北师大版初一数学第五章测试题
- 格式:docx
- 大小:40.75 KB
- 文档页数:4
一、选择题(每题2分,共30分)1. 下列哪个数是正数?()A. 3B. 0C. 2/3D. 5/72. 下列哪个数是负数?()A. |3|B. (1/2)^0C. (5)D. 3^23. 下列哪个数是整数?()A. √9B. 3.14C. √2D. 1/24. 下列哪个数是分数?()A. 0.333…B. πC. 18%D. 3/55. 下列哪个数是无理数?()A. √16B. 0.121212…C. √2D. 1.4146. 下列哪个算式是正确的?()A. (3)^2 = 9B. √(16/25) = 4/5C. |5| = 5D. (1/2)^2 = 1/47. 下列哪个等式是错误的?()A. a+a+a=3aB. a×a×a=a^3C. a÷a=1D. a+a^2=2a8. 下列哪个数是偶数?()A. 2025B. 2024C. 2023D. 20269. 下列哪个数是奇数?()A. 2^5B. 3^4C. 5^3D. 7^210. 下列哪个数既是偶数又是质数?()A. 2B. 4C. 6D. 811. 下列哪个数既是奇数又是合数?()A. 9B. 15C. 21D. 2512. 下列哪个数既是质数又是偶数?()A. 2B. 3C. 5D. 713. 下列哪个数既是合数又是奇数?()A. 4B. 6C. 8D. 914. 下列哪个算式是正确的?()A. (a+b)^2 = a^2 + b^2B. (ab)^2 = a^2 b^2C. (a+b)(ab) = a^2 b^2D. (a+b)^3 = a^3 + b^315. 下列哪个算式是错误的?()A. a^3 × a^2 = a^5B. (a^3)^2 = a^6C. (a^2)^3 = a^6D. a^4 ÷ a^2 = a^2二、判断题(每题1分,共20分)1. 负数小于0,正数大于0,这个说法是正确的。
第五章综合测试一、选择题(共10小题,满分30分)1.下列防疫的图标中是轴对称图形的是( )A .B .C .D .2.如图是一个经过改造的规则为47⨯的台球桌面示意图,图中四个角上的阴影部分分别表示四个入球孔,如果一个球按图中所示的方向被击出(球可以经过台球边缘多次反弹),那么球最后将落入的球袋是( )A .1号袋B .2号袋C .3号袋D .4号袋3.如图,30A ︒∠=,60C ︒∠'=,ABC △与A B C '''△关于直线l 对称,则B ∠度数为( )A .30︒B .60︒C .90︒D .120︒4.如图,在33⨯的网格中,与ABC △成轴对称,顶点在格点上,且位置不同的三角形有( )A .5个B .6个C .7个D .8个5.某平原有一条很直的小河和两个村庄,要在此小河边的某处修建一个水泵站向这两个村庄供水.某同学用直线(虛线)l 表示小河,P ,Q 两点表示村庄,线段(实线)表示铺设的管道,画出了如下四个示意图,则所需管道最短的是( )A .B .C .D .6.如图,将ABC △沿直线DE 折叠,使点C 与点A 重合,已知7AB =,6BC =,则BCD △的周长为( )A .12B .13C .19D .207.如图,在ABC △中,90C ︒∠=,DE AB ⊥于点E ,CD DE =,26CBD ︒∠=,则A ∠的度数为( )A .40︒B .34︒C .36︒D .38︒8.如图,ABC △中,BO 平分ABC ∠,CO 平分ACB ∠,M ,N 经过点O ,且MN BC ∥,若5AB =,AMN △的周长等于12,则AC 的长为( )A .7B .6C .5D .49.如图,在ABC △中,AB AC =,分别以点A 、点B 为圆心,以大于12AB 长为半径画弧,两弧交点的连线交AC 于点D ,交AB 于点E ,连接BD ,若40A ︒∠=,则DBC ∠=( )A .40︒B .30︒C .20︒D .10︒10.如图,ABC △是等边三角形,P 是三角形内任意一点,D E F 、、分别是AC 、AB 、BC 边上的三点,且PF AB ∥,PD BC ∥,PE AC ∥.若PF PD PE a ++=,则ABC △的边长为( )ABC .2D .a二、填空题(共8小题,满分24分)11.在线段、直角、等腰三角形、直角三角形中,成轴对称图形的是________.12.如图,点P 是AOB ∠平分线OC 上一点,PD OB ⊥,垂足为D ,若2PD =,则点P 到边OA 的距离是________.13.如图,在ABC △中,AB AC =,=10BC ,AD 是BAC ∠平分线,则BD =________.14.如图,在ABC △中,AB AC =,28DBC ︒∠=,且BD AC ⊥,则A ∠=________︒.15.如图,在网格图中选择一个格子涂阴影,使得整个图形是以虚线为对称轴的轴对称图形,则把阴影涂在图中标有数字________的格子内.16.已知等腰三角形有一边长为5,一边长为2,则周长为________.17.如图,已知ABC △中,132BAC ︒∠=,现将ABC △进行折叠,使顶点B C 、均与顶点A 重合,则DAE ∠的度数为________.18.如图,CD 是ABC △的角平分线,AE CD ⊥于E ,6BC =,4AC =,ABC △的面积是9,则AEC △的面积是________.三、解答题(共7小题,满分66分)19.如图,ABC △中,90A ︒∠=,D 为AC 上一点,E 为BC 上一点,点A 和点E 关于BD 对称,点B 和点C 关于DE 对称.求ABC ∠和C ∠的度数.20.如图,长方形台球桌ABCD 上有两个球P Q ,.(1)请画出一条路径,使得球P 撞击台球桌边AB 反弹后,正好撞到球Q ;(2)请画出一条路径,使得球P 撞击台球桌边,经过两次反弹后,正好撞到球Q ;21.如图,在ABC △中,边AB 的垂直平分线OM 与边AC 的垂直平分线ON 交于点O ,分别交BC 于点D E 、,已知ADE △的周长5 cm .(1)求BC 的长;(2)分别连接OA OB OC 、、,若OBC △的周长为13 cm ,求OA 的长.22.如图,在ABC △中,=AB AC ,BD 平分ABC ∠交AC 于点D ,BE BD DE BC ⊥,∥,BE 与DE 交于点E ,DE 交AB 于点F .(1)若=56A ︒∠,求E ∠的度数;(2)求证:=BF EF .23.在ABC △中,AB AC =,点D 是BC 的中点,点E 是AD 上任意一点.(1)如图1,连接BE CE 、,则BE CE =吗?说明理由;(2)若45BAC ︒∠=,BE 的延长线与AC 垂直相交于点F 时,如图2,12BD AE =吗?说明理由.24.