力的合成和分解答题技巧
- 格式:doc
- 大小:1.75 MB
- 文档页数:24
必修一 3.5 力的分解(教案)一、教材分析本节课是必修一的重点,是对平行四边形定则的具体应用,是研究力的平衡的基础,也是学习牛顿运动定律的基础。
本节课的内容包括,力的分解、矢量、标量等概念,以及矢量相加的法则。
本节课有两个关键点,一是力的分解遵循平行四边形定则,二是一个已知力究竟分解到哪两个方向上去,要根据实际情况,由力的效果来决定。
二、教学目标(一)知识与技能1、知道什么是分力及力的分解的含义。
2、理解力的分解的方法,会用三角形知识求分力。
(二)过程与方法1、培养运用数学工具解决物理问题的能力。
2、培养用物理语言分析问题的能力。
(三)情感、态度与价值观通过分析日常现象,培养学生探究周围事物的习惯。
三、重点难点力的分解四、学情分析下作用,这个力有两个效果:沿两弹簧伸长的方向分别对弹簧Ⅰ和Ⅱ施加拉力F1和F2,且F1和F2分别使它们产生拉伸形变,可见力F可以用两个力F1和F2代替.几个力共同产生的效果跟原来一个力产生的效果相同,这几个力就叫做原来那个力的分力.求一个已知力的分力叫做力的分解.(三)合作探究、精讲点拨如何分解?力的分解是力的合成的逆运算,同样遵守平行四边形定则.把一个力(合力)F作为平行四边形的对角线,然后依据力的效果画出两个分力的方向,进而作出平行四边形,就可得到两个分力F1和F2.只有大小,没有方向,求和时按照算术法则相加的物理量叫做标量.力、速度是矢量;长度、质量、时间、温度、能量、电流强度等物理量是标量.(四)反思总结、当堂检测(参考导学案)力的分解--平行四边形定则—力的作用效果(五)发导学案、布置预习(六)作业:课本P66 1、2、3九、板书设计一、概念:力的分解二、怎样分解一个力1、无数对2、唯一性的条件结论:一个已知力究竟分解到哪两个方向上去,要根据实际情况,由力的效果来决定。
例1、例2、三、矢量相加的法则十、教学反思1、学生对将一个力按照作用效果分解,理解接受较好,困难是怎样确定力的作用效果,老师应该在这个方面下点功夫。
F1F2 FOF1F2FO力的合成和分解解题技巧一.知识清单:1.力的合成1力的合成的本质就在于保证作用效果相同的前提下,用一个力的作用代替几个力的作用,这个力就是那几个力的“等效力”合力;力的平行四边形定则是运用“等效”观点,通过实验总结出来的共点力的合成法则,它给出了寻求这种“等效代换”所遵循的规律;2平行四边形定则可简化成三角形定则;由三角形定则还可以得到一个有用的推论:如果n个力首尾相接组成一个封闭多边形,则这n个力的合力为零;3共点的两个力合力的大小范围是|F1-F2| ≤F合≤F1+F 24共点的三个力合力的最大值为三个力的大小之和,最小值可能为零;2.力的分解1力的分解遵循平行四边形法则,力的分解相当于已知对角线求邻边;2两个力的合力惟一确定,一个力的两个分力在无附加条件时,从理论上讲可分解为无数组分力,但在具体问题中,应根据力实际产生的效果来分解;3几种有条件的力的分解①已知两个分力的方向,求两个分力的大小时,有唯一解;②已知一个分力的大小和方向,求另一个分力的大小和方向时,有唯一解;③已知两个分力的大小,求两个分力的方向时,其分解不惟一;④已知一个分力的大小和另一个分力的方向,求这个分力的方向和另一个分力的大小时,其分解方法可能惟一,也可能不惟一;4用力的矢量三角形定则分析力最小值的规律:①当已知合力F的大小、方向及一个分力F1的方向时,另一个分力F2取最小值的条件是两分力垂直;如图所示,F2的最小值为:F2min=F sinα②当已知合力F的方向及一个分力F1的大小、方向时,另一个分力F2取最小值的条件是:所求分力F 2与合力F 垂直,如图所示,F 2的最小值为:F 2min =F 1sin α③当已知合力F 的大小及一个分力F 1的大小时,另一个分力F 2取最小值的条件是:已知大小的分力F 1与合力F 同方向,F 2的最小值为|F -F 1|5正交分解法:把一个力分解成两个互相垂直的分力,这种分解方法称为正交分解法; 用正交分解法求合力的步骤:①首先建立平面直角坐标系,并确定正方向②把各个力向x 轴、y 轴上投影,但应注意的是:与确定的正方向相同的力为正,与确定的正方向相反的为负,这样,就用正、负号表示了被正交分解的力的分力的方向③求在x 轴上的各分力的代数和F x 合和在y 轴上的各分力的代数和F y 合 ④求合力的大小 22)()(合合y x F F F +=合力的方向:tan α=合合x y F F α为合力F 与x 轴的夹角3. 物体的平衡1平衡状态:静止:物体的速度和加速度都等于零; 匀速运动:物体的加速度为零,速度不为零且保持不变; 2共点力作用下物体的平衡条件:合外力为零即F 合=0;3平衡条件的推论:当物体平衡时,其中某个力必定与余下的其它的力的合力等值反向;二. 解题方法:1、共点力的合成⑴同一直线上的两个力的合成 ①方向相同的两个力的合成②方向相反的两个力的合成⑵同一直线上的多个力的合成通过规正方向的办法;与正方向同向的力取正值,与正方向相反的力取负值,然后将所有分力求和,结果为正表示合力与正方向相同,结果为负表示合力方向与正方向相反; ⑶互成角度的两个力的合成F 1F 2F 合= F 2- F 1 方向与F 2相同F 1F 2F 合=F 1+F 2方向与F 1或F 2相同⑷当两个分力F1、F2互相垂直时,合力的大小2221F F F +=合⑸两个大小一定的共点力,当它们方向相同时,合力最大,合力的最大值等于两分力之和;当它们的方向相反时,它们的合力最小,合力的最小值等于两分之差的绝对值;即2121F F F F F +≤≤-合⑹多个共点力的合成①依次合成:F1和F2合成为F12,再用F12与F3合成为F123,再用F123与F4合成,…… ②两两合成:F1和F2合成为F12,F3和F4合成为F34,……,再用F12和F34合成为F1234,…… ③将所有分力依次首尾相连,则由第一个分力的箭尾指向最后一个分力箭头的有向线段就是所有分力的合力;⑺同一平面内互成120°角的共点力的合成①同一平面内互成120°角的二个大小相等的共点力的合力的大小等于分力的大小,合力的方向沿两分夹角的角平分线 