x。
根据勾股定理,可以求得斜边的长度为√(x^2+(1.5x)^2)=√(2.25x^2)=1.5x√2。
所以,正弦值为1.5x/(1.5x√2)=1/√2=0.71。
余弦值为x/(1.5x√2)=1/(1.5√2)=0.47。
余切值为1/1.5=0.67。
通过以上三道练习题,我们可以看到锐角三角函数之间的相互关系。
正弦值和余弦值是互补的,正切值和余切值也是互补的。
锐角三角函数练习题(总11页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--1.已知cos α<,锐角α的取值范围是()A .60°<a <90B .0°<a <60°C .30°<a <90°D0°<a <30°2.2sin60°-cos30°·tan45°的结果为( )A 、 3 33.B C D .0 3.等腰直角三角形一个锐角的余弦为( ) A 、12 32B C D .l4.在Rt △ABC 中,a 、b ,c 分别为∠A 、∠B 、∠C 的对边,∠C=90°,则a 3 cosA+b 3 cosB 等于( ) A .abc B .(a+b )c 3 C .c 3 D ().abc a b c+ 5.点M(tan60°,-cos60°)关于x 轴的对称点M ′的坐标是( )1111.(3,); 3,); .(3,) .(3,)2222A B C D ----6.在△ABC 中,∠C =90 °,a 、b ,c 分别为∠A 、∠B 、∠C 的对边,且c2-4ac+4a 2= 0,则sinA+cosA 的值为( ) 131223. 2 B C D +++7.在△ABC 中,∠A 为锐角,已知 cos(90°-A )3sin(90°-B )3,则△ABC 一定是( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .等腰三角形8.sin35°·cos55°十cos35°·sin55°=_______ 9. 已知0°<a <4512sin cos =__αα-10.在Rt △ABC 中,∠C=90°,∠A=60°,斜边上的高是 3 ,则a=____, b=______,c =______. 11 .在平面直角坐标系中,已知A(3,0)点B(0,-4),则cos ∠OAB 等于__________12.计算|2|4sin 6012--+1||245(20041)2O O -+- ×(-12 )-3+(4)tan 60πO O -+1301()16(2)(2004)36033π-O +÷-+- )()013222sin 60-︒+-(结果保留根号......)2(tan301)____-=1360|2|2-+-+ sin 30(1tan 60)tan 45sin 60---13 已知:如图 l -1-2,在△ABC 中,BC =8,∠B =60°,∠C =45°, 求BC 边上的高AD.14如图1-l -3,在Rt △ABC 中,∠C=90°,∠A=45°,点D 在AC 上,∠BDC=60°,AD=l ,求BD 、DC 的长.15 如图1-1-4所示,四边形ABCD 中,BC=CD=BD ,∠ADB=90°,cos ∠ABD=45 ,求S ΔABD :S ΔBCD16 如图1-l -6,在四边形ABCD 中.∠B =∠D =90°,∠A=60°,AB=4,AD=5,求 BCCD 的值。
锐角三角函数练习题及答案锐角三角函数练习题及答案三角函数是数学中的重要概念之一,它们在几何学、物理学和工程学等领域中都有广泛的应用。
其中,锐角三角函数是指角度小于90度的三角函数,包括正弦、余弦和正切。
本文将介绍一些锐角三角函数的练习题及答案,帮助读者加深对这些函数的理解和运用。
1. 练习题:已知一个锐角三角形的一条边长为5,另一条边长为12,求这个三角形的正弦值、余弦值和正切值。
解答:首先,我们可以利用勾股定理求得这个三角形的第三条边长。
根据勾股定理的公式,设第三条边长为c,则有c^2 = 5^2 + 12^2,即c^2 = 25 + 144,解得c ≈ 13。
接下来,我们可以利用三角函数的定义来求解所求的值。
正弦值(sin)定义为对边与斜边的比值,即sinθ = 对边/斜边。
在这个三角形中,对边为5,斜边为13,所以sinθ = 5/13。
余弦值(cos)定义为邻边与斜边的比值,即cosθ = 邻边/斜边。
在这个三角形中,邻边为12,斜边为13,所以cosθ = 12/13。
正切值(tan)定义为对边与邻边的比值,即tanθ = 对边/邻边。
在这个三角形中,对边为5,邻边为12,所以t anθ = 5/12。
因此,这个三角形的正弦值为5/13,余弦值为12/13,正切值为5/12。
2. 练习题:已知一个锐角三角形的两条边长分别为3和4,求这个三角形的角度大小及其正弦值、余弦值和正切值。
解答:根据余弦定理,我们可以求得这个三角形的第三条边长。
设第三条边长为c,则有c^2 = 3^2 + 4^2 - 2 * 3 * 4 * cosθ,即c^2 = 9 + 16 - 24cosθ,解得c ≈ 5。
接下来,我们可以利用三角函数的定义来求解所求的值。
首先,我们可以利用余弦值(cos)的定义来求解角度大小。
由于已知两条边长分别为3和4,我们可以利用余弦定理来求解cosθ。
根据余弦定理的公式,cosθ = (3^2 + 4^2 - 5^2) / (2 * 3 * 4),即cosθ = (9 + 16 - 25) / 24,解得cosθ = 0。
锐角三角函数专项练习题在Rt △ABC 中,∠C 为直角,则∠A 的锐角三角函数为(∠A 可换成∠B):定 义表达式取值范围关 系正弦 斜边的对边A A ∠=sin c aA =sin1sin 0<<A (∠A 为锐角) B A cos sin = B A sin cos = 1cos sin 22=+A A余弦斜边的邻边A A ∠=cos c bA =cos1cos 0<<A (∠A 为锐角) 正切的邻边的对边A tan ∠∠=A A b aA =tan0tan >A (∠A 为锐角) B A cot tan = B A tan cot =AA cot 1tan =(倒数) 1cot tan =⋅A A余切的对边的邻边A A A ∠∠=cot a bA =cot0cot >A (∠A 为锐角) 任意锐角的正弦值等于它的余角的余弦值;任意锐角的余弦值等于它的余角的正弦值。
任意锐角的正切值等于它的余角的余切值;任意锐角的余切值等于它的余角的正切值。
0°、30°、45°、60°、90°特殊角的三角函数值三角函数0° 30°45°60°90° αsin21 22 231 αcos 1 23 2221αtan 0 331 3- αcot- 31330 正弦、余弦的增减性:当0°≤α≤90°时,sin α随α的增大而增大,cos α随α的增大而减小。
正切、余切的增减性:当0°<α<90°时,tan α随α的增大而增大,cot α随α的增大而减小。
1、解直角三角形的定义:已知边和角(两个,其中必有一边)→所有未知的边和角。