在等边ABC △中,(1)如图1,P Q ,是BC 边上两点,==20AP AQ BAP ︒∠,,求AQB ∠的度数;(2)点P Q ,是BC 边上的两个动点(不与B C ,重合),点P 在点Q 的左侧,且AP AQ =,点Q 关于直线AC 的对称点为M ,连接AM PM ,. ①依题意将图2补全;②求证:=PA PM .25.如图,已知D 是ABC △的边BC 上的一点,CD AB BDA BAD =∠=∠,,AE 是ABD △的中线. (1)若60B ︒∠=,求C ∠的值;(2)求证:AD 是EAC ∠的平分线.第五章综合测试答案解析一、 1.【答案】C【解析】解:A 、不是轴对称图形,不合题意;B 、不是轴对称图形,不合题意;C 、是轴对称图形,符合题意;D 、不是轴对称图形,不合题意.故选:C. 2.【答案】D【解析】解:根据轴对称的性质可知,台球走过的路径为:所以球最后将落入的球袋是4号袋,故选:D. 3.【答案】C【解析】解:ABC △与A B C '''△关于直线l 对称,ABC A B C ∴'''△≌△, 60C C ︒∴∠=∠'=, 30A ︒∠=,18090B A C ︒︒∴∠=-∠-∠=,故选:C. 4.【答案】D【解析】解:如图所示:与ABC △成轴对称,顶点在格点上,且位置不同的三角形有8个, 故选:D.5.【答案】C【解析】解:作点P 关于直线l 的对称点C ,连接QC 交直线l 于M . 根据两点之间,线段最短,可知选项C 铺设的管道最短. 故选:C. 6.【答案】B【解析】解:由折叠可知,AD CD =,76AB BC ==,,BCD ∴△的周长7613BC BD CD BC BD AD BC AB =++=++=+=+=.故选:B. 7.【答案】D 【解析】解:DE AB DC BC DE DC ⊥⊥=,,,BD ∴平分ABC ∠,26EBD CBD ︒∴∠=∠=,909022638A ABC ︒︒︒︒∴∠=-∠=-⨯=.故选:D. 8.【答案】A 【解析】解:BO 平分CBA ∠,CO 平分ACB ∠,MBO OBC OCN OCB ∴∠=∠∠=∠,, MN BC ∥,MOB OBC NOC OCB ∴∠=∠∠=∠,, MBO MOB NOC NCO ∴∠=∠∠=∠,, MO MB NO NC ∴==,, =5AB AMN ,△的周长等于12,AMN ∴△的周长512AM MN AN AB AC AC =++=+=+=,7AC ∴=,故选:A. 9.【答案】B 【解析】解:40AB AC A ︒=∠=,,1804070ABC C ︒︒︒∴∠=∠=-()=,AD BD =,40ABD A ︒∴∠=∠=,30DBC ABC ABD ︒∴∠=∠-∠=,故选:B. 10.【答案】D【解析】解:延长EP 交BC 于点G ,延长FP 交AC 于点H ,如图所示:PF AB ∥,PD BC ∥,PE AC ∥,∴四边形AEPH 、四边形PDCG 均为平行四边形,PE AH PG CD ∴==,.又ABC △为等边三角形,FGP ∴△和HPD △也是等边三角形,PF PG CD PD DH ∴===,,PE PD PF AH DH CD AC ∴++=++=, AC a ∴=;故选:D. 二、11.【答案】线段、直角、等腰三角形【解析】解:线段的垂直平分线所在的直线是对称轴,是轴对称图形,符合题意; 直角的角平分线所在的直线就是对称轴,是轴对称图形,符合题意; 等腰三角形底边中线所在的直线是对称轴,是轴对称图形,符合题意; 直角三角形不一定是轴对称图形,不符合题意. 故成轴对称图形的是:线段、直角、等腰三角形. 故答案为:线段、直角、等腰三角形. 12.【答案】2【解析】解:过P 作PE OA ⊥于点E , 点P 是AOB ∠平分线OC 上一点,PD OB ⊥,PE PD ∴=, 2PD =, 2PE ∴=,∴点P 到边OA 的距离是2.故答案为2. 13.【答案】5 【解析】解:AB AC BAC =∠,的平分线交BC 边于点10D BC =,,5BD CD BC ∴===,故答案为:5. 14.【答案】56 【解析】解:BD 是AC 边上的高,902862180218012456DBC C DBC C AB AC A C ︒︒︒︒︒︒︒∴∠+∠=∠=∴∠==∴∠=-∠=-=,,,故答案为:56.15.【答案】3【解析】解:如图所示,把阴影涂在图中标有数字3的格子内所组成的图形是轴对称图形,故答案为:3.16.【答案】12【解析】解:①若5为腰长,2为底边长,5,5,2能组成三角形,∴此时周长为:55212++=;②若2为腰长,5为底边长,2245+=<,∴不能组成三角形,故舍去;∴周长为12.故答案为:12.17.【答案】84︒【解析】解:如图,132BAC ︒∠=,18013248B C ︒︒︒∴∠+∠==-;由题意得:B DAB ∠=∠(设为a ),C EAC ∠=∠(设为β),2218021809684ADE AED DAE αβαβ︒︒︒︒∴∠=∠=∴∠=+-=,-()=, 故答案为:84︒.18.【答案】3【解析】解:延长AE 交BC 于F , CD 是ABC △的角平分线,ACE FCE ∴∠=∠AE CD ⊥于E9046=2AEC CEF CE CE ACE FCE ASA CF AC BC BF ︒∴∠=∠==∴∴===∴,△≌△(),,,ABC ∵△的面积是9,2963ACF S =∴⨯=△ AEC ∴△的面积132ACF S ==△, 故答案为:3.三、19.【答案】解:A 点和E 点关于BD 对称, ABD EBD ∴∠=∠,即22ABC ABD EBD ∠=∠=∠, 又B 点、C 点关于DE 对称,290239030260DBE C ABC C A ABC C C C C C ABC C ︒︒︒︒∴∠=∠∠=∠∠=∴∠+∠=∠+∠=∠=∴∠=∴∠=∠=,,,,.20.【答案】解:(1)如图,点M 即为所求.(2)如图,点E ,点F 即为所求.21.【答案】解:(1)DM 是线段AB 的垂直平分线, DA DB ∴=,同理,EA EC =,ADE △的周长5,5AD DE EA ∴++=,5cm BC DB DE EC AD DE EA ∴=++=++=(); (2)OBC △的周长为13,13OB OC BC ∴++=,5BC =,8OB OC ∴+=, OM 垂直平分AB ,OA OB ∴=,同理,OA OC =,4cm OA OB OC ∴===(). 22.【答案】解:(1)56AB AC A ︒=∠=,, 1805662ABC ︒︒︒∴∠=(-)=, BD 平分ABC ∠, 1312DBF DBC ABC ︒∴∠=∠==∠, DE BC ∥,31EDB DBC ︒∴∠=∠=,BE BD ⊥,90DBE ︒∴∠=,903159E ︒︒︒∴∠=-=;(2)31EDB DBF ︒∠=∠=,59E EBF ︒∴∠=∠=,BF EF ∴=.23.【答案】解:(1)成立.理由:AB AC =,D 是BC 的中点,BAE CAE ∴∠=∠.