2、有条件地分解一个力:⑴已知合力和两个分力的方向,求两个分力的大小时,有唯一解;⑵已知合力和一个分力的大小、方向,求另一个分力的大小和方向时,有唯一解;⑶已知合力和两个分力的大小,求两个分力的方向时,其分解不惟一; 3、用力的矢量三角形定则分析力最小值的规律:⑴当已知合力F 的大小、方向及一个分力F1的方向时,另一个分力F2取最小值的条件是两分力垂直;如图所示,F2的最小值为:F2min=F sin α⑵当已知合力F 的方向及一个分力F1的大小、方向时,另一个分力F2取最小值的条件是:所求分力F2与合力F 垂直,如图所示,F2的最小值为:F2min=F1sin αFF 1F 2FF 1F 1F 2遵循平行四边形定则:以两个分力为邻边的平行四边形所夹对角线表示这两个分力的合力;⑶当已知合力F 的大小及一个分力F1的大小时,另一个分力F2取最小值的条件是:已知大小的分力F1与合力F 同方向,F2的最小值为|F -F1|有两种可能性;⑷已知合力、一个分力的大小和另一个分力的方向,求这个分力的方向和另一个分力的大小时,其分解方法可能惟一,也可能不惟一;有四种可能性;4、用正交分解法求合力的步骤:⑴首先建立平面直角坐标系,并确定正方向⑵把不在坐标轴上的各个力向x 轴、y 轴上投影,但应注意的是:与确定的正方向相同的力为正,与确定的正方向相反的为负,这样,就用正、负号表示了被正交分解的力的分力的方向⑶求在x 轴上的各分力的代数和F x 合和在y 轴上的各分力的代数和F y 合⑷求合力的大小 22)()(合合y x F F F +=合力的方向:tan α=合合x y F F α为合力F 与x 轴的夹角5、受力分析的基本方法:1、明确研究对象:在进行受力分析时,研究对象可以是某一个物体,也可以是保持相对静止的若干个物体整体;在解决比较复杂的问题时,灵活的选取研究对象可以使问题简洁地得到解决;研究对象确定以后,只分析研究对象以外的物体施于研究对象的力即研究对象所受的外力,而不分析研究对象施于外界的力;2、隔离研究对象,按顺序找力;把研究对象从实际情景中分离出来,按先已知力,再重力,再弹力,然后摩擦力只有在有弹力的接触面之间才可能有摩擦力,最后其它力的顺序逐一分析研究对象所受的力,并画出各力的示意图;3、只画性质力,不画效果力画受力图时,只按力的性质分类画力,不能按作用效果画力,否则将重复出现; 受力分析的几点注意⑴牢记力不能脱离物体而存在,每一个力都有一个明确的施力者,如指不出施力者,意味着这FF 1F 2FF 1F 2个力不存在;⑵区分力的性质和力的命名,通常受力分析是根据力的性质确定研究对象所受到的力,不能根据力的性质指出某个力后又从力的命名重复这个力⑶结合物理规律的应用;受力分析不能独立地进行,在许多情况下要根据研究对象的运动状态,结合相应的物理规律,才能作出最后的判断;三. 经典例题例1. 用轻绳AC 与BC 吊起一重物,绳与竖直方向夹角分别为30°和60°,如图所示;已知AC 绳所能承受的最大拉力为150N,BC 绳所能承受的最大拉力为100N,求能吊起的物体最大重力是多少解析:对C 点受力分析如图:可知T A :T B :G =2:1:3设AC 达到最大拉力T A =150N, 则此时T B =N N N T A 1006.863503<==∴AC 绳子先断,则此时: G =说明:本题主要考查力的平衡知识,利用力的合成法即三角形法解决;例2. 如图所示,轻绳AO 、BO 结于O 点,系住一个质量为m 的物体,AO 与竖直方向成α角,BO 与竖直方向成β角,开始时α+β<90°;现保持O 点位置不变,缓慢地移动B 端使绳BO 与竖直方向的夹角β逐渐增大,直到BO 成水平方向,试讨论这一过程中绳AO 及BO 上的拉力大小各如何变化用解析法和作图法两种方法求解解析:以O 点为研究对象,O 点受三个力:T 1、T 2和mg,如下图所示,由于缓慢移动,可认为每一瞬间都是平衡状态;1解析法x 方向:T 2sin β-T 1sin α=0,1y 方向:T 1cos α+T 2cos β-mg =0;2 由式1得T T 12=sin sin βα· 3 式3代入式2,有sin cos sin cos βααβT T mg 220+-=,化简得T 2=)sin(sin βαα+mg 4讨论:由于α角不变,从式4看出:当α+β<90°时,随β的增大,则T 2变小; 当α+β=90°时,T 2达到最小值mgsin α; 当α+β>90°时,随β的增大,T 2变大; 式4代入式3,化简得 T 1=αβαβαβαββαααβcos sin sin cos cos sin sin )sin(sin ·sin sin +=+=+ctg mgmg mg ; 由于α不变,当β增大时,T 1一直在增大; 2作图法由平行四边形法则推广到三角形法则,由于O 点始终处于平衡状态,T 1、T 2、mg 三个力必构成封闭三角形,如图a 所示,即T 1、T 2的合力必与重力的方向相反,大小相等;由图b看出,mg大小、方向不变;T1的方向不变;T2的方向和大小都改变;开始时,α+β<90°,逐渐增大β角,T2逐渐减小,当T2垂直于T1时,即α+β<90°时,T2最小为mgsin α;然后随着β的增大,T2也随之增大,但T1一直在增大;说明:力的平衡动态问题一般有两种解法,利用平衡方程解出力的计算公式或作图研究,但需要指出的是作图法一般仅限于三力平衡的问题;例3. 