依据:①边的关系:222c b a =+;②角的关系:A+B=90°;③边角关系:三角函数的定义。
锐角三角函数最新模拟押题预测40道(俯角仰角、方向角、坡度、解三角形)类型一、锐角三角函数的应用:俯角仰角问题1.(2023·河南安阳·统考一模)某校九年级数学项目化学习主题是“测量物体高度”.小明所在小组想测量中国文字博物馆门口字坊AB的高度.如图,在C处测得字坊顶端B的仰角为37°,然后沿CA方向前进6.3m到达点D处,测得字坊顶端B的仰角为45°,求字坊AB的高度.(结果精确到0.1m,参考数据:sin37°≈35,cos37°≈45,tan37°≈34,2≈1.41)2.(2023·山东菏泽·一模)某校数学兴趣小组利用无人机测量烈士塔的高度.无人机在点A处测得烈士塔顶部点B的仰角为45°,烈士塔底部点C的俯角为61°,无人机与烈士塔的水平距离AD为10m,求烈士塔的高度.(结果保留整数.参考数据:sin61°≈0.87,cos61°≈0.48,tan61°≈1.80)3.(2023·安徽合肥·合肥市庐阳中学校考一模)如图,为了测量校园内旗杆顶端到地面的高度AD,九年级数学应用实践小组了解到国旗的宽度AB=1.6m,小组同学在地面上的C处测旗杆上国旗A、B 两点的仰角,测得∠ACD=48.5°,∠BCD=45.0°,求旗杆顶端到地面高度AD.(结果精确到0.1)参考数据:(sin48.5°=0.75,cos48.5°=0.66,tan48.5°=1.13)4.(2023·黑龙江绥化·校考一模)小王和小李负责某企业宣传片的制作,期间要使用无人机采集一组航拍的资料.在航拍时,小王在C处测得无人机A的仰角为45°,同时小李登上斜坡CF的D处测得无人机A的仰角为31°.若小李所在斜坡CF的坡比为1:3,铅垂高度DG=3米(点E,G,C,B在同一水平线上).(1)小王和小李两人之间的距离CD;(2)此时无人机的高度AB.(sin31°≈0.52,cos31°≈0.86,tan31°≈0.60,结果精确到1米)5.(2023·河南新乡·校联考一模)如图是人民英雄纪念碑,它位于北京天安门广场中心,是为了纪念在人民解放战争和人民革命中牺牲的人民英雄,碑体正面是毛泽东亲笔题词“人民英雄永垂不朽”八个鎏金大字.右图是纪念碑的示意图,小丽在A处测得碑顶D的仰角为30°,沿纪念碑方向前进37.1m后,在B处测得碑顶D的仰角为53°(点A,B,D,E,F在同一平面内,且点A,B,E,F在同一水平线上)求纪念碑的高度.(结果精确到0.1m.参考数据:3≈1.73,sin53°≈45;cos53°≈35,tan53°≈43)6.(2023·陕西宝鸡·统考一模)如图,小刚同学从楼顶A处看楼下公园的湖边D处的俯角为65°,看另一边B处的俯角为25°,楼高AC为25米,求楼下公园的湖宽BD.(结果精确到1米,参考数据:sin25°≈0.42,tan25°≈0.47,sin65°≈0.91,tan65°≈2.14)7.(2023·陕西西安·校考模拟预测)如图,西安市某居民楼南向的窗户用AB表示,其高度为2.5米(A,B,D三点共线),此地一年冬至正午时刻太阳光与地平面的最小夹角α为32.3°,一年夏至正午时刻太阳光与地平面的最大夹角β为79.2°,并且在冬至的正午时刻阳光刚好全部射入窗户,求遮阳棚中BD的高(结果精确到0.1m,参考数据:cos79.2°≈0.2,tan79.2°≈5.2,cos32.3°≈0.8,tan32.3°≈0.6).8.(2023·江苏淮安·统考一模)如图,小明在热气球A上看到正前方横跨河流两岸的大桥BC,并测得B,C两点的俯角分别为60°和35°,已知大桥BC的长度为100m,且与地面在同一水平面上.求热气球离地面的高度(结果保留整数,参考数据:sin35°≈712,cos35°≈56,tan35°≈710,3≈1.7).9.(2023·广东深圳·校考模拟预测)消防车是救援火灾的主要装备,图①是一辆登高云梯消防车的实物图,图②是其工作示意图,起重臂AC(20米≤AC≤30米)是可伸缩的,且起重臂AC可绕点A在一定范围内上下转动张角∠CAE90°≤∠CAE≤150°,转动点A距离地面的高度AE为4米.(1)当起重臂AC的长度为24米,张角∠CAE=120°时,云梯消防车最高点C距离地面的高度CF的长为米.(2)某日一栋大楼突发火灾,着火点距离地面的高度为26米,该消防车在这栋楼下能否实施有效救援?请说明理由(参考数据:3≈1.7)(提示:当起重臂AC伸到最长且张角∠CAE最大时,云梯顶端C可以达到最大高度)10.(2023·陕西西安·西安市铁一中学校考一模)大雁塔是古城西安的标志性建筑(如图1).某学习小组为测量大雁塔的高度,在梯步A处(如图2)测得楼顶D的仰角为45°,沿坡比为7:24的斜坡AE前行100米到达平台E处,测得此时楼顶D的仰角为60°,请同学们根据学习小组提供的数据求大雁塔的高度DC(结果保留根号).类型二:锐角三角函数的应用:方向角问题11.(2023·河南驻马店·统考一模)在某海域开展的“海上联合”反潜演习中,我方军舰要到达C岛完成任务.已知军舰位于B市的南偏东25°方向上的A处,且在C岛的北偏东58°方向上,B市在C岛的北偏东28°方向上,且距离C岛372km,此时,我方军舰沿着AC方向以30km/h的速度航行,问:我方军舰大约需要多长时间到达C岛?(参考数据:3≈1.73,sin53°≈45,cos53°≈35,tan53°≈43)12.(2023·安徽黄山·校考模拟预测)如图,一条高速公路在城市A的东偏北30°方向直线延伸,县城M在城市A东偏北60°方向上,测绘员从A沿高速公路前行4000米到达C,测得县城M位于C的北偏西60°方向上.现要设计一条从县城M进入高速公路的路线,请在高速公路上寻找连接点N,使修建到县城M的道路最短,试确定N点的位置并求出最短路线长?(结果取整数,3≈1.732)13.(2023·福建厦门·厦门一中校考一模)如图,一艘海轮自西向东航行,在点B处时测得海岛A位于北偏东67°,航行12海里到达C点,又测得小岛A在北偏东45°方向上.已知位于海岛A的周围8海里内有暗礁,如果海轮不改变航线继续向东航行,那么它有没有触礁的危险?请说明理由.(参考数据:sin67°≈1213,cos67°≈513,tm67°≈125)14.(2023·山西晋中·统考一模)通过学习《解直角三角形》这一章,王凯同学勤学好问,在课外学习活动中,探究发现,三角形的面积、边、角之间存在一定的数量关系,下面是他的学习笔记.请仔细阅读下列材料并完成相应的任务.在△ABC中,∠A,∠B,∠C的对边分别为a、b、c,△ABC的面积为S△ABC,过点A作AD⊥BC,垂足为D,则在Rt△ABD中,∵sin B=ADAB∴AD=AB⋅sin B∴S△ABC=12BC⋅AD=12BC⋅AB⋅sin B=12ac sin B同理可得,S△ABC=12bc sin A,S△ABC=12ba sin C即S△ABC=12bc sin A=12ac sin B=12ba sin C⋯⋯⋯⋯⋯①由以上推理得结论:三角形的面积等于两边及其夹角正弦积的一半.