在ABE △和ACE △中,AB AC BAE CAE AE AE =⎧⎪=⎨⎪=⎩∠∠,ABE ACE SAS ∴△≌△(), BE CE ∴=;(2)成立.理由:45BAC BF AF ︒∠=⊥,.ABF ∴△为等腰直角三角形由(1)知AD ⊥BC ,EAF CBF ∴∠=∠在AEF △和BCF △中,EAF CBF AF BF AFE BFC =⎧⎪=⎨⎪=⎩∠∠∠∠, 12.AEF BCF ASA AE BC BD BC BD AE ∴∴==∴=△≌△(),, 24.【答案】解:(1)ABC △为等边三角形 608080B APC BAP B AP AQ AQB APC ︒︒︒∴∠=∴∠=∠+∠==∴∠=∠=,(2)①补全图形如图所示,②证明:过点A 作AH BC ⊥C 于点H ,如图. 由ABC △为等边三角形,AP AQ =,可得PAB QAC ∠=∠,点Q M ,关于直线AC 对称,QAC MAC AQ AM ∴∠=∠=,60MAC PAC PAB PAC ︒∴∠+∠=∠+∠=, APM ∴△为等边三角形PA PM ∴=.25.【答案】(1)解:60B BDA BAD ︒∠=∠=∠,, 60BAD BDA︒∴∠=∠=,AB AD ∴=,CD AB =,DAC C ∴∠=∠,2BDA DAC C C ∴∠=∠+∠=∠,60BAD ︒∠=,30C ︒∴∠=;(2)证明:延长AE 到M ,使EM AE =,连接DM , 在ABE △和MDE △中,BM AE AEB MED BE DE =⎧⎪=⎨⎪=⎩∠∠,ABE MDE ∴△≌△,B MDE AB DM ∴∠=∠=,,ADC B BAD MDE BDA ADM ∠=∠+∠=∠+∠=∠,在MAD △与CAD △,DM CD ADM ADC AD AD =⎧⎪=⎨⎪=⎩∠∠,MAD CAD ∴△≌△,MAD CAD ∴∠=∠,AD ∴是EAC ∠的平分线.。
北师大版七年级数学上第五章检测卷(含答案)第五章检测卷时间:100分钟,满分:120分一、选择题1.下列方程中,是一元一次方程的是()A。
xB。
x2-4x=3C。
3x-1=2D。
x+2y=12.一元一次方程x-1=2的解表示在数轴上,是图中数轴上的哪个点()A。
D点B。
C点C。
B点D。
A点3.下列说法错误的是()A。
若xy=,则x=yB。
若x2=y2,则-4ax2=-4ay2C。
若a=b,则a-3=b-3D。
若ac=bc,则a=b4.某班分两组去两处植树,第一组22人,第二组26人。
现第一组在植树中遇到困难,需第二组支援。
问从第二组调多少人去第一组才能使第一组的人数是第二组的2倍?设抽调x 人,则可列方程()A。
22+x=2×26B。
22+x=2(26-x)C。
2(22+x)=26-xD。
22=2(26-x)5.小马虎在做作业时,不小心将方程中的一个常数污染了,被污染的方程是2(x-3)-●=x+1,怎么办呢?他想了想便翻看书后的答案,方程的解是x=9,那么这个被污染的常数是()A。
1B。
2C。
3D。
46.如图,在长方形ABCD中,AB=10cm,BC=6cm,动点P,Q分别从点A,B同时出发,点P以3cm/s的速度沿AB,BC向点C运动,点Q以1cm/s的速度沿BC向点C运动。
设P,Q运动的时间是t,当点P与点Q重合时t的值是() A。
5B。
4C。
5/2D。
6二、填空题7.下列方程:①x+2=2x+4;②4x=8;③x2+4x=3.其中解为x=2的是(填序号)。
①和③8.方程2x=3(5-x)的解是。
x=39.若2a-7a+1与-(2a-7a-1)互为相反数,则a=。
310.商店进了一批服装,进价为320元,售价定为480元,为了使利润为20%,则应打折销售。
打折的价格为384元。
11.在有理数范围内定义一种新运算“⊕”,其运算规则为:a⊕b=-2a+3b,如1⊕5=-2×1+3×5=13,则方程2x⊕4=的解为。
七年级数学下册《第五章生活中的轴对称》单元测试卷附答案-北师大版一、单选题1.下列图形中是中心对称图形但不是轴对称图形的是()A.B.C.D.∠=︒,则∠2为()2.如图,将一个长方形纸条折成如图的形状,若已知1116A.125°B.124°C.122°D.116°3.一个等腰三角形的两边长分别为6和12,则这个等腰三角形的周长为()A.30B.24C.18D.24或304.面对新冠疫情,我国毫不动摇坚持动态清零总方针,外防输入,内防反弹.下面是支付宝“国家政务服务平台”上与疫情防控相关的四个小程序图标,其中是轴对称图形的是()A.B.C.D.5.下列汉字中,可以看成轴对称图形的是()A.B.C.D.6.如图,把长方形ABCD沿EF折叠后使两部分重合,若∠1=40°,则∠AEF= ()A.110°B.100°C.120°D.140°7.如图,把一张长方形纸片ABCD折叠后,点C、点D的对应点分别为点C′和点D′,若∠1=48°,则∠2的度数为()A.138°B.132°C.121°D.111°8.如图,将∠ABC绕点A顺时针旋转角100°,得到∠ADE,若点E恰好在CB的延长线上,则∠BED的度数为()A.80°B.70°C.60°D.50°9.如图,在∠ABC中,∠ACB=90°,BE平分∠ABC,DE∠AB于D.如果AC=10cm,那么AE+DE 等于()A.6cm B.8cm C.10cm D.12cm10.下面是四位同学作∠ABC关于直线MN的轴对称图形,其中正确的是()A.B.C .D .二、填空题11.如图,APT 与CPT 关于直线PT 对称,A APT ∠=∠,延长AT 交PC 于点F 当A ∠= °时FTC C ∠=∠.12.如图,∠ABC 中,∠B=40°,点D 为边BC 上一点,将∠ADC 沿直线AD 折叠后,点C 落到点E 处,若DE∠AB ,则∠ADE 的度数为 °.13.如图,ABC 中,DE 垂直平分BC ,若ABD 的周长为104AB =,,则AC = .14.如图是由三个小正方形组成的图形请你在图中补画一个小正方形使补画后的图形为轴对称图形,共有 种补法.三、作图题15.如图,在正方形网格中,ABC 的三个顶点均在格点上.(1)画出111A B C ,使得111A B C 和ABC 关于直线l 对称;(2)过点C 作线段CD ,使得CD AB ,且CD AB .四、解答题16.如图,在∠ABC 中,高线CD 将∠ACB 分成20°和50°的两个小角.请你判断一下∠ABC 是轴对称图形吗?并说明你的理由.17.如图,长方形纸片ABCD ,点E 为BC 边的中点,将纸片沿AE 折叠,点B 的对应点为'B ,连接'.B C 求证:AE ∠'B C .18.如图,在∠ABC 中,AF 平分∠BAC 交BC 于点F ,AC 的垂直平分线交BC 于点E ,交AC 于点D ,∠B =60°,∠C =26°,求∠FAE 的度数.19.如图,在平面直角坐标系xOy 中,A (1,2),B (3,1),C (﹣2,﹣1).