光滑半球面上的小球可是为质点被一通过定滑轮的力F由底端缓慢拉到顶端的过程中如图所示,试分析绳的拉力F及半球面对小球的支持力F N的变化情况;解析:如图所示,作出小球的受力示意图,注意弹力F N总与球面垂直,从图中可得到相似三角形;设球面半径为R,定滑轮到球面的距离为h,绳长为L,据三角形相似得:F Lmgh RFRmgh RN=+=+由上两式得:绳中张力:F mgL h R=+小球的支持力:又因为拉动过程中,h不变,R不变,L变小,所以F变小,F N不变;说明:如果在对力利用平行四边形定则或三角形法则运算的过程中,力三角形与几何三角形相似,则可根据相似三角形对应边成比例等性质求解;例4. 如图所示,一个半球形的碗放在桌面上,碗口水平,O 点为其球心,碗的内表面及碗口是光滑的;一根细线跨在碗口上,线的两端分别系有质量为m 1和m 2的小球,当它们处于平移状态时,质量为m 1的小球与O 点的连线与水平线的夹角为α=60°;两小球的质量比m m 21为A B C D ....33233222解析:对m 2而言T m g m g m g ==2213N T =23033121T m gm m ·°cos ==∴选A说明:注意研究对象的选取,利用m 2的平衡得到拉力与m 2重力的关系,利用m 1的三力平衡得到m 1重力与拉力的关系,绳拉m 1、 m 2的作用力相等时联系点;例5. 如图所示,A 、B 是系在绝缘细线两端,带有等量同种电荷的小球,其中1.0=A m kg,细线总长为20cm,现将绝缘细线通过O 点的光滑定滑轮,将两球悬挂起来,两球平衡时,OA 的线长等于OB 的线长,A 球依靠在光滑绝缘竖直墙上,B 球悬线OB 偏离竖直方向60,求:1B球的质量2墙所受A球的压力解析:对A受力分析如图,由平衡得T-m A g-Fsin30°=0 ①Fcos30°-N=0 ②对B受力分析如图所示,由平衡得FT=③2Fsin30°=m B g④由①②③④⑤得2.0=Bm kg ⑤732.1=N N ⑥根据牛顿第三定律可知,墙受到A球的压力为; ⑦说明:注意A、B两的联系点,绳的拉力大小相同,库仑力大小相同,方向相反;四.达标测试1. 物体受到三个共点力的作用,以下分别是这三个力的大小,不可能使该物体保持平衡状态的是A. 3N,4N,6NB. 1N,2N,4NC. 2N,4N,6ND. 5N,5N,2N2. 如图所示,在倾角为α的斜面上,放一个质量为m的小球,小球被竖直的木板挡住,不计摩擦,则小球对挡板的压力大小是A. mg cosαB. mg tanαC.mgcosαD. mg3. 上题中若将木板AB绕下端点B点缓慢转动至水平位置,木板对球的弹力将A. 逐渐减小B. 逐渐增大C. 先增大,后减小D. 先减小,后增大4. 如图所示,物体静止于光滑水平面M上,力F作用于物体O点,现要使物体沿着OO'方向做匀加速运动F和OO'都在M平面内,那么必须同时再加一个力F1,这个力的最小值为A. F tanθB. F cosθC. FsinθD.F sin5. 水平横梁的一端A插在墙壁内,另一端装有一小滑轮B;一轻绳的一端C固定于墙壁上,另一端跨过滑轮后悬挂一质量m=10kg的重物,∠CBA=30°,如图所示,则滑轮受到绳子的作用力为g取10m/s2A. 50NB. 503NC. 100ND. 1003N6、2005 东城二模如图所示,斜面体放在墙角附近,一个光滑的小球置于竖直墙和斜面之间,若在小球上施加一个竖直向下的力F,小球处于静止;如果稍增大竖直向下的力F,而小球和斜面体都保持静止,关于斜面体对水平地面的压力和静摩擦力的大小的下列说法:①压力随力F 增大而增大;②压力保持不变;③静摩擦力随F增大而增大;④静摩擦力保持不变;其中正确的是:A. 只有①③正确B. 只有①④正确C. 只有②③正确D. 只有②④正确7. 下面四个图象依次分别表示A、B、C、D四个物体的加速度、速度、位移和滑动摩擦力随时间变化的规律;其中可能处于受力平衡状态的物体是8. 如图所示,质量为m、横截面为直角三角形的物块ABC,∠ABC=α,AB边靠在竖直墙面上,F是垂直于斜面BC的推力,现物块静止不动,则摩擦力的大小为__________;9. 如图所示,已知G A=100N,A、B都处于静止状态,若A与桌面间的最大静摩擦力为30N,在保持系统平衡的情况下,B的最大质量为;10. 如图,人重500N,站在重为300N的木板上,若绳子和滑轮的质量不计,摩擦不计,整个系统匀速上升时,则人对绳子的拉力为N,人对木板的压力为N;11. 如图所示,人重300N,物体重200N,地面粗糙,无水平方向滑动,当人用100N的力向下拉绳子时,求人对地面的弹力和地面对物体的弹力五.综合测试1. 两个共点力的夹角θ与其合力F之间的关系如图所示,则两力的大小是A. 1N和4NB. 2N和3NC. 和D. 6N和1N2. 设有五个力同时作用在质点P,它们的大小和方向相当于正六边形的两条边和三条对角线,如图所示;这五个力中的最小力的大小为F,则这五个力的合力等于A. 3FB. 4FC. 5FD. 6F3. 如图所示,一个物体A静止于斜面上,现用一竖直向下的外力压物体A,下列说法正确的是A. 物体A所受的摩擦力可能减小B. 物体A对斜面的压力可能保持不变C. 不管F怎样增大,物体A总保持静止D. 当F增大到某一值时,物体可能沿斜面下滑4. 一物体m放在粗糙的斜面上保持静止,先用水平力F推m,如图,当F由零逐渐增加但物体m仍保持静止状态的情况下,则①物体m所受的静摩擦力逐渐减小到零②物体m所受的弹力逐渐增加③物体m所受的合力逐渐增加④物体m所受的合力不变A. ①③B. ③④C. ①④D.②④5. 如图所示,质量为M的木楔ABC静置于粗糙水平地面上;在木楔的斜面上,有一质量为m 的物块沿斜面向上做匀减速运动,设在此过程中木楔没有动,①地面对木楔的摩擦力为零②地面对木楔的静摩擦力水平向左③地面对木楔的静摩擦力水平向右④地面对木楔的支持力等于M+mg⑤地面对木楔支持力大于M+mg ⑥地面对木楔的支持力小于M+mg则以上判断正确的是A. ①④B. ②⑥C. ②⑤D. ③⑤6. 水平横梁一端A插在墙壁内,另一端装有一小滑轮B;一轻绳的一端C固定于墙壁上,另一端跨过滑轮后悬挂一重物,如图所示,若将C点缓慢向上移动,则滑轮受到绳子作用力的大小和方向变化情况是A. 