又∵abc≠0∴将等式12bc sin A=12ac sin B=12ba sin C两边同除以12abc,得,sin Aa=sin Bb=sin Cc∴a sin A =bsin B=csin C⋯⋯⋯⋯⋯⋯⋯②由以上推理得结论:在一个三角形中,各边和它所对角的正弦的比值相等.理解应用:如图,甲船以302海里/时的速度向正北方向航行,当甲船位于A处时,乙船位于甲船的南偏西75°方向的B处,且乙船从B处沿北偏东15°方向匀速直线航行,当甲船航行20分钟到达D 处时,乙船航行到甲船的南偏西60°方向的C处,此时两船相距102海里.(1)求:△ADC的面积;(2)求:乙船航行的速度(结果保留根号).15.(2023·安徽滁州·校考一模)在某张航海图上,标明了三个观测点的坐标为O0,0、B(12,0)、C(12,16),由三个观测点确定的圆形区域是“利剑-2016”中国多军种军事演习区,如图所示.(1)求圆形区域的面积.(2)某时刻海面上出现一艘可疑船A,在观测点O测得A位于北偏东45°方向上,同时在观测点B测得A位于北偏东30°方向上,求观测点B到可疑船A的距离,结果保留根号;(3)当可疑船A由(2)中的位置向正西方向航行时,是否会进入演习区?请通过计算解释.16.(2023·广西河池·校考一模)如图,一艘渔船位于小岛B的北偏东30°方向,距离小岛40nmile的点A处,它沿着点A的南偏东15°的方向航行.(1)渔船航行多远距离小岛B最近(结果保留根号)?(2)渔船到达距离小岛B最近点后,按原航向继续航行206nmile到点C处时突然发生事故,渔船马上向小岛B上的救援队求救,问救援队从B处出发到达事故地点的最短航程BC是多少nmile(结果保留根号)?17.(2023·湖南湘潭·湘潭县云龙中学校考一模)如图,AB是湘江段江北岸滨江路一段,长度为2km,C为南岸一渡口.为了解决两岸交通困难,在渡口C处架桥,CD⊥AB垂足为点D.经测量点C在A点的东偏南45°方向,在B点的西偏南60°方向.问:桥长CD为多少km?(结果精确到0.01,参考数据:2≈1.414,3≈1.732.)18.(2023·浙江嘉兴·校考一模)小明学了《解直角三角形》内容后,对一条东西走向的隧道AB进行实地测量.如图所示,他在地面上点C处测得隧道一端点A在他的北偏东15°方向上,他沿西北方向前进1003米后到达点D,此时测得点A在他的东北方向上,端点B在他的北偏西60°方向上,(点A、B、C、D在同一平面内)(1)求点D与点A的距离;(2)求隧道AB的长度.(结果保留根号)19.(2023·新疆·统考一模)如图,B港口在A港口的南偏西25°方向上,距离A港口100海里处.一艘货轮航行到C处,发现A港口在货轮的北偏西25°方向,B港口在货轮的北偏西70°方向,求此时货轮与A港口的距离(结果取整数).(参考数据:sin50°≈0.766,cos50°≈0.643,tan50°≈1.192,2≈1.414)20.(2023·河南洛阳·统考一模)如图,三角形花园ABC紧邻湖泊,四边形ABDE是沿湖泊修建的人行步道.经测量,点C在点A的正东方向,AC=200米.点E在点A的正北方向.点B,D在点C的正北方向,BD=100米.点B在点A的北偏东30°,点D在点E的北偏东45°.(1)求步道DE的长度(精确到个位);(2)点D处有直饮水,小红从A出发沿人行步道去取水,可以经过点B到达点D,也可以经过点E到达点D.请计算说明他走哪一条路较近?(参考数据:2≈1.414,3≈1.732)类型三:锐角三角函数的应用:坡度坡角问题21.(2023·天津武清·校考模拟预测)如图,某社区一建筑物上,悬挂“创文明小区,建和谐社会”的宣传条幅AB,小明站在位于建筑物正前方的台阶D点处测得条幅顶端A的仰角为36.5°,朝着条幅的方向走到台阶下的E点处,测得条幅顶端A的仰角为64°,已知台阶DE的坡度为1:2,DC=2米,则条幅AB的长度为多少米.(结果精确到0.1米,参考数据sin36.5°≈0.6,tan36.5°≈0.75,sin64°≈0.9,tan64°≈2.1)22.(2023·山西忻州·统考一模)绵山是中国清明节(寒食节)的发源地,相传春秋时期晋国介子推携母隐居被焚在山上.绵山入口处有一座雄伟高大的介子推铜像,当地某校的综合与实践小组的同学们想要测出这座铜像有多高.他们先制订了测量方案,随后又进行了实地测量.如图,铜像MN建在坡比为1∶2.4的楼梯BM顶端,同学们在A处测得铜像顶点N的仰角为30°,然后沿着AC方向走了12m到达B处,此时在B处测得铜像顶点N的仰角为63.4°,其中点A,B,C,D,M,N均在同一平面内.请根据以上数据求出铜像MN的高度.(结果精确到0.1m,参考数据3≈1.73,sin63.4°≈0.89,cos63.4°≈0.45,tan63.4°≈2.00)23.(2023·陕西榆林·校考一模)延安宝塔,是革命圣地延安的标志和象征,融历史文物和革命遗址为一脉,集人文景观和自然景观为一体.某数学兴趣小组在确保无安全隐患的情况下,开展了测量延安宝塔的高度的实践活动,具体过程如下:如图,CN是坡度i=3:4的斜坡,CN的长为15米,BC=32米.MN是测角仪,长为2米,从点M测得该塔顶部A处的仰角为37°,已知MN⊥BC,AB⊥BC,求该塔AB的高度.(参考数据:tan37°≈3 4 )24.(2023·陕西西安·校考三模)开封铁塔又名“开宝寺塔”,坐落在开封城东北隅铁塔公园内,因塔身全部以褐色琉璃瓦镶嵌,远看酷似铁色,故称为“铁塔”.在一次综合实践活动中,某数学小组对该铁塔进行测量.如图,他们在远处一山坡坡脚P处,测得铁塔顶端M的仰角为60°,沿山坡向上走35m到达D处,测得铁塔顶端M的仰角为30°.已知山坡坡度i=3:4,即tanθ=34,请你帮助该小组计算铁塔的高度ME(结果精确到1m,参考数据:3≈1.7).25.(2023·辽宁锦州·统考模拟预测)如图,在坡角为30°的山坡上有一铁塔AB,其正前方矗立着一大型广告牌,当阳光与水平线成45°角时,测得铁塔AB落在斜坡上的影子BD的长为8米,落在广告牌上的影子CD的长为5米,求铁塔AB的高.(AB、CD均与水平面垂直,结果保留根号)26.(2023·河北衡水·校考二模)如图,有两个长度相同的滑梯(即BC=EF),左边滑梯的高度AC与右边滑梯水平方向的长度DF相等.(1)求证:△ABC≅△DEF;(2)若滑梯的长度BC=10米,DE=8米,分别求出滑梯BC与EF的坡度;(3)在(2)的条件下,由于EF太陡,在保持EF长不变的情况下,现在将点E向下移动,点F随之向右移动.①若点E向下移动的距离为1米,求滑梯EF底端F向右移动的距离;②在移动的过程中,直接写出△DEF面积的最大值.27.(2023·江苏宿迁·统考一模)如图,梯形ABCD是某水坝的横截面示意图,其中AB=CD,坝顶BC=2m,坝高CH=5m,迎水坡AB的坡度为i=1:1.(1)求坝底AD的长;(2)为了提高堤坝防洪抗洪能力,防汛指挥部决定在背水坡加固该堤坝,要求坝顶加宽0.5m,背水坡坡角改为α=30°.求加固总长5千米的堤坝共需多少土方?