(1)在图中作出∠ABC关于y轴的对称图形∠A1B1C1(2)写出点A1,B1,C1的坐标(直接写答案).A1B1C1五、综合题20.如图,点P在∠AOB的内部,点C和点P关于OA对称,点P关于OB对称点是D,连接CD交OA于M,交OB于N.(1)①若∠AOB=60°,则∠COD= ▲ °;②若∠AOB=α,求∠COD的度数.(2)若CD=4,则∠PMN的周长为.21.已知:如图,∠ABD和∠BDC的平分线交于点E,BE交CD于点F,∠1+∠2=90°.(1)试说明:AB CD;(2)试探究DF与DB的数量关系,并说明理由.22.如图,在长度为1个单位长度的小正方形组成的正方形中,点A、B、C在小正方形的顶点上.(1)在图中画出与∠ABC关于直线l成轴对称的∠AB′C′;(2)求∠ABC的面积为;(3)在直线l上找一点P,使PB+PC的长最短,则这个最短长度为.参考答案与解析1.【答案】A【解析】【解答】解:A、是中心对称图形,但不是轴对称图形,故符合题意;B、不是中心对称图形,但是轴对称图形,故不符合题意;C、是中心对称图形,也是轴对称图形,故不符合题意;D、不是中心对称图形,但是轴对称图形,故不符合题意.故答案为:A.【分析】中心对称图形的定义:一个图形绕对称中心旋转180°后能够与原图形完全重合,这个图形叫做中心对称图形;轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,据此一一判断得出答案.2.【答案】C【解析】【解答】解:如图∵纸条的两边互相平行∴∠1+∠3=180°∵∠1=116°∴∠3=180°-∠1=180°-116°=64°根据翻折的性质得,2∠4+∠3=180°∴∠4= 12(180°-∠3)=12(180°-64°)=58°∵纸条的两边互相平行∴∠2+∠4=180°∴∠2=122°故答案为:C.【分析】由两直线平行同旁内角互补得∠1+∠3=180°,∠2+∠4=180°,结合已知可求得∠3的度数,由翻折性质得2∠4+∠3=180°可求得∠4的度数,把∠4的度数代入∠2+∠4=180°计算可求解.3.【答案】A【解析】【解答】当三边6,6,12时,6+6=12,不符合三角形的三边关系,应舍去;当三边是6,12,12时,符合三角形的三边关系,此时周长是30.故答案为:A.【分析】利用三角形三边的关系及等腰三角形的性质求解即可。
七年级数学下册(北师大版)达标检测题五第五章 三角形(A )一、选择题(每小题3分,共30分) 1. 如图,共有三角形的个数是( ) A .3 B .4 C .5 D .62.有下列长度(cm )的三条小木棒,如果首尾顺次连结,能钉成三角形的是( )A .10、14、24B .12、16、32C .16、6、4D .8、10、12 3. 适合条件∠A =∠B =31∠C 的三角形一定是( ) A 锐角三角形 B 钝角三角形 C 直角三角形 D 任意三角形4.如图AB ∥CD,AD 、BC 交于点O ,∠A=420,∠C=580则∠AOB=( )A .420B .580C .800D .10005.下列说法中错误的是( )A .三角形的中线、角平分线、高线都是线段;B.任意三角形的内角和都是180°;C.三角形中的每个内角的度数不可能都小于500; D.三角形按角分可分为锐角三角形和钝角三角形. 6.画△ABC 一边上的高,下列画法正确的是( )7.两个三角形有以下元素对应相等,则不能确定全等的是( )A .一边两角B .两边和其夹角C .两边及一边所对的角D .三条边 8.如图所示,在△ABC 中,∠ACB 是钝角,让点C 在射线BD 上向右移动,则( ) A. △ABC 将先变成直角三角形,然后再变成锐角三角形,而不会再是钝角三角形B. △ABC 将变成锐角三角形,而不会再是钝角三角形C.△ABC 将先变成直角三角形,然后再变成锐角三角形, 接着又由锐角三角形变为钝角三角形D. △ABC 先由钝角三角形变为直角三角形,再变为锐角三角形,接着又变为直角三角形,然后再次变为钝角三角形 9.如图,AB//ED ,CD=BF ,若△ABC ≌△DEF ,则还需要补充的条件可以是( )A.AC=EFB.AB=DEC.∠B=∠ED.不用补充 10.下列说法不正确的是( ) A.有斜边和一条直角边对应相等的两个直角三角形全等B.有斜边和一个锐角对应相等的两个直角三角形全等C.二条直角边对应相等的两个直角三角形全等D.有斜边对应相等的两个直角三角形全等二.填空题:(每小题3分,共30分)11. 如图,在△ABC 中,∠ABC=90°,BD ⊥AC ,则图中互余的角有对.12. 如果三角形的两边长分别是2和4,且第三边是奇数,那么第三边长为,如果第三边长为偶数,则此三角形的周长为.13. △ABC 中,AD ⊥BC 于D ,AD 将∠BAC 分为400和600的两个角,则∠B=________. 14.点D 是△ABC 中BC 边上的中点,若AB=3,AC=4,则△ABD 与△ACD 的周长之差为15.木工师傅作一木制矩形门框时,常需在其相邻两边之门钉上一根木条,他这样做的目的是,其中所涉及的数学道理是.16.如图所示的是由相同的小图案无空隙、无重叠地拼接而成,将组成它的小图案画在它右边的方框内.17.Rt △ABC 中,锐角∠ABC 和∠CAB 的平分线交于点O ,则∠BOA =_____18.如图,已知∠B=∠DEF,AB=DE ,请添加一个条件使 △ABC≌△DEF,则需添加的条件是.19.小明做了一个如图所示的风筝,其中∠EDH=∠FDH ,ED=FD=a ,EH=b,则四边形风筝的周长是. 20.如图,有两个长度相同的滑梯,左边滑梯的高度AC 与右边滑梯水平方向的长度DF 相等,若∠CBA=320,则∠FED=,∠EFD=三、解答题(共60分)21. (本题8分)如图,把大小为4×4的正方形方格分割成两个全等图形,例如图1,请在下图中,沿着虚线画出四种不同的分法,把4×4的正方形方格分割成两个全等图形......1题A BCDO 4题 B A. C A DB. B C D AC.B C D A D. B C D A A BC D 8题 EB AC D F9题16题 B A D C11题 A B DC E F 18题D HE F 19题 20题 图1画法 1画法 2画法 4画法 322. (本题10分)如图,DB 是△ABC 的高,AE 是角平分线,∠BAE=260,求∠BFE 的度数.23. (本题10分)如图,AB =AD, ∠B =∠D ,∠BAC=∠DAE, AC 与AE 相等吗?(8分) 小明的思考过程如下:AB=AD∠B=∠D △ABC ≌△ADE AC=AE ∠BAC=∠DAE说明每一步的理由。