作用力逐渐变大,方向缓慢沿顺时针转动B. 作用力逐渐变小,方向缓慢沿顺时针转动C. 作用力逐渐变大,方向缓慢沿逆时针转动D. 作用力大小方向都不变7. 如图所示,A、B是两根竖直立在地上的木桩,轻绳系在两木桩不等高的P、Q两点,C为光滑的质量不计的滑轮,当Q点的位置变化时,轻绳的张力的大小变化情况是A. Q 点上下移动时,张力不变B. Q 点上下移动时,张力变大C. Q 点上下移动时,张力变小D. 条件不足,无法判断8. 2005 海淀二模如图所示,用绝缘细绳悬吊一质量为m 、电荷量为q 的小球,在空间施加一匀强电场,使小球保持静止时细线与竖直方向成θ角,则电场强度的最小值为A.mg qsin θB.mg qcos θC.mg qtan θD.mg qcot θ9. 跳伞运动员和伞正匀速下落,已知运动员体重1G ,伞的重量2G ,降落伞为圆顶形;8根相同的拉线均匀分布于伞边缘,每根拉线均与竖直方向成30°夹角,则每根拉线上的拉力为A.1123G B. 12)(321G G + C.821G G + D. 41G10. 2005 天津如图所示,表面粗糙的固定斜面顶端安有滑轮,两物块P 、Q 用轻绳连接并跨过滑轮不计滑轮的质量和摩擦,P 悬于空中,Q 放在斜面上,均处于静止状态;当用水平向左的恒力推Q 时,P 、Q 仍静止不动,则A. Q 受到的摩擦力一定变小B. Q 受到的摩擦力一定变大C. 轻绳上拉力一定变小D. 轻绳上拉力一定不变 11. 2006 全国卷二如图,位于水平桌面上的物块P,由跨过定滑轮的轻绳与物块Q 相连,从滑轮到P 和到Q 的两段绳都是水平的;已知Q 与P 之间以及P 与桌面之间的动摩擦因数都是μ,两物块的质量都是m,滑轮的质量、滑轮轴上的摩擦都不计,若用一水平向右的力F 拉P 使它做匀速运动,则F 的大小为A. 4μmgB. 3μmgC. 2μmgD.μmg12. 一个质量为m,顶角为α的直角斜劈和一个质量为M的木块夹在两竖直墙壁之间,不计一切摩擦,则M对地的压力为________,左面墙壁对M的压力为_______;13. 如图所示,斜面倾角为α,其上放一质量为M的木板A,A上再放一质量为m的木块B,木块B用平行于斜面的细绳系住后,将细绳的另一端栓在固定杆O上;已知M=2m;此情况下,A板恰好能匀速向下滑动,若斜面与A以及A与B间的动摩擦因数相同,试求动摩擦因数的大小达标测试答案1. B提示:三力大小如符合三角形三边的关系即可; 2. B提示:利用三力平衡知识求解; 3. D提示:力三角形图解法; 4. C提示: 利用三角形求最小值; 5. C提示:如图受力分析,可知拉力T =G ,根据平行四边形法则,所以两力的合力为100N;6. A提示:整体法求出支持力大小为F g M m ++)(,静摩擦力大小为墙对小球的弹力大小,隔离小球求出弹力大小αtg F mg )(+;7. CD提示:平衡状态加速度为零,滑动摩擦力可能与其它外力平衡; 8. Fsin α+mg提示: 物体静止不动,研究竖直方向受力:有重力,向上墙的静摩擦力,F 在竖直方向的分力F sinα,向下,所以得到f =Fsin α+mg; 9. 3kg提示:利用水平绳的拉力大小为30 N 求出; 10. 200,300提示:整体法4F =800,求出绳子对人的拉力F =200N,隔离人N +F =500; 11. 200N提示:对人而言mg F N =+1,对物体Mg F N =︒+60sin 2;综合测试答案1. B提示:N F F N F F 1,52121=-=+;2. D提示:正中央力为2F,其余四力合成大小为中央对角线的两倍,力大小4F 3. C提示:物体A 能静止于斜面上,是由于重力的下滑分力小于最大静摩擦,即mgsinθ<μmgcosθ,得μ>tgθ,此为放在斜面上的物体能否静止的条件;现增加竖直向下的F 力,相当于物重增大,则物体仍保持静止,但弹力和静摩擦力都会增大; 4. D提示:物体四力平衡,需正交分解列平衡方程,注意静摩擦力减小到零后会反向; 5. B提示:物块沿斜面向上做匀减速直线运动,加速度沿斜面向下,将加速度分解为向左的水平分量和向下的竖直分量;∴木楔对物块的作用力即支持力和摩擦力的合力在水平方向的分量向左,竖直方向的分量向上,但比自身重力要小;根据牛顿第三定律:物块对木楔的反作用力在水平方向的分量向右——为平衡,所以地面对木楔产生向左的静摩擦力;物块对木楔的反作用力在竖直方向分量向下,但小于mg,∴地面对木楔的支持力g m M N )(+<;6. B提示:抓住绳的拉力大小不变,夹角变大,作图得到; 7. A提示:Q 点移动时,绳与竖直方向的夹角不变; 8. A提示:电场力与绳垂直向上时,电场强度最小; 9. A提示:8Tcos30°=1G 解得:1123G T =; 10. D提示:静摩擦力可能沿斜面向上或向下; 11. A提示:F mg mg T mg T =++=2,μμμ; 12. M +mg 、 mgctgα提示:整体求出g m M N )(+=,左边墙的压力大小等于右边墙对斜劈的压力大小,隔离斜劈得到右边墙对斜劈的压力大小αmgctg N =1; 13. αμtg 21=提示:由αμαμαμαtg 21,cos cos )3(sin 2=+=解得mg g m mg。
最详细的高中物理知识点归纳学好物理重在理解........(概念、规律的确切含义,能用不同的形式进行表达,理解其适用条件)A(成功)=X(艰苦的劳动)十Y(正确的方法)十Z(少说空话多干实事)(最基础的概念,公式,定理,定律最重要);每一题中要弄清楚(对象、条件、状态、过程)是解题关健物理学习的核心在于思维,只要同学们在平常的复习和做题时注意思考、注意总结、善于归纳整理,对于课堂上老师所讲的例题做到触类旁通,举一反三,把老师的知识和解题能力变成自己的知识和解题能力,并养成规范答题的习惯,这样,同学们一定就能笑傲考场,考出理想的成绩!对联: 概念、公式、定理、定律。