(参考数据:π≈3.14,2≈1.41,3≈1.73;结果精确到0.1m3)28.(2023·上海崇明·统考一模)如图,一根灯杆AB上有一盏路灯A,路灯A离水平地面的高度为9米,在距离路灯正下方B点15.5米处有一坡度为i=1:43的斜坡CD,如果高为3米的标尺EF竖立地面BC上,垂足为F,它的影子的长度为4米.(1)当影子全在水平地面BC上(图1),求标尺与路灯间的距离;(2)当影子一部分在水平地面BC上,一部分在斜坡CD上(图2),求此时标尺与路灯间的距离为多少米?29.(2023·海南儋州·统考一模)如图,在坡顶A处的同一水平面上有一座古塔BC,数学兴趣小组的同学在斜坡底P处测得该塔的塔顶B的仰角为45°,然后他们沿着坡度为i=1:2.4的斜坡AP攀行了26米到达点A,在坡顶A处又测得该塔的塔顶B的仰角为76°.(1)求坡顶A到地面PQ的距离;(2)计算古塔BC的高度(结果精确到1米).(参考数据:sin76°≈0.97,cos76°≈0.24,tan76°≈4)30.(2023·山东济南·一模)在一次综合实践活动中,数学兴趣小组的同学想要测量一楼房AB的高度,如图,楼房AB后有一假山,其斜坡CD坡比为1∶3,山坡坡面上点E处有一休息亭,在此处测得楼顶A的仰角为45°,假山坡脚C与楼房水平距离BC=30米,与亭子距离CE=40米.(1)求点E距水平地面BC的高度;(2)求楼房AB的高.(结果精确到整数,参考数据2≈1.414,3≈1.732)类型四、锐角三角函数与解直角三角形31.(2023·福建漳州·统考一模)如图,四边形ABCD是矩形,对角线AC与BD交于点O,过点B作BE⊥AC于点E,作BF⊥BD交AC延长线于点F.(1)求证:△OBE∽△OFB;(2)求证:OC⋅CF=EC⋅OF.32.(2023·河南安阳·统考一模)如图,△ABC内接于⊙O,AB、CD是⊙O的直径,E是DA长线上一点,且∠CED=∠CAB.(1)判断CE与⊙O的位置关系,并说明理由;(2)若DE=35,tan B=12,求线段CE的长.33.(2023·安徽安庆·统考一模)如图,在△ABC中,AD⊥BC,垂足是D,若BC=14,AD=12,tan∠BAD=34,求cos C的值.34.(2023·浙江舟山·校联考一模)如图,在矩形ABCD中,点E为边AB上的一动点(点E不与点A,B重合),连接DE,过点C作CF⊥DE,垂足为F.(1)求证:△ADE∽△FCD;(2)若AD=6,tan∠DCF=13,求AE的长.35.(2023·上海静安·统考一模)如图,已知在△ABC中,∠B为锐角,AD是BC边上的高,cos B=513,AB=13,BC=21.(1)求AC的长;(2)求∠BAC的正弦值.36.(2023·广东深圳·统考一模)(1)如图1,纸片▱ABCD中,AD=10,S▱ABCD=60,过点A作AE⊥BC,垂足为E,沿AE剪下△ABE,将它平移至△DCE'的位置,拼成四边形AEE'D,则四边形AEE'D的形状为.(从以下选项中选取)A.正方形 B.菱形 C.矩形(2)如图2,在(1)中的四边形纸片AEE'D中,在EE'上取一点F,使EF=8,剪下△AEF,将它平移至△DE'F'的位置,拼成四边形AFF'D.①求证:四边形AFF'D是菱形;②连接DF,求sin∠ADF的值.37.(2023·广东梅州·校考模拟预测)如图,在四边形ABCD中,∠ABC=90°,∠ADC=90°,AB=6,CD=3,BC的延长线与AD的延长线交于点E.(1)若∠A=60°,求BC的长;(2)若sin E=35,求AD的长.38.(2023·上海崇明·统考一模)如图,D是△ABC边上的一点,CD=2AD,AE⊥BC,垂足为点E,若AE=9,sin∠CBD=34.(1)求BD的长;(2)若BD=CD,求tan∠BAE的值.39.(2023·上海浦东新·统考一模)如图,在Rt△EAC中,∠EAC=90°,∠E=45°,点B在边EC上,BD⊥AC,垂足为D,点F在BD延长线上,∠FAC=∠EAB,BF=5,tan∠AFB=34.求:(1)AD的长;(2)cot∠DCF的值.40.(2023·浙江湖州·统考一模)如图,在矩形ABCD中,AE平分∠BAD交射线BC于点E,过点C作CF⊥AE交射线AE于点F,连结BD交AE于点G,连结DF交射线BC于点H.(1)当AB<AD时,①求证:BE=CD,②猜想∠BDF的度数,并说明理由.=k时,求tan∠CDF的值(用含k的代数式表示).(2)若ABAD。
九年级下《锐角三角函数》专项训练含答案专训 1求锐角三角函数值的常用方法名师点金:锐角三角函数刻画了直角三角形中边和角之间的关系,对于斜三角形,要把它转化为直角三角形求解.在求锐角的三角函数值时,首先要明确是求锐角的正弦值,余弦值还是正切值,其次要弄清是哪两条边的比.直接用锐角三角函数的定义1.如图,在Rt△ABC中,CD是斜边AB上的中线,若CD=5,AC=6,(第 1 题)则 tan B 的值是 ()43A.5B.534C.4D.32.如图,在△ABC中,AD⊥BC,垂足是D,若BC=14,AD=12,tan∠3BAD =4,求 sin C 的值.(第 2 题)133.如图,直线y=2x+2与x轴交于点A,与直线y=2x交于点B.(1)求点 B 的坐标;(2)求 sin∠BAO 的值.(第 3 题)利用同角或互余两角三角函数间的关系.若∠A 为锐角,且sin A=3,则 cos A= ()42321 A.1 B. 2 C. 2 D.2125.若α为锐角,且cosα=13,则sin(90°-α)=()512512A.13B.13C.12D. 56.若α为锐角,且sin2α+cos230°=1,则α=______.巧设参数47.在Rt△ABC中,∠C=90°,若sin A=5,则tan B的值为()4334A.3B.4C.5D.58.已知,在△ABC中,∠A,∠B,∠C所对的边长分别为a,b,c,且a,b,c 满足 b2= (c+a)(c-a).若 5b- 4c=0,求 sin A+sin B 的值.利用等角来替换9.如图,已知Rt△ABC中,∠ACB=90°,CD是斜边AB的中线,过点A 作AE ⊥CD,AE 分别与 CD, CB 相交于点 H,E 且 AH =2CH,求 sin B 的值.(第 9 题)专训 2同角或互余两角的三角函数关系的应用名师点金:2α=1,tan α=sinα.同角三角函数关系:21sinα+cos.cos α2.互余两角的三角函数关系: sin α=cos(90 °-α),cos α=sin(90 °-α),tan α·tan(90 °-α)=1.同角间的三角函数的应用sin A=4,求sin A -3cos A1.已知cos A4sin A +cos A的值.22.若α为锐角,sinα-cosα=2,求sinα+cosα的值.余角的三角函数的用3.若45°-α和45°+α均角,下列关系式正确的是()A.sin(45 °-α)=sin(45 °+α)22B.sin (45 °-α)+cos (45 °+α)=122C.sin (45 °-α)+sin (45 °+α)=122D.cos (45 °-α)+sin (45 °+α)=14.