北师大版数学七年级上册第五章测试题评卷人得分一、单选题1.下列关于的方程一定是一元一次方程的是()A .B 2+=1B .2+1=C .B =D .1−=12.方程2x -1=3x +2的解为()A .x =1B .x =-1C .x =3D .x =-33.已知方程x ﹣2y+3=8,则整式x ﹣2y 的值为()A .5B .10C .12D .154.如果x =2是方程12x +a =﹣1的解,那么a 的值是()A .0B .2C .﹣2D .﹣65.已知关于的代数式2−5与5−2互为相反数,则的值为()A .9B .−9C .1D .−16.若代数式4x -5与212x 的值相等,则x 的值是()A .1B .32C .23D .27.已知关于x 的方程2x ﹣m+5=0的解是x=﹣2,则m 的值为()A .1B .﹣1C .9D .﹣98.若关于的方程2−=−2的解为=3,则的值为()A .-5B .5C .-7D .79.根据下边流程图中的程序,当输出数值y 为1时,输入数值x 为()A .﹣8B .8C .﹣8或8D .不存在评卷人得分二、填空题10.如果关于x 的方程有解,那么b 的取值范围为______.11.若关于x 的方程23(2)350b a x x +-+-=是一元一次方程,则-a b 的值为_______.12.方程x +5=12(x +3)的解是________.13.已知关于x 的方程3a ﹣x =2x +3的解为2,则代数式a 2﹣2a +1的值是________.14.规定一种新运算:对于任意有理数对(,)a b ,满足2*2a b a b =-.若3*1m =,则m =________.15.在有理数范围定义运算@:M =2+,则满足M(−6)=0的有理数是_______.16.设a ,b ,c ,d 为实数,现规定一种新的运算a c bd =ad-bc ,则满足等式22x131x +=1的x 的值为_____.17.已知(,)234f x y x y m =++,例:(2,3)22334f m =⨯+⨯+,若(2,1)19f =,则m =______,(3,1)f -的值为______.18.已知方程3(5)20x +-=,则5x +的值是_________.19.已知2x =是关于x 的方程3ax b -=的解,则42a b -的值是________.20.若x a =是关于x 的方程2152x b -+=的解,则+a b 的值为__________.评卷人得分三、解答题21.解下列方程:(1)3(+4)=;(2)5=3(−4);(3)1−3+3r102;(4)12+2+1=8+.22.有一列按一定规律排成的数:1,3,7,11,- .(1)这列数中的第100个数是多少?(2)2019,2021是否为这列数中的数?若是,是第几个数;若不是,请说明理由.23.仔细观察下面的解法,请回答下列问题:解方程:3142125x x -+=-.解:去分母,得155841x x -=+-.①移项、合并同类项,得78x =.②解得78x =.③(1)上面的解法从__________开始出错;(填序号)(2)若关于x 的方程314225x x a -+=+;按上面的解法和正确的解法得到的解分别为1x ,2x ,且211x x -为非零整数,求||a 的最小整数值.参考答案1.B【解析】【分析】根据一元一次方程的定义判断即可.【详解】解:A、B2+=1,当a≠0时不是一元一次方程,故本项错误;B、2+1=,是一元一次方程,故本项正确;C、B=,当a=0时,不是一元一次方程,故本项错误;D、1−=1,不是整式方程,故本项错误;故选择:B.【点睛】本题考查了一元一次方程的定义的应用,注意:只含有一个未知数,一次项系数不为0,并且所含未知数的最高次数是1的整式方程,叫一元一次方程.2.D【解析】试题分析:首先进行移项可得:2x-3x=2+1,合并同类项可得:-x=3,解得:x=-3.考点:解一元一次方程3.A【解析】试题解析:由x−2y+3=8得:x−2y=8−3=5,故选A.4.C【解析】【分析】将x=2代入方程12x+a=-1可求得.【详解】解:将x=2代入方程12x+a=﹣1得1+a=﹣1,解得:a=﹣2.故选:C.【点睛】本题是一道求方程待定字母值的试题,把方程的解代入原方程是求待定字母的值的常用方法,平时应多注意领会和掌握.5.C【解析】【分析】根据互为相反数的两个数的和为0,即可求出答案.【详解】解:∵2−5与5−2互为相反数,∴2−5+5−2=0解得:x=1,故选择:C.【点睛】本题考查了相反数的定义,解题的关键是掌握互为相反数的两个数的和为0.6.B【解析】根据题意列出一元一次方程,按照解题步骤:去分母,去括号,移项合并,把未知数系数化为1,求出一元一次方程的解即可得到x的值.解:根据题意得:4x﹣5=21 2x,去分母得:8x﹣10=2x﹣1,解得:x=3 2,故选B.7.A【解析】【分析】把x=﹣2代入方程,即可得到一个关于m的方程,解方程求得m的值.【详解】解:把x=﹣2代入方程,得:﹣4﹣m+5=0,解得:m=1.故选A.【点睛】本题考查了方程的解的定义,方程的解就是能使方程左右两边相等的未知数的值.8.B【解析】试题解析:把x=3代入方程得:6-m=3-2,解得:m=5,故选B.9.D【解析】【分析】分别把y=1代入左右两边的算式求出x的值,哪边的x的值满足取值范围,则哪边求出的x的值就是输入的x的值.【详解】解:∵输出数值y为1,∴1512x+=时,解得x=﹣8,1512x-+=时,解得x=8,∵8181-,,都不符合题意,故不存在.故选D.【点睛】考查了解一元一次方程,题目比较新颖,需要先求出x的值,再根据条件判断是否符合. 10.b≠1.【解析】试题分析:移项,得:bx-x=1,即(b-1)x=1,当b-1≠0时,即b≠1时,方程有解.故答案是:b≠1.考点:一元一次方程的解.11.4【解析】【分析】根据一元一次方程的定义,可得a 20b 31-=+=,,得到a ,b 的值,然后计算即可.【详解】解:∵方程23(2)350b a x x +-+-=是一元一次方程,∴a 20b 31-=+=,,∴a 2b 2==-,,∴a b 4-=.故答案为:4.【点睛】本题考查了一元一次方程的定义,解题的关键是熟练掌握定义,只含有一个未知数,一次项系数不为0,并且所含未知数的最高次数是1的整式方程,叫一元一次方程.12.x=-7【解析】去分母得,2(x+5)=x+3,去括号得,2x+10=x+3移项合并同类项得,x=-7.13.1【解析】试题分析:∵关于x 的方程332x a x -=+的解为2,∴23232a -=+,解得a=2,∴原式=4﹣4+1=1.故答案为1.考点:一元一次方程的解.14.4【解析】【分析】根据*的含义,以及有理数的混合运算的运算方法,即可得到答案.【详解】解:∵2*2a b a b =-,∴23*321m m =-=,解得:m 4=,故答案为:4.【点睛】本题考查了新定义的理解,以及有理数的混合运算,解题的关键是对题目新定义概念的理解.15.2【解析】【分析】根据题中的新定义化简所求式子,计算即可得到结果;【详解】解:∵M =2+,∴M(−6)=2+(−6)=0解得:x =2,故答案为:2.