(学习物理必备基础知识)对象、条件、状态、过程。
(解答物理题必须明确的内容)力学问题中的“过程”、“状态”的分析和建立及应用物理模型在物理学习中是至关重要的。
说明:凡矢量式中用“+”号都为合成符号,把矢量运算转化为代数运算的前提是先规定正方向。
答题技巧:“基础题,全做对;一般题,一分不浪费;尽力冲击较难题,即使做错不后悔”。
“容易题不丢分,难题不得零分。
“该得的分一分不丢,难得的分每分必争”,“会做⇒做对⇒不扣分”在学习物理概念和规律时不能只记结论,还须弄清其中的道理,知道物理概念和规律的由来。
受力分析入手(即力的大小、方向、力的性质与特征,力的变化及做功情况等)。
再分析运动过程(即运动状态及形式,动量变化及能量变化等)。
最后分析做功过程及能量的转化过程;然后选择适当的力学基本规律进行定性或定量的讨论。
强调:用能量的观点、整体的方法(对象整体,过程整体)、等效的方法(如等效重力)等解决 Ⅱ运动分类:(各种运动产生的力学和运动学条件及运动规律.............)是高中物理的重点、难点 高考中常出现多种运动形式的组合 追及(直线和圆)和碰撞、平抛、竖直上抛、匀速圆周运动等 ①匀速直线运动 F 合=0 a=0 V 0≠0 ②匀变速直线运动:初速为零或初速不为零,③匀变速直、曲线运动(决于F 合与V 0的方向关系) 但 F 合= 恒力④只受重力作用下的几种运动:自由落体,竖直下抛,竖直上抛,平抛,斜抛等⑤圆周运动:竖直平面内的圆周运动(最低点和最高点);匀速圆周运动(关键搞清楚是什么力提供作向心力) ⑥简谐运动;单摆运动; ⑦波动及共振;⑧分子热运动;(与宏观的机械运动区别) ⑨类平抛运动;⑩带电粒在电场力作用下的运动情况;带电粒子在f 洛作用下的匀速圆周运动Ⅲ。
A B高考物理重要知识点总结学好物理要记住:最基本的知识、方法才是最重要的。
秘诀:“想” 学好物理重在理解........(概念、规律的确切含义,能用不同的形式进行表达,理解其适用条件) A(成功)=X(艰苦的劳动)十Y(正确的方法)十Z(少说空话多干实事)(最基础的概念,公式,定理,定律最重要);每一题中要弄清楚(对象、条件、状态、过程)是解题关健物理学习的核心在于思维,只要同学们在平常的复习和做题时注意思考、注意总结、善于归纳整理,对于课堂上老师所讲的例题做到触类旁通,举一反三,把老师的知识和解题能力变成自己的知识和解题能力,并养成规范答题的习惯,这样,同学们一定就能笑傲考场,考出理想的成绩!对联: 概念、公式、定理、定律。
(学习物理必备基础知识) 对象、条件、状态、过程。
(解答物理题必须明确的内容)力学问题中的“过程”、“状态”的分析和建立及应用物理模型在物理学习中是至关重要的。
说明:凡矢量式中用“+”号都为合成符号,把矢量运算转化为代数运算的前提是先规定正方向。
答题技巧:“基础题,全做对;一般题,一分不浪费;尽力冲击较难题,即使做错不后悔”。
“容易题不丢分,难题不得零分。
“该得的分一分不丢,难得的分每分必争”,“会做⇒做对⇒不扣分”在学习物理概念和规律时不能只记结论,还须弄清其中的道理,知道物理概念和规律的由来。
力的种类:(13个力) 有18条定律、2条定理1重力: G = mg (g 随高度、纬度、不同星球上不同) 2弹力:F= Kx 3滑动摩擦力:F 滑= μN4静摩擦力: O ≤ f 静≤ f m (由运动趋势和平衡方程去判断)5浮力: F 浮= ρgV 排 6压力: F= PS = ρghs 7万有引力: F 引=G221r m m8库仑力: F=K221r q q (真空中、点电荷)9电场力: F 电=q E =qdu 10安培力:磁场对电流的作用力F= BIL (B ⊥I) 方向:左手定则11洛仑兹力:磁场对运动电荷的作用力f=BqV (B ⊥V) 方向:左手定则12分子力:分子间的引力和斥力同时存在,都随距离的增大而减小,随距离的减小而增大,但斥力变化得快.。
高中物理力学解题技巧与复习注意事项(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作报告、致辞讲话、条据书信、合同范本、规章制度、应急预案、心得体会、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as work reports, speeches, policy letters, contract templates, rules and regulations, emergency plans, insights, teaching materials, essay encyclopedias, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!高中物理力学解题技巧与复习注意事项高中物理力学解题技巧与复习注意事项高中物理最难的部分就是力学,力学是物理的基础,物理中所学的很多知识都与力学有关,那么高中生如何学好高中物理最难的力学呢?学力学有什么好的方法和技巧呢?接下来本店铺为大家整理了高三物理学习内容,一起来看看吧!高中物理力学解题技巧1高中物理审题的技巧高中物理审题是最基础的。
力的合成和分解教案一、教学目标1. 让学生理解力的合成和分解的概念。
2. 让学生掌握力的合成和分解的方法和技巧。
3. 培养学生解决实际问题的能力。
二、教学内容1. 力的合成概念及合成方法。
2. 力的分解概念及分解方法。
3. 力的合成和分解在实际问题中的应用。
三、教学重点与难点1. 教学重点:力的合成和分解的概念、方法和应用。
2. 教学难点:力的合成和分解的计算方法和技巧。
四、教学方法1. 采用问题驱动的教学方法,引导学生主动探究力的合成和分解的方法。
2. 通过实例分析,使学生理解力的合成和分解在实际问题中的应用。
3. 利用多媒体课件,直观展示力的合成和分解的过程。