算tan 1°·tan 2°·tan 3°·⋯·tan 88°·tan 89°的.同角的三角函数的关系在一元二次方程中的用125.已知sinα·cosα=25(α 角),求一个一元二次方程,使其两根分sin α和 cos α.26 .已知α角且sinα 是方程2x - 7x + 3 = 0 的一个根,求3用三角函数解与有关名点金:用三角函数解与有关的,是近几年中考命内容,型多化;一般以中档、形式出,高度重.一、1.如,已知△ABC的外接⊙O的半径3,AC=4,sin B=() 1342A.3B.4C.5D.3(第 1 )(第 2 )2.如是以△ABC的AB直径的半O,点C恰好在半上,C作CD ⊥AB 交 AB于D,已知∠ACD=3,BC=4, AC 的 ()cos52016A.1 B. 3C.3 D. 343.在△ABC中, AB = AC =5,sin B= 5.⊙O 过B,C 两点,且⊙O 半径r =10,则OA的长为 ()A.3 或5B. 5C.4 或 5D. 44.如图,在半径为 6 cm 的⊙ O 中,点 A 是劣弧 BC 的中点,点 D 是优弧BC 上一点,且∠ D=30°.下列四个结论:(第 4 题)①OA⊥BC;②BC=6 3 cm;3③sin∠AOB =2;④四边形 ABOC 是菱形.其中正确结论的序号是 ()A.①③ B.①②③④ C.②③④ D.①③④二、填空题5.如图,AB是⊙O的直径,AB=15,AC=9,则tan∠ADC=________.(第 5 题)(第 6 题)6.如图,直线MN与⊙O相切于点M,ME=EF且EF∥MN,则cos E=________.7.如图,在半径为5的⊙O中,弦AB=6,点C是优弧AB上的一点(不与A, B 重合 ),则 cos C 的值为 ________.(第 7 题)(第 8 题)8.如图,在直角坐标系中,四边形OABC是直角梯形,BC∥OA,⊙P分别与 OA ,OC, BC 相切于点 E,D, B,与 AB 交于点 F,已知 A(2 ,0), B(1,2),则 tan∠FDE=________.三、解答题19.如图,Rt△ABC中,∠C=90°,AC=5,tan B=2,半径为 2 的⊙ C 分别交 AC ,BC 于点 D, E,得到 .(1)求证: AB 为⊙ C 的切线;(2)求图中阴影部分的面积.(第 9 题)10.如图,AB是⊙O的直径,∠ABT=45°,AT=AB.(1)求证: AT 是⊙ O 的切线;(2)连接 OT 交⊙ O 于点 C,连接 AC ,求 tan∠TAC 的值.(第 10 题 )11.如图,AB是⊙O的直径,CD与⊙O相切于点C,与AB的延长线交于点D,DE⊥AD 且与 AC 的延长线交于点 E.(1)求证: DC=DE;1(2)若 tan∠CAB =2,AB =3,求 BD 的长.(第 11 题 )12.如图,以△ABC的一边AB为直径的半圆与其他两边AC,BC的交点分别为 D, E,且= .(1)试判断△ ABC 的形状,并说明理由;(2)已知半圆的半径为5,BC=12,求 sin∠ABD 的值.(第 12 题 )13.如图,在四边形 ABCD 中,AB =AD ,对角线 AC ,BD 交于点 E ,点 O3在线段 AE 上,⊙ O 过 B , D 两点,若 OC = 5, OB = 3,且 cos ∠BOE =5.求证: CB 是⊙ O 的切线.(第 13 题 )答案专训 1 1.CBD2.解: ∵AD ⊥BC ,∴ tan ∠BAD =AD .∵ t an ∠BAD =34,AD =12,∴34=BD12 ,∴ BD = 9. ∴CD =BC -BD = 14- 9=5,∴在 Rt △ADC 中, AC = AD 2+CD 2= 122+ 52=13,AD 12∴sin C =AC =13.13y = x + ,x =1,3.解: (1)解方程组2 2得y =2x ,∴点 B 的坐标为 (1, 2).(第 3 题)13(2)如图,过点 B 作 BC ⊥x 轴于点 C ,由 2x + 2= 0,解得 x =- 3,则 A( -3,0),∴ OA =3, ∴AB = AC 2+BC 2=2 5,∴ sin ∠ BAC =BC= 2 = 5, AB2 5 55即 sin ∠BAO = 5 .4.D 5.B 6.30° 7.B8.解: ∵b 2=(c + a)(c -a),∴ b 2 =c 2-a 2,即 c 2=a 2+b 2,∴△ ABC 是直角三角形.∵5b -4c =0,∴ 5b =4c ,则bc =45,设 b = 4k ,c =5k ,那么 a = 3k.3k 4k 7∴sin A +sin B = 5k +5k = 5.9.解: ∵CD 是斜边 AB 的中线, ∴CD =AD = BD. ∴∠ DCB =∠ B.∵∠ ACD +∠ DCB =90°,∠ ACD +∠ CAH =90°, ∴∠ DCB =∠ CAH =∠ B.在 Rt △ACH 中, AH = 2CH ,CH5∴AC = 5CH.∴sin B =sin ∠CAH =5CH = 5 .专训 2sin Acos A , 1.分析: 本题可利用 cos A 求解,在原式的分子、分母上同时除以sin Asin A= 4,把原式化为关于 cos A 的代数式,再整体代入求解即可.也可直接由cos A 得到 sin A 与 cos A 之间的数量关系,代入式子中求值.sin A -3解: (方法 1)原式= (sin A -3cos A )÷cos A = cos A (4sin A +cos A )÷cos A 4sin A .+1cos A sin A4- 3 1∵cos A = 4,∴原式= × += 17.441方法 sin A=4,∴ sin A =4cos A.(2)∵ cos A4cos A - 3cos A cos A1=17cos A=17.∴原式=4×4cos A+cos A2.分析:要求 sin α+cos α的 , 必 利用 角三角函数之 的关系找出它与已知条件的关系再求解.解: ∵sin α- cos α= 2 2 12 ,∴ (sin α-cos α)=2,即 sin 2α+ cos 2α- 2sin αcos α=12.11∴1-2sin αcos α=2,即 2sin αcos α=2.2221 3α+ 2sin αcos α=1+2= 2.∴(sin α+cos α)=sin α+cos 又∵ α 角,∴ sin α+cos α>0.∴ s in α+cos α= 26.3.C 点 : ∵(45 °-α)+(45 °+α)=90°,∴ sin (45 °- α)=cos (45 °+α), sin 2(45 °-α)+sin 2(45 °+ α)=cos 2(45 °+α)+sin 2(45 °+α)=1.4.解: tan 1°·tan 2°·tan 3°·⋯·tan 88°·tan 89°= (tan 1°·tan 89°)·(tan 2°·tan88°)·⋯·(tan 44 °·tan 46 °)·tan 45 °=1.