【点睛】本题考查了新定义的理解,以及有理数的混合运算,解题的关键是对题目新定义概念的理解.16.-10【解析】试题分析:根据题中的新定义化简已知方程,求出方程的解即可得到x 的值.试题解析:根据题中的新定义得:2(1)123x x +-=去分母得:3x-4x-4=6,移项合并得:-x=10,解得:x=-10考点:解一元一次方程.17.315【解析】【分析】(1)根据题中的新定义化简所求式子,然后求出m 的值即可;(2)根据题意,代入计算即可得到答案.【详解】解:(1)∵(,)234f x y x y m =++,∴(2,1)2231419f m =⨯+⨯+=,解得:m 3=;(2)由(1)知,(,)2312f x y x y =++,∴(3,1)233(1)1215f -=⨯+⨯-+=,故答案为:3;15.【点睛】本题考查了新定义的运算,以及有理数的混合运算,解题的关键是对新定义的理解.18.23【解析】【分析】把(x+5)看作整体,移项、系数化为1,即可得到答案.【详解】解:3(5)20x +-=3(5)2x +=2(5)3x +=,故答案为:23.【点睛】本题考查了解一元一次方程,解题的关键是掌握整体思想进行解答.19.6【解析】【分析】把2x =代入,得到23a b -=,然后左右两边同时乘以2,即可得到答案.【详解】解:把2x =代入3ax b -=,∴23a b -=,左右两边同时乘以2,得:426a b -=,故答案为:6.【点睛】本题考查了一元一次方程的根,解题的关键是掌握等式性质和整体思想解题.20.112【解析】【分析】把x a =代入方程,整理可得112+a b =,即可得到答案.【详解】解:把x a =代入方程2152x b -+=,∴2152a b -+=,∴152a b +-=,∴112+a b =;故答案为:112.【点睛】本题考查了一元一次方程的根,解题的关键是正确化简得到代数式.21.(1)=−6;(2);=−6(3)=−2;(4)=3.【解析】【分析】(1)根据去括号,移项,合并同类项,系数化为1,即可得到答案;(2)根据去括号,移项,合并同类项,系数化为1,即可得到答案;(3)根据去分母,移项,合并同类项,系数化为1,即可得到答案;(4)根据去括号,移项,合并同类项,系数化为1,即可得到答案;【详解】解:(1)去括号,得3+12=.移项、合并同类项,得2=−12.方程两边都除以2,得=−6.(2)去括号,得5=3−12.移项、合并同类项,得2=−12.方程两边都除以2,得=−6.(3)去分母,得2−2+6=9+30.移项,得−2−9=30−6−2.合并同类项,得−11=22.方程两边都除以−11,得=−2.(4)去括号,得12+52+2=8+.移项、合并同类项,得2=6.方程两边都除以2,得=3.【点睛】本题考查了解一元一次方程的方法,解题的关键是熟练掌握解一元一次方程的方法,并正确的进行计算.22.(1)395;(2)2019是这列数中的数,是第506个数;2021不是这列数中的数.【解析】【分析】(1)审题发现这个数列的每一个数都比它前面的数大4,所以每一个数都与4的整数倍有关,结合第一个数的值,列式即可.(2)由(1)的结论,列式计算,计算得到n 为整数的符合,不是整数的不符合.【详解】解:由这列数可知,每一个数都比它前面的数大4,每一个数都与4的整数倍有关,结合第一个数是1-,所以第n (n 是正整数)个数为45n -.(1)当100n =时,454005395n -=-=.所以这列数中的第100个数是395.(2)令452019n -=,解得506n =.n 是正整数,所以2019是这列数中的数,是第506个数;令452021n -=,解得506.5n =,与n 是正整数不符,所以2021不是这列数中的数.【点睛】此题主要考察基本数列(等差数列)的规律探索,了解常见数列的表示方法是解决问题的关键.23.(1)①;(2)7.【解析】【分析】(1)找出解方程中开始错误的地方即可;(2)利用错误的解法与正确的解法求出x 1,x 2,根据题意确定出a 的值,即可得到结果.【详解】解:(1)解方程:3142125x x -+=-.解:去分母,得1558410x x -=+-.①∴从①处就开始错误,故答案为:①;(2)错误解法:去分母,得15584x x a -=++.移项、合并同类项,得79x a =+.解得79x a =+,即179x a=+.正确解法:去分母,得1558410x x a -=++.移项、合并同类项,得7910x a =+.解得9107a x +=,即29107a x +=.由题意,得21191099777a a a x x ++-=-=.由97a为非零整数,得到||a的最小整数值为7.【点睛】此题考查了解一元一次方程的解法,弄清题中错误解法,熟练掌握正确解法是解本题的关键.。
北师大版七年级数学上册《第五章一元一次方程》测试题-附含答案一、单选题1.下列方程中是一元一次方程的是()A.B.C.D.2.下列运用等式的基本性质变形错误的是()A.若则B.若则C.若则D.若则3.一项工程甲单独做要40天完成乙单独做需要50天完成甲先单独做4天然后两人合作x天完成这项工程则可列的方程是()A.B.C.D.4.一艘船从甲码头到乙码头顺流而行用了从乙码头返回甲码头逆流而行用了.已知水流的速度是设船在静水中的平均速度为根据题意列方程().A.B.C.D.5.如果方程与方程的解相同则k的值为().A.-8 B.-4 C.4 D.86.某种衬衫因换季打折出售如果按原价的六折出售那么每件赔本40元按原价的九折出售那么每件盈利20元则这种衬衫的原价是()A.160元B.180元C.200元D.220元7.一列长150米的火车以每秒15米的速度通过长600米的桥洞从列车进入桥洞口算起这列火车完全通过桥洞所需时间是()A.40秒B.60秒C.50秒D.34秒8.小华在做解方程作业时不小心将方程中的一个常数污染了看不清楚被污染的方程是y﹣=y﹣■怎么办呢?小明想了想便翻看了书后的答案此方程的解是:y=﹣6 小华很快补好了这个常数并迅速完成了作业.这个常数是()A.﹣4B.3C.﹣4D.4二、填空题9.当x= 时代数式与的值相等。