五、教学准备1. 多媒体课件。
2. 力的合成和分解的实例。
3. 练习题。
力的合成和分解教案第一课时一、导入引导学生回顾力的相关知识,为新课的学习做好铺垫。
二、新课讲解1. 讲解力的合成概念,引导学生理解力的合成是将两个或多个力作用于同一个物体上的效果。
2. 讲解力的合成方法,如平行四边形法则、三角形法则等。
3. 讲解力的分解概念,引导学生理解力的分解是将一个力分解为两个或多个力的效果。
4. 讲解力的分解方法,如平行四边形法则、三角形法则等。
三、实例分析1. 分析实例,让学生理解力的合成和分解在实际问题中的应用。
2. 引导学生运用所学知识解决实际问题。
四、课堂练习布置练习题,让学生巩固所学知识。
五、总结总结本节课的主要内容,强调力的合成和分解的概念、方法和应用。
六、作业布置布置课后作业,巩固所学知识。
后续课时按照类似格式进行编写。
六、教学过程1. 复习导入:通过提问方式复习力的基本概念,为学习力的合成和分解做准备。
2. 讲解力的合成:介绍力的合成概念,讲解合成方法,如平行四边形法则和三角形法则,并通过图示和实例进行说明。
3. 讲解力的分解:介绍力的分解概念,讲解分解方法,如平行四边形法则和三角形法则,并通过图示和实例进行说明。
4. 实例分析:分析实际问题中的力的合成和分解,让学生运用所学知识解决实际问题。
实验:探究两个互成角度的力的合成规律目标体系构建明确目标·梳理脉络【学习目标】1.会通过实验探究互成角度的两个力合成所遵从的规律。
2.进一步练习作图法求两个共点力的合力。
【思维脉络】课前预习反馈教材梳理·落实新知1.实验原理(1)合力F′的确定:把一端固定的同一根橡皮条拉伸到某点,一次只用一个力F′的作用,另一次用两个共点力F1与F2的共同作用,则F′为F1和F2的合力。
(2)合力理论值F的确定:作出F1和F2的图示,根据平行四边形定则利用作图法求得合力F。
(3)平行四边形定则的验证:在实验误差允许的范围内,比较F′和F是否大小相等、方向相同。
2.实验器材方木板、白纸、弹簧测力计(两个)、橡皮条、细绳套(两个)、三角板、刻度尺、图钉(若干)、铅笔。
3.实验过程(1)钉白纸:用图钉把白纸固定在水平桌面上的方木板上。
(2)拴绳套:用图钉把橡皮条的一端固定在板上的A点,橡皮条的另一端拴上两个细绳套。
(3)两个力拉:①通过细绳用两个弹簧秤互成角度拉橡皮条,橡皮条伸长,使结点伸长到O点(如下图所示)。
②用铅笔记下O点的位置,画下两条细绳的方向,并记下两个测力计的读数。
(4)一个力拉:①只用一个测力计,通过细绳把橡皮条上的结点拉到同样的位置O。
②记下测力计的读数和细绳的方向。
(5)重复:改变F1和F2的夹角和大小,再做两次。
4.数据处理(1)理论值:在白纸上按比例从O点开始作出两个弹簧测力计的拉力F1和F2的图示,利用刻度尺和三角板根据平行四边形定则求出合力F。
(2)测量值:按同样的比例用刻度尺从O点起作出一个弹簧测力计拉橡皮条时拉力F′的图示。
(3)相比较:比较F′与用平行四边形定则求得的合力F在实验误差允许的范围内是否相等。
5.操作技巧及注意事项(1)正确使用弹簧测力计①弹簧测力计的选取方法:将两只弹簧测力计调零后互钩水平对拉,若两只弹簧测力计在对拉过程中,读数相同,则可选;若读数不同,应另换,直至相同为止。
1高中物理——力学专讲学好物理要记住:最基本的知识、方法才是最重要的。
秘诀:“想”学好物理重在理解........(概念、规律的确切含义,能用不同的形式进行表达,理解其适用条件) A(成功)=X(艰苦的劳动)十Y(正确的方法)十Z(少说空话多干实事)(最基础的概念,公式,定理,定律最重要);每一题中要弄清楚(对象、条件、状态、过程)是解题关健物理学习的核心在于思维,只要同学们在平常的复习和做题时注意思考、注意总结、善于归纳整理,对于课堂上老师所讲的例题做到触类旁通,举一反三,把老师的知识和解题能力变成自己的知识和解题能力,并养成规范答题的习惯,这样,同学们一定就能笑傲考场,考出理想的成绩! 对联: 概念、公式、定理、定律。
(学习物理必备基础知识) 对象、条件、状态、过程。
(解答物理题必须明确的内容)力学问题中的“过程”、“状态”的分析和建立及应用物理模型在物理学习中是至关重要的。
说明:凡矢量式中用“+”号都为合成符号,把矢量运算转化为代数运算的前提是先规定正方向。
答题技巧:“基础题,全做对;一般题,一分不浪费;尽力冲击较难题,即使做错不后悔”。
“容易题不丢分,难题不得零分。
“该得的分一分不丢,难得的分每分必争”,“会做{ EMBED Equation.3 |⇒做对不扣分”在学习物理概念和规律时不能只记结论,还须弄清其中的道理,知道物理概念和规律的由来。
Ⅰ。
力的种类:(13个性质力) 这些性质力是受力分析不可少的“是受力分析的基础” 受力分析入手(即力的大小、方向、力的性质与特征,力的变化及做功情况等)。
再分析运动过程(即运动状态及形式,动量变化及能量变化等)。
最后分析做功过程及能量的转化过程;然后选择适当的力学基本规律进行定性或定量的讨论。
强调:用能量的观点、整体的方法(对象整体,过程整体)、等效的方法(如等效重力)等解决力的合成定则:○1|平行四边形定则:求共点力F 1、F 2的合力,可以把表示F 1、F 2的线段为邻边作平行四边形,它的对角线即表示合力的大小和方向,如图a 。
高考物理常见题型及答题技巧高考物理常见题型及答题技巧(一):直线运动问题题型概述:直线运动问题是高考的热点,可以单独考查,也可以与其他知识综合考查。
单独考查若出现在选择题中,则重在考查基本概念,且常与图像结合;在计算题中常出现在第一个小题,难度为中等,常见形式为单体多过程问题和追及相遇问题。
思维模板:解图像类问题关键在于将图像与物理过程对应起来,通过图像的坐标轴、关键点、斜率、面积等信息,对运动过程进行分析,从而解决问题;对单体多过程问题和追及相遇问题应按顺序逐步分析,再根据前后过程之间、两个物体之间的联系列出相应的方程,从而分析求解,前后过程的联系主要是速度关系,两个物体间的联系主要是位移关系。