点 :互余的两角的正切 的 1,即若 α+β= 90°, tan α·tan β= 1.5.解: ∵sin 2α+ cos 2α=1,sin α·cos α=1225,2 2 21249∴(sin α+cos α)=sin α+cos α+ 2sin αcos α=1+2× 25=25.7∵α 角,∴ sin α+ cos α> 0.∴sin α+cos α=5.又∵ sin α·cos α=1225,2 712∴以 sin α, cos α 根的一元二次方程x - 5x +25=0.点 :此 用到两方面的知 : (1)公式 sin 2α+cos 2α=1 与完全平方公式的 合运用; (2)若 x 1+x 2 =p ,x 1x 2= q , 以 x 1 ,x 2 两根的一元二次方程 x 2 - px +q =026.解: ∵sin α是方程 2x -7x + 3= 0 的一个根,-(- 7) ± (- 7)2- 4× 2× 37±5 sin α=2× 2= 4.∴sin α=1或 sin α=3(不符合 意,舍去 ).22221 2 3∵sin α+cos α= 1,∴ cos α=1- 2 =4.3又∵ cos α> 0,∴ cos α= 2 .∴ 1-2sin αcos α= sin 2α+cos 2α- 2sin αcos α=21 33- 1(sin α-cos α) =|sin α-cos α|= 2-2 =2 .专训 3 一、 1.D2.D 点拨:∵AB 为直径, ∴∠ ACB = 90°.又∵ CD ⊥ AB ,∴∠ B =∠ ACD.BC 3 20 2 2 16∴ cos B =AB =5,∴ AB =3 .∴AC = AB -BC = 3 .3.A 4.B3 141二、 5.4 6.2 7.5 8.2三、(第 9 题)AC9.(1)证明:如图,过点 C 作 CF ⊥AB 于点 F ,在 Rt △ABC 中, tan B =BC=12,∴ BC =2AC = 2 5.∴ AB = AC 2+BC 2= ( 5)2+( 2 5)2= 5,∴ CF· 5×2 5= AC BC==2.∴ AB 为⊙ C 的切线.AB 51 n πr2 1 90π× 22(2)解: S 阴影 =S △ABC -S 扇形 CDE =2AC ·BC - 360 =2× 5× 2 5- 360 =5- π.10. (1)证明: ∵ AB =AT ,∴∠ ABT =∠ ATB = 45°,∴∠ BAT =90°,即 AT 为⊙ O 的切线.AT(2)解:如图,过点 C 作 CD ⊥AB 于 D ,则∠ TAC =∠ ACD ,tan ∠ TOA = AO= CD OD = 2,设 OD =x ,则 CD = 2x ,OC = 5x = OA. ∵AD =AO - OD =( 5-1)x ,∴ tan ∠TAC =tan ∠ACD =AD( 5-1)x=5-1=2x2 .CD(第 10 题 )(第 11 题 )11. (1)证明:连接 OC ,如图,∵ CD 是⊙ O 的切线,∴∠ OCD = 90°,∴∠ ACO +∠ DCE = 90°.又∵ ED ⊥ AD ,∴∠ EDA =90°,∴∠ EAD +∠ E =90°.∵OC =OA ,∴∠ ACO =∠ EAD ,故∠ DCE =∠ E ,∴ DC =DE.(2)解:设 BD =x ,则 AD =AB +BD =3+x ,OD =OB + BD = 1.5+ x.在 Rt1 1 1 1△ EAD 中,∵tan ∠CAB =2,∴ED =2AD = 2(3+ x) .由(1)知,DC =2(3+x).在Rt △ OCD 中,OC 2+CD 2=DO 2,则 1.52+ 1( 3+ x ) 2 =(1.5+x)2,解得 x 1=-23(舍去 ), x 2=1,故 BD =1.12. 解: (1)△ABC 为等腰三角形,理由如下:连接 AE ,如图, ∵=,∴∠ DAE =∠ BAE ,即 AE 平分∠ BAC. ∵AB 为直径,∴∠ AEB =90°,∴ AE ⊥ BC , ∴△ ABC 为等腰三角形.(2)∵△ ABC 为等腰三角形, AE ⊥BC ,1 1∴BE =CE = 2BC =2×12= 6.在 Rt △ABE 中,∵ AB =10, BE = 6,∴ AE = 102-62=8.∵AB 为直径,∴∠ ADB =90°,∴S △ABC= 1 · =1· ,∴BD = 8×12= 482AE BC 2BD AC10 5 .在 Rt △ABD 中,∵ AB =10,BD =485,142 2 14AD 5 7 ∴AD =AB -BD = 5 ,∴ sin ∠ABD =AB=10=25.(第 12 题 )(第 13 题 )13. 证明:如图,连接 OD ,可得 OB = OD. ∵AB =AD ,∴ AE 垂直平分 BD.3 9在 Rt △BOE 中, OB = 3, cos ∠BOE = 5,∴ OE = 5.16 ∴CE =OC -OE = 5 .2212根据勾股定理得 BE = BO -OE = 5.在 Rt △CEB 中, BC = CE 2+BE 2=4.∵OB =3, BC = 4,OC = 5,∴ OB 2+BC 2 =OC 2, ∴∠ OBC = 90°,即 BC ⊥OB ,∴ CB 为⊙ O 的切线.。
初三锐角三角函数练习题[正文]在初三数学学习的过程中,锐角三角函数是一个非常重要的知识点。
它与三角函数、三角比、单位圆等相关概念密切相关。
为了帮助同学们更好地掌握锐角三角函数的运用,下面给大家提供一些练习题,希望能够帮助大家巩固所学知识,提高解决问题的能力。
1. 已知直角三角形的两条直角边分别为3cm和4cm,求其中一锐角的正弦值、余弦值和正切值。
解答:首先,我们根据勾股定理可以得出直角三角形的斜边长为5cm。
根据定义,正弦值是斜边与对应锐角边的比值,即sinθ=对边/斜边=3/5。
余弦值是斜边与邻边的比值,即cosθ=邻边/斜边=4/5。
正切值是对边与邻边的比值,即tanθ=对边/邻边=3/4。
所以,这个直角三角形中,该锐角的正弦值为3/5,余弦值为4/5,正切值为3/4。
2. 计算sin(45°)+cos(30°)的值。
解答:根据特殊角的数值,sin(45°)=√2/2,cos(30°)=√3/2。
将这两个值代入公式求和,得到sin(45°)+cos(30°)=(√2/2)+(√3/2)=√2/2+√3/2=(√2+√3)/2。
所以,sin(45°)+cos(30°)的值为(√2+√3)/2。
3. 已知ΔABC中,∠B=30°,BC=5cm,AC=10cm,求∠A的正切值。
解答:根据勾股定理,可以求得AB的长度为√(AC²-BC²)=√(10²-5²)=√75=5√3 cm。
则tan∠A=BC/AB=5/(5√3)=1/√3=√3/3。
所以,∠A的正切值为√3/3。
4. 已知tanθ=3/4,且θ为锐角,求sinθ和cosθ的值。
解答:根据定义,tanθ=对边/邻边=3/4。