10.某工厂生产一种零件计划在20天内完成若每天多生产4个则15天完成且还多生产10个.设原计划每天生产x个根据题意可列方程为.11.甲、乙两人登一座山甲每分钟登高10米并且先出发30分钟乙每分钟登高15米两人同时登上山顶则这座山高米.12.某挍七年级330名师生外出参加社会实践活动租用50座与40座的两种客车.如果50座的客车租用了2辆那么至少需要租用辆40座的客车.13.A、B两地之间相距120千米其中一部分是上坡路其余全是下坡路小华骑电动车从A地到B地再沿原路返回去时用了5.5小时返回时用了4.5小时已知下坡路段小华的骑车速度是每小时30千米那么上坡路段小华的骑车速度为.三、解答题14.解方程(1)(2)15.若方程的解比方程的解大1 求m的值.16.整理一批图书如果由一个人单独做要用30h 现先安排一部分人用1h整理随后又增加6人和他们一起又做了2h 恰好完成整理工作.假设每个人的工作效率相同那么先安排整理的人员是多少?17.某学校实行学案式教学需印制若干份数学学案印刷厂有甲、乙两种收费方式甲种方式:收制版费元每印一份收印刷费元乙种方式:没有制版费每印一份收印刷费元若数学学案需印刷份.(1)填空:按甲种收费方式应收费元按乙种收费方式应收费元(2)若该校一年级需印份选用哪种印刷方式合算?(3)印刷多少份时甲、乙两种收费方式一样多?18.蔬菜公司采购了若干吨的某种蔬菜计划加工之后销售若单独进行粗加工需要20天才能完成若单独进行精加工需要30天才能完成已知每天单独粗加工比单独精加工多生产10吨.(1)求公司采购了多少吨这种蔬菜?(2)据统计这种蔬菜经粗加工销售每吨利润2000元经精加工后销售每吨利润涨至2500元.受季节条件限制公司必须在24天内全部加工完毕由于两种加工方式不能同时进行公司为尽可能多获利安排将部分蔬菜进行精加工后其余蔬菜进行粗加工并恰好24天完成加工的这批蔬菜若全部售出求公司共获得多少元的利润?参考答案:1.A2.C3.D4.C5.A6.C7.C8.D9.-110.20x=15(x+4)-1011.90012.613.2014.(1)解:(2)解:15.解:解方程得:则方程的解为:将代入得:解得:16.解:设先安排x人进行整理根据题意可得:解得:x=6答:先安排6人进行整理17.(1)(2)把代入甲种收费方式应收费元把代入乙种收费方式应收费元因为故答案为:甲种印刷方式合算答:若该校一年级需印份选用甲种印刷方式合算.(3)根据题意可得:解得: .答:印刷份时两种收费方式一样多.18.(1)设这家公司采购这种蔬菜共x吨根据题意得:解得:x=600答:该公司采购了600吨这种蔬菜.(2)设精加工y吨则粗加工(600-y)吨根据题意得:解得:y=240600-y=600-240=360(吨)∴240×2500+360×2000=1320000(元)答:该公司共获得1320000元的利润。
第五章生活中的轴对称达标测试卷一、选择题(共8小题,每小题3分,计24分,每小题只有一个选项是符合题意的)1.观察下列平面图形,其中轴对称图形共有()A.4个B.3个C.2个D.1个(第1题)(第2题)(第3题)2.如图所示的图形是轴对称图形,点A和点D,点B和点E是对应点.若∠A =50°,∠B=70°,则∠D+∠E的度数为()A.100°B.110°C.120°D.130°3.如图,在3×3的正方形网络中,从空白的小正方形中再选择一个涂黑,使得3个涂黑的正方形构成轴对称图形,则选择的方法有()A.3种B.4种C.5种D.6种4.等腰三角形的一个内角为40°,它的顶角的度数是()A.70°B.100°C.40°或100°D.70°或100°5.将一张正方形纸片依次按图a,图b的方式对折,然后沿图c中的虚线裁剪,最后将图d的纸展开铺平,所看到的图案是()(第5题)(第7题)6.在△ABC中,∠C=90°,BC=16 cm,∠A的平分线AD交BC于D,且CD∶DB=3∶5,则点D到AB的距离等于()A.6 cm B.7 cm C.8 cm D.9 cm7.如图,在△ABC中,DE是AC的垂直平分线,分别交BC,AC于D,E两点,若∠B=80°,∠C=35°,则∠BAD的度数为()A.65°B.35°C.30°D.25°8.如图,在△ABC中,∠ACB=90°,以AC为底边在△ABC外作等腰三角形ACD,作∠ADC的平分线分别交AB,AC于点E,F.若AC=12,BC=5,△ABC的周长为30,点P是直线DE上的一个动点,则△PBC周长的最小值为()(第8题)A.15 B.17 C.18 D.20二、填空题(共5小题,每小题3分,计15分)9.我国传统的木结构房屋,窗子常用各种图案装饰,如图是一种常见的图案,这种图案有________条对称轴.(第9题)(第11题)(第12题)(第13题)10.已知等腰三角形的一个内角为70°,则这个等腰三角形底角的度数为________.11.如图,直线AD是三角形ABC的对称轴,点E、F是AD上的两点,若BD=2,AD=3,则图中阴影部分的面积是________.12.如图,在△ABC中,∠ABC与∠ACB的平分线相交于点O,EF经过点O,分别交AB、AC于点E、F,BE=OE,OF=5 cm,点O到BC的距离为4 cm,则△OFC的面积为________cm2.13.如图,△ABE和△ADC是△ABC分别沿着AB,AC边对折所形成的,若∠1∶∠2∶∠3=13∶3∶2,则∠α的度数为________.三、解答题(共13小题,计81分,解答应写出过程)14.(5分)如图所示的五角星共有几条对称轴?请你在下图中分别画出来.(第14题)15.(5分)以图中的虚线为对称轴画出该图形的另一半.(第15题)16.(5分)如图,四边形ABCD与四边形EFGH关于直线MN对称.(1)线段AD的对应线段是________,CD=________,∠CBA=________,∠ADC=________.(2)连接AE,BF.AE与BF平行吗?为什么?(3)若AE与BF平行,则能说明轴对称图形中对应点的连线一定互相平行吗?(第16题)317.(5分)在植树节活动中,两个班的学生分别在M,N两处植树,现要在道路AB,AC交叉区域内设一个茶水供应点P,使P到两条道路的距离相等,且使PM=PN,请同学们用圆规、直尺在图中画出供应点P的位置,保留画图痕迹,不写作法.(第17题)18.(5分)如图,在△ABC中,AB=AD=DC,∠BAD=26°,求∠B和∠C的度数.(第18题) 19.(5分)如图,在△ABC中,AB=AC,D是BC边上的中点,DE⊥AB于点E,DF⊥AC于点F. 试说明DE=DF .(第19题)20.(5分)把两个同样大小的含30度的三角尺像如图所示那样放置,其中M是AD与BC的交点.(第20题)(1)试说明MC的长度等于点M到AB的距离;(2)求∠AMB的度数.521.(6分)如图,已知CE⊥AB于点E,BD⊥AC于点D,BD、CE交于点O且AO平分∠BAC.试说明OB=OC.(第21题)22.(7分)如图,在△ABC中,AB=AC,AD是BC边上的高,过点C作CE∥AB 交AD的延长线于点E.试说明CE=AB.(第22题)23.(7分)如图,在△ABC中,AB=AC,BD⊥AC于点D.试说明∠DBC=12∠BAC.(第23题)24.(8分)如图,在直角三角形ABC中,∠ACB=90°,△CAP和△CBQ都是等边三角形,BQ和CP交于点H,试说明BQ⊥CP .(第24题)25.(8分)如图,已知△ABC,AB=AC,AD是△ABC的角平分线,EF垂直平分AC,与AC,AD,AB分别交于点E,M,F.若∠CAD=20°,求∠MCD的度数.7(第25题)26.