高考物理常见题型及答题技巧(二):物体的动态平衡问题题型概述:物体的动态平衡问题是指物体始终处于平衡状态,但受力不断发生变化的问题。
物体的动态平衡问题一般是三个力作用下的平衡问题,但有时也可将分析三力平衡的方法推广到四个力作用下的动态平衡问题。
思维模板:常用的思维方法有两种:(1)解析法:解决此类问题可以根据平衡条件列出方程,由所列方程分析受力变化;(2)图解法:根据平衡条件画出力的合成或分解图,根据图像分析力的变化。
高考物理常见题型及答题技巧(三):运动的合成与分解问题题型概述:运动的合成与分解问题常见的模型有两类,一是绳(杆)末端速度分解的问题,二是小船过河的问题,两类问题的关键都在于速度的合成与分解。
思维模板:(1)在绳(杆)末端速度分解问题中,要注意物体的实际速度一定是合速度,分解时两个分速度的方向应取绳(杆)的方向和垂直绳(杆)的方向;如果有两个物体通过绳(杆)相连,则两个物体沿绳(杆)方向速度相等。
(2)小船过河时,同时参与两个运动,一是小船相对于水的运动,二是小船随着水一起运动,分析时可以用平行四边形定则,也可以用正交分解法,有些问题可以用解析法分析,有些问题则需要用图解法分析。
高考物理常见题型及答题技巧(四):抛体运动问题题型概述:抛体运动包括平抛运动和斜抛运动,不管是平抛运动还是斜抛运动,研究方法都是采用正交分解法,一般是将速度分解到水平和竖直两个方向上。
F 1F 2FO力的合成和分解解题技巧一. 知识清单:1.力的合成(1)力的合成的本质就在于保证作用效果相同的前提下,用一个力的作用代替几个力的作用,这个力就是那几个力的“等效力”(合力)。
力的平行四边形定则是运用“等效”观点,通过实验总结出来的共点力的合成法则,它给出了寻求这种“等效代换”所遵循的规律。
(2)平行四边形定则可简化成三角形定则。
由三角形定则还可以得到一个有用的推论:如果n 个力首尾相接组成一个封闭多边形,则这n 个力的合力为零。
(3)共点的两个力合力的大小范围是 |F 1-F 2| ≤ F 合≤ F 1+F 2(4)共点的三个力合力的最大值为三个力的大小之和,最小值可能为零。
2.力的分解(1)力的分解遵循平行四边形法则,力的分解相当于已知对角线求邻边。
(2)两个力的合力惟一确定,一个力的两个分力在无附加条件时,从理论上讲可分解为无数组分力,但在具体问题中,应根据力实际产生的效果来分解。
(3)几种有条件的力的分解①已知两个分力的方向,求两个分力的大小时,有唯一解。
②已知一个分力的大小和方向,求另一个分力的大小和方向时,有唯一解。
③已知两个分力的大小,求两个分力的方向时,其分解不惟一。
④已知一个分力的大小和另一个分力的方向,求这个分力的方向和另一个分力的大小时,其分解方法可能惟一,也可能不惟一。
(4)用力的矢量三角形定则分析力最小值的规律:①当已知合力F的大小、方向及一个分力F1的方向时,另一个分力F2取最小值的条件是两分力垂直。
如图所示,F2的最小值为:F2min=F sinα②当已知合力F的方向及一个分力F1的大小、方向时,另一个分力F2取最小值的条件是:所求分力F2与合力F垂直,如图所示,F2的最小值为:F2min=F1sinα③当已知合力F的大小及一个分力F1的大小时,另一个分力F2取最小值的条件是:已知大小的分力F1与合力F同方向,F2的最小值为|F-F1|(5)正交分解法把一个力分解成两个互相垂直的分力,这种分解方法称为正交分解法。
用正交分解法求合力的步骤:①首先建立平面直角坐标系,并确定正方向②把各个力向x轴、y轴上投影,但应注意的是:与确定的正方向相同的力为正,与确定的正方向相反的为负,这样,就用正、负号表示了被正交分解的力的分力的方向③求在x 轴上的各分力的代数和F x 合和在y 轴上的各分力的代数和F y 合 ④求合力的大小 22)()(合合y x F F F +=合力的方向:tan α=合合x y F F (α为合力F 与x 轴的夹角)3. 物体的平衡(1)平衡状态:静止:物体的速度和加速度都等于零。
匀速运动:物体的加速度为零,速度不为零且保持不变。
(2)共点力作用下物体的平衡条件:合外力为零即F 合=0。
(3)平衡条件的推论:当物体平衡时,其中某个力必定与余下的其它的力的合力等值反向。
二. 解题方法:1、共点力的合成⑴同一直线上的两个力的合成 ①方向相同的两个力的合成②方向相反的两个力的合成⑵同一直线上的多个力的合成通过规正方向的办法。
与正方向同向的力取正值,与正方向相反的力取负值,然后将所有分力求和,结果为正表示合力与正方向相同,结果为负表示合力方向与正方向相反。
F 1F 2F 合= F 2- F 1 方向与F 2相同F 1F 2F 合=F 1+F 2方向与F 1(或F 2)相同⑶互成角度的两个力的合成⑷当两个分力F1、F2互相垂直时,合力的大小2221F F F +=合⑸两个大小一定的共点力,当它们方向相同时,合力最大,合力的最大值等于两分力之和;当它们的方向相反时,它们的合力最小,合力的最小值等于两分之差的绝对值。
即2121F F F F F +≤≤-合⑹多个共点力的合成①依次合成:F1和F2合成为F12,再用F12与F3合成为F123,再用F123与F4合成,…… ②两两合成:F1和F2合成为F12,F3和F4合成为F34,……,再用F12和F34合成为F1234,……③将所有分力依次首尾相连,则由第一个分力的箭尾指向最后一个分力箭头的有向线段就是所有分力的合力。
⑺同一平面内互成120°角的共点力的合成①同一平面内互成120°角的二个大小相等的共点力的合力的大小等于分力的大小,合力的方向沿两分夹角的角平分线 2、有条件地分解一个力:⑴已知合力和两个分力的方向,求两个分力的大小时,有唯一解。
⑵已知合力和一个分力的大小、方向,求另一个分力的大小和方向时,有唯一解。