可以得出对边为3k,邻边为4k,斜边为5k,其中k为正整数。
由勾股定理可得斜边长度为5k,那么sinθ=对边/斜边=3k/5k=3/5,cosθ=邻边/斜边=4k/5k=4/5。
锐角三角函数专项练习题在Rt△ABC 中,∠C 为直角,则∠A 的锐角三角函数为(∠A 可换成∠B):定义表达式取值范围关系正A 的对边 a0sinA1sinAsinA cosB斜边sinA(∠A 为锐角)弦ccosA sinB余 A 的邻边 b 0cosA1sin 2Acos 2A1cosA斜边cosA(∠A 为锐角)弦 c正A 的对边 a tanAtanAA 的邻边tanA(∠A 为锐角)切b随意锐角的正弦值等于它的余角的余弦值;随意锐角的余弦值等于它的余角的正弦值。
sinA cosB 由A B 90 sinA cos(90 A) B对cosAsinB得B90AcosAsin(90A)斜边c a 边bA C邻边随意锐角的正切值等于它的余角的余切值;随意锐角的余切值等于它的余角的正切值。
tanA cotB 由A B 90 tanA cot(90 A)cotA tanB得B90 A cotA tan(90 A)°、45°、60°特别角的三角函数值三角函数 30° 45°60°cos3 2 1 2 2 2tan3 133基础练习1.如图,在Rt△ABC 中,∠C 为直角,CD⊥AB 于D ,已知AC=3,CAB=5,则tan∠BCD 等于()2.A .3;B .4;C .3;D .4ADB43553.Rt △ABC 中,∠C 为直角,AC=5,BC=12,那么以下∠A 的四个三角函数中正确的选项是()4.A .sinA=5;B .cosA=12; C .tanA=13;D .tanB=513 13 12123..在Rt △ABC 中,∠C 为直角,AC=4,BC=3,则sinA=().3434A.4;B.3 ;C. 5;D.5 .24在Rt △ABC 中,∠C 为直角,sinA=2 ,则cosB 的值是( ).132A.2 ;B.2 ;;D.2.5.若为锐角,且sin4,则tan为()59 334A .B .C .D .255436.在Rt △ABC 中,∠C=90°,当已知∠A 和a 时,求c ,应选择的关系式是()A .c=a B .c=a C.c=a ·tanAasinAcosA D .c=tanA7、sin45cos45 的值等于( )A.2B.3 1 C.3D.128.在△ABC 中,∠C=90°,BC=2,sinA2,则边AC 的长是()3C .4A .5B .3D .1339.如图,两条宽度均为 40m 的公路订交成 α角,那么这两条公路在订交处的公共部分(图中暗影部分)的路面面积是()A.1600(m 2)B.1600(m 2) α(m 2)α(m 2)sincos10.如图,延伸 Rt △ABC 斜边AB 到D 点,使BD =AB ,连结CD ,若tan ∠BCD =13,则tanA =()1 32 B.C.D.323ABCD第4题图(第9题)(第10题)二、填空题8.计算2sin30°+2cos60°+3tan45°=_______.9.已知△ABC中,∠C=90°,AB=13,AC=5,则tanA=______.10.如图,小鸣将测倾器安置在与旗杆AB底部相距6m的C处,量出测倾器的高度CD=1m,测得旗杆顶端B的仰角=60°,则旗杆AB的高度为.(计算结果保存根号)三、解答题11.计算以下各题.(1)sin230°+cos245°+2sin60°·tan45°;(2)cos230cos260+sin45°tan60tan30四、解以下各题12.如下图,平川上一棵树高为5米,两次察看地面上的影子, ?第一次是当阳光与地面成45°时,第二次是阳光与地面成30°时,第二次察看到的影子比第一次长多少米13.如图,AB 是江北岸滨江路一段,长为3千米,C 为南岸一渡口,?为认识决两岸交通困难,拟在渡口C 处架桥.经丈量得A 在C 北偏西30°方向,B 在C 的东北方向,从C 处连结两岸的最短的桥长多少(精准到)提升训练在等腰Rt △ABC 中,∠C=90o,AC=6,D 是AC 上一点,若tan ∠DBA=1,则AD 的长为()5(A )2 (B ) 3 (C ) 2(D )1如图,每个小正方形的边长为1,A 、B 、C 是小正方形的极点,则tan ∠ABC 为() A .1 B .2 C . D .A3. 如图,已知AD 是等腰△ABC 底边上的高,且tan ∠B=3,AC 上有一点E ,4知足AE:CE=2:3则tan ∠ADE 的值是()A .3B .8C.4D.75 95 9BC AE4.如图,在梯形ABCD 中,AD4图,矩形中,cosDCA5ABCDAB >AD ,AB=a ,AN 均分∠DAB ,DM ⊥AN 于点M ,CN ⊥AN 于点N .则DM+CN 的值为(用含a 的代数式B C DN D CM aA BA .aB .4aC .2aD .3a 5226.如图,在某建筑物 A C 上,挂着“漂亮家园”的宣传条幅 BC ,小明站在点 F 处,看条幅顶端 B ,测的仰角为300,再往条幅方向前行20米抵达点E 处,看到条幅顶端 B ,测的仰角为 600,求宣传条幅BC 的长,(小明的身高不计,结果精准到米)如图,已知△ABC 是等腰直角三角形,∠ACB =90°,过BC 的中点D 作DE ⊥AB 于E ,连结 CE ,求sin ∠ACE 的值.8. 如图,点A 是一个半径为 300米的圆形丛林公园的中心,在丛林公园邻近有 B 、C 两个乡村,现要在B、C两乡村之间修一条长为1000米的笔挺公路将两村连通,经测得∠o oABC=45,∠ACB=30,问此公路能否会穿过该丛林公园请经过计算进行说明。
§6.4 锐角三角函数
一、选择题
1.(2015·杭州模拟(36),3,3分)如图,P 是∠α的边OA 上一点,点P 的坐标为(12,5),则tan α等于( ) A.5
13 B.12
13 C.5
12 D.125
解析 过P 作PE ⊥x 轴于E ,
∵P (12,5), ∴PE =5,OE =12, ∴tan α=PE OE =5
12. 答案 C
2.(2013·浙江宁波宁海第二次月考,2,3分)在△ABC 中,若cos A =2
2,tan B =3,则这个三角形一定是
( )
A .锐角三角形
B .直角三角形
C .钝角三角形
D .等腰三角形
解析 ∵cos A =2
2,tan B =3,∴∠A =45°,∠B =60°.∴∠C =180°-45°-60°=75°,∴这个三角形是锐角三角形,故选A. 答案 A
3.(2015·浙江温州模拟(三),8,4分)正方形网格中,∠AOB 如图放置,则cos ∠AOB 的值为 ( ) A.12
B.22
C.32
D.33
解析 如图,C 为OB 边上的格点,连结AC .根据勾
股定理,AO =22+42=25,AC =12+32=10,OC =12+32=10,所以AO 2=AC 2+OC 2,所以△AOC 是直角三角形,cos ∠AOB =OC AO =1025=2
2.