F2遵循平行四边形定则:以两个分力为邻边的平行四边形所夹对角线表示这两个分力的合力。
⑶已知合力和两个分力的大小,求两个分力的方向时,其分解不惟一。
3、用力的矢量三角形定则分析力最小值的规律:⑴当已知合力F 的大小、方向及一个分力F1的方向时,另一个分力F2取最小值的条件是两分力垂直。
如图所示,F2的最小值为:F2min=F sin α⑵当已知合力F 的方向及一个分力F1的大小、方向时,另一个分力F2取最小值的条件是:所求分力F2与合力F 垂直,如图所示,F2的最小值为:F2min=F1sin α⑶当已知合力F 的大小及一个分力F1的大小时,另一个分力F2取最小值的条件是:已知大小的分力F1与合力F 同方向,F2的最小值为|F -F1|有两种可能性。
⑷已知合力、一个分力的大小和另一个分力的方向,求这个分力的方向和另一个分力的大小时,其分解方法可能惟一,也可能不惟一。
有四种可能性。
FF 1FF 1F 2FF 14、用正交分解法求合力的步骤:⑴首先建立平面直角坐标系,并确定正方向⑵把不在坐标轴上的各个力向x 轴、y 轴上投影,但应注意的是:与确定的正方向相同的力为正,与确定的正方向相反的为负,这样,就用正、负号表示了被正交分解的力的分力的方向⑶求在x 轴上的各分力的代数和F x 合和在y 轴上的各分力的代数和F y 合 ⑷求合力的大小 22)()(合合y x F F F +=合力的方向:tan α=合合x y F F (α为合力F 与x 轴的夹角)5、受力分析的基本方法:1、明确研究对象:在进行受力分析时,研究对象可以是某一个物体,也可以是保持相对静止的若干个物体(整体)。
在解决比较复杂的问题时,灵活的选取研究对象可以使问题简洁地得到解决。
研究对象确定以后,只分析研究对象以外的物体施于研究对象的力(即研究对象所受的外力),而不分析研究对象施于外界的力。
2、隔离研究对象,按顺序找力。
把研究对象从实际情景中分离出来,按先已知力,再重力,再弹力,然后摩擦力(只有在有弹力的接触面之间才可能有摩擦力),最后其它力的顺序逐一分析研究对象所受的力,并画出各力的示意图。
3、只画性质力,不画效果力画受力图时,只按力的性质分类画力,不能按作用效果画力,否则将重复出现。
受力分析的几点注意⑴牢记力不能脱离物体而存在,每一个力都有一个明确的施力者,如指不出施力者,意味着这个力不存在。
⑵区分力的性质和力的命名,通常受力分析是根据力的性质确定研究对象所受到的力,不能根据力的性质指出某个力后又从力的命名重复这个力⑶结合物理规律的应用。
受力分析不能独立地进行,在许多情况下要根据研究对象的运动状态,结合相应的物理规律,才能作出最后的判断。
三. 经典例题例1. 用轻绳AC 与BC 吊起一重物,绳与竖直方向夹角分别为30°和60°,如图所示。
已知AC 绳所能承受的最大拉力为150N ,BC 绳所能承受的最大拉力为100N ,求能吊起的物体最大重力是多少?解析:对C 点受力分析如图:可知T A :T B :G =2:1:3设AC 达到最大拉力T A =150N , 则此时T B =N N N T A 1006.863503<==∴AC 绳子先断,则此时: G =说明:本题主要考查力的平衡知识,利用力的合成法即三角形法解决。
例2. 如图所示,轻绳AO 、BO 结于O 点,系住一个质量为m 的物体,AO 与竖直方向成α角,BO 与竖直方向成β角,开始时(α+β)<90°。
现保持O 点位置不变,缓慢地移动B 端使绳BO 与竖直方向的夹角β逐渐增大,直到BO 成水平方向,试讨论这一过程中绳AO 及BO 上的拉力大小各如何变化?(用解析法和作图法两种方法求解)解析:以O 点为研究对象,O 点受三个力:T 1、T 2和mg ,如下图所示,由于缓慢移动,可认为每一瞬间都是平衡状态。
(1)解析法x 方向:T 2sin β-T 1sin α=0,(1) y 方向:T 1cos α+T 2cos β-mg =0。
(2) 由式(1)得T T 12=sin sin βα· (3) 式(3)代入式(2),有sin cos sin cos βααβT T mg 220+-=,化简得T 2=)sin(sin βαα+mg (4)讨论:由于α角不变,从式(4)看出: 当α+β<90°时,随β的增大,则T 2变小; 当α+β=90°时,T 2达到最小值mgsin α; 当α+β>90°时,随β的增大,T 2变大。
式(4)代入式(3),化简得 T 1=αβαβαβαββαααβcos sin sin cos cos sin sin )sin(sin ·sin sin +=+=+ctg mgmg mg 。
由于α不变,当β增大时,T 1一直在增大。
(2)作图法由平行四边形法则推广到三角形法则,由于O 点始终处于平衡状态,T 1、T 2、mg 三个力必构成封闭三角形,如图(a )所示,即T 1、T 2的合力必与重力的方向相反,大小相等。
由图(b )看出,mg 大小、方向不变;T 1的方向不变;T 2的方向和大小都改变。
开始时,(α+β)<90°,逐渐增大β角,T 2逐渐减小,当T 2垂直于T 1时,即(α+β)<90°时,T 2最小(为mgsin α);然后随着β的增大,T 2也随之增大,但T 1一直在增大。
说明:力的平衡动态问题一般有两种解法,利用平衡方程解出力的计算公式或作图研究,但需要指出的是作图法一般仅限于三力平衡的问题。
例3. 光滑半球面上的小球(可是为质点)被一通过定滑轮的力F 由底端缓慢拉到顶端的过程中(如图所示),试分析绳的拉力F 及半球面对小球的支持力F N 的变化情况。
解析:如图所示,作出小球的受力示意图,注意弹力F N总与球面垂直,从图中可得到相似三角形。
设球面半径为R,定滑轮到球面的距离为h,绳长为L,据三角形相似得:F Lmgh RFRmgh RN=+=+由上两式得:绳中张力:F mgL h R=+小球的支持力:又因为拉动过程中,h不变,R不变,L变小,所以F变小,F N不变。