答案 B
4.(2013·浙江湖州中考模拟九,10,3分)四个全等的直
角三角形围成一个大正方形,中间空出的部分是一个小正方形,这样就组成了一个“赵爽弦图”(如图).如果小正方形面积为4,大正方形面积为74,直角三角形中较小的锐角为θ,那么tan θ的值是 ( ) A.27
B.57
C.7437
D. 57474
解析 由正方形的性质可知4个直角三角形全等,设较长直角边为a ,较短直角边为b ,则a 2+b 2=74,(a -b )2=4,解得a =7,b =5.∴tan θ=b a =57.故选B. 答案 B
5.(2013·浙江杭州中考一模,6,3分)如图,已知一商场自动扶梯的长l 为13米,高度h 为5米,自动扶梯与地面所成的夹角为θ,则tan θ的值等于 ( )
A.512
B.125
C.513
D.1213
解析 由勾股定理得,下水平线长l 2-h 2=132-52=12,根据三角函数定义,得tan θ=5
12. 答案 A
6.(2015·浙江模拟,4,3分)河堤横断面如图所示,堤高BC =5米,迎水坡AB 的坡比是1∶3(坡比是坡面的铅直高度BC 与水平宽度AC 之比),则AC 的长是( ) A .53米
B .10米
C .15米
D .103米
解析 Rt △ABC 中,BC =5米,tan A =1∶3; ∴AC =BC ÷tan A =53(米). 答案 A 二、填空题
7.(2015·浙江湖州市模拟(17),13,4分)某人沿着有一定坡度的坡面前进了10米,此时他与水平地面的垂直距离为25米,则这个坡面的坡度比为________.
解析 ∵某人沿着有一定坡度的坡面前进了10米.此时他与水平地面的垂直距离为25米,
根据勾股定理可以求出他前进的水平距离为45米. 所以这个坡面的坡度比为25∶45=1∶2. 答案 1∶2
8.(2014·浙江杭州江干一模,12,4分)如图,铁管CD 固定
在墙角,BC =5米,∠BCD =55°,则顶端D 的高度为________米.
解析 ∵tan ∠BCD =BD BC , ∴BD =BC tan 55°=5tan 55°(米). 答案 5tan 55°
9.(2012·浙江温州初中毕业一模,15,3分)如图,在Rt △ABC
中,∠C =90°,AM 是BC 边上的中线,sin ∠CAM =35,
则tan B 的值为________.
解析 设CM =3x ,利用sin ∠CAM =CM
AM 得,MA =5x ,再用勾股定理求AC =4x .因为M 是BC 中点,所以BC =6x .所以tan B =AC BC =4x 6x =2
3.
答案2 3
10.(2014·浙江杭州朝晖中学三模,15,4分)在Rt△ABC中,∠C=90°,有两边长分别为3和4,则sin A的值为______________.
解析(1)当4为直角边,则斜边为32+42=5.①当∠A的对边为3时,sin A
=3
5;②当∠A的对边为4时,sin A=
4
5.(2)当4为斜边,则另一条直角边为
42-32=7.①当∠A的对边为3时,sin A=3
4;②当∠A的对边为7时,sin
A=
7 4.
答案3
5或
4
5或
3
4或
7
4
三、解答题
11.(2015·金华模拟,19,6分)2014年3月,某海域
发生航班失联事件,我海事救援部门用高频海洋
探测仪进行海上搜救,分别在A、B两个探测点探
测到C处是信号发射点,已知A、B两点相距400
m,探测线与海平面的夹角分别是30°和60°,若CD的长是点C到海平面的最短距离.
(1)问BD与AB有什么数量关系,试说明理由;
(2)求信号发射点的深度.(结果精确到1 m,参考数据:2≈1.414,3≈1.732)
解(1)由图形可得∠BCA=30°,
∴CB=BA=400米,
∴在Rt△CDB中又含30°角,
得DB=1
2CB=200米,
可知,BD=1
2AB,
(2)由勾股定理可得DC=CB2-BD2=4002-2002.
=2003≈200×1.732≈346(米).
∴点C 的垂直深度CD 是346米.
12.(2014·浙江台州温岭四中一模,22,12分)通过三角函数的学习,我们知道在直角三角形中,一个锐角的大小与两条边长的比值相互唯一确定,因此边长之比与角的大小之间可以互相转化.类似的,可以在等腰三角形中建立边角之间的联系,我们定义:等腰三角形中底边与腰的比叫做顶角正对(sad),如图1,在△ABC 中,AB =AC ,顶角A 的正对记作sad A ,这时sad A =BC AB .容易知道一个角的大小与这个角的正对值也是相互唯一确定的.根据上述角的正对定义,解下列问题:
(1)sad 60°=________.
(2)对于0°<A <180°,∠A 的正对值sad A 的取值范围是________. (3)如图2,已知sin A =3
5,其中∠A 为锐角,试求sad A 的值.
解 (1)1; (2)0<sad A <2;
(3)设AB =5a ,BC =3a ,则AC =4a
如图,在AC 延长线上取点D ,使AD =AB =5a ,连结BD ,则CD =a .
BD =CD 2+BC 2=a 2+(3a )2=10a . ∴sad A =BD AD =10
5.。