(10分)综合与探究:如图,在△ABC中,AB=AC=2,∠B=∠C=40°,点D在线段BC上运动(点D与点B,C不重合),连接AD,作∠ADE=40°,DE交线段AC于点E. (1)当∠BDA=115°时,∠EDC=________°,∠DEC=________°;在点D从点B向点C的运动过程中,∠BDA逐渐变______(填“大”或“小”);(2)当DC等于多少时,△ABD≌△DCE?请说明理由;(3)在点D的运动过程中,何时DA与DE的长度相等?求出此时∠BDA的度数.(第26题)答案一、1.C 2.C 3.C 4.C 5.D 6.A7.C8.C二、9.210.55°或70°11.312.1013.100°三、14.解:如图所示的五角星共有5条对称轴.对称轴如图所示.(第14题)15.解:如图所示.(第15题)16.解:(1)线段EH;GH;∠GFE;∠EHG(2)AE∥BF.理由如下:因为每对对应点连接成的线段被对称轴重直平分,则EA⊥MN,BF⊥MN,所以AE∥BF.(3)AE∥BF不能说明对应点的连线一定互相平行,还有可能共线.17.解:如图所示,点P即为所求.(第17题)18.解:因为AB=AD,所以∠B=∠ADB,因为∠BAD=26°,所以∠B=12(180°-∠BAD)=12×(180°-26°)=12×154°=77°,所以∠ADB=77°,所以∠ADC=103°. 因为AD=CD,所以∠DAC=∠C,所以∠C=12(180°-∠ADC)=38.5°.919.解:连接AD,因为AB=AC,点D是BC边上的中点.所以AD平分∠BAC(三线合一),因为DE、DF分别垂直AB、AC于点E和F.所以DE=DF(角平分线上的点到角两边的距离相等).20.解:(1)过点M作MN⊥AB,易得∠CAD=∠DAB=30°,因为∠C=90°,MN⊥AB,所以MC=MN(角平分线上的点到角两边的距离相等),即MC的长度等于点M到AB的距离.(2)由题意知∠MAB=∠MBA=30°,所以∠AMB=180°-30°-30°=120°.21.解:因为AO平分∠BAC,CE⊥AB于点E,BD⊥AC于点D,所以OE=OD,又因为在直角三角形OBE和直角三角形OCD中,∠BOE=∠COD,∠BEO =∠ODC=90°,所以△OBE≌△OCD,所以OB=OC.22.解:因为AB=AC,AD是BC边上的高,所以BD=CD.因为CE∥AB,所以∠BAE=∠E,∠B=∠ECD,所以△ABD≌△ECD,所以CE=AB.23.解:作∠BAC的平分线AE,与BC,BD分别交于点E,F,则∠CAE=1 2∠BAC.因为AB=AC,所以由等腰三角形的“三线合一”可知AE⊥BC,所以∠AEB=90°.因为BD⊥AC,所以∠ADB=90°.又因为∠BFE=∠AFD,所以∠DBC=∠CAE,故∠DBC=12∠BAC.24.解:因为△CAP和△CBQ都是等边三角形,所以∠ACP=∠CBQ=60°,因为∠ACB=90°,所以∠BCP=∠ACB-∠ACP=30°,在△BCH中,∠BHC=180°-∠BCH-∠CBH=180°-30°-60°=90°,所以BQ⊥CP.25.解:因为AB=AC,AD是△ABC的角平分线,所以AD⊥BC.因为∠CAD=20°,所以∠ACD=70°.因为EF垂直平分AC,所以AM=CM,所以∠ACM=∠CAD=20°,所以∠MCD=∠ACD-∠ACM=70°-20°=50°.26.解:(1)25;115;小(2)当DC=2时,△ABD≌△DCE.理由如下:因为∠C=40°,所以∠DEC+∠EDC=140°.因为∠ADE=40°,所以∠ADB+∠EDC=140°,所以∠ADB=∠DEC.在△ABD和△DCE中,因为∠ADB=∠DEC,∠B=∠C,AB=DC=2,所以△ABD≌△DCE.(3)当△ABD≌△DCE时,DA=DE.因为∠ADE=40°,所以∠DAE=∠DEA=70°,所以∠DEC=110°.因为△ABD≌△DCE,所以∠BDA=∠DEC=110°.11。
第五章一元一次方程 单元测试卷一、选择题1.在方程3x -y =2,x +1=0,12x =12,x 2-2x -3=0中,一元一次方程的个数为( )A.1B.2C.3D.42.一元一次方程的解是( )A .B .C .D .3.关于x 的方程的解是,则m 的值是( )A .B .0C .2D .84.下列运用等式性质进行的变形中,正确的是( ) A. 若 ,则 B. 若,则C. 若,则D. 若,则6.方程去分母得( )A .B .C .D .7.某品牌电脑降价以后,每台售价为元,则该品牌电脑每台原价为( )A .元B .元C .元D .元8.如果关于x 的方程 和方程 的解相同,那么a 的值为( )A .6B .4C .3D .29.《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何.”设鸡有x 只,可列方程为( )A .B .C .D .10.如图,将长与宽比为的长方形分割成一个阴影长方形和由196个面积相等的小正方形构成的边框,(边框的宽度即为小正方形的边长),则阴影长方形的长与宽的比为( )10x -==1x -0x =1x =2x =240x m +-=2x =-8-247236x x ---=-22(24)(7)x x --=--122(24)7x x --=--12(24)(7)x x --=--122(24)(7)x x --=--213x +=213a x--=42(94)35x x +-=42(35)94x x +-=24(94)35x x +-=24(35)94x x +-=3:2ABCDA .B .C .D . .15.已知整式 是关于x 的二次二项式,则关于y 的一元一次方程 的解为 .三、解答题16.解方程:(1).(2).17.解下列一元一次方程 (1)2(x+3)=-x; (2)18.小明解方程2x -15+1=x +a 2时,由于粗心大意,在去分母时,方程左边的1没有乘以10,由此求得的解为x =4,试求a 的值,并正确地求出方程的解.四、解答题19.某届足球比赛即将举行,小李在网上预定了小组赛和淘汰赛两个阶段的球票共10张,总价为5 800元.其中小组赛球票每张550元,淘汰赛球票每张700元,则小李预定了小组赛和淘汰赛的球票各多少张?3:229:1929:1729:2132(24)7(3)2m x x n x --++-(3)160m n y ny -++=20.包装厂有工人42人,每个工人平均每小时可以生产圆形铁片120片或长方形铁片80片,两张圆形铁片与一张长方形铁片可配套成一个密封圆桶,问每天如何安排工人生产圆形铁片和长方形铁片才能合理地将铁片配套?23.如图①,在数轴上有一条线段AB,点A,B表示的数分别是2和﹣7.(1)线段AB= ;(2)若M是线段AB的中点,则点M在数轴上对应的数为 ;(3)若C为线段AB上一点,如图②,以点C为折点,将此数轴向右对折;如图③,点B落在点A的右边点B';处,若AB′=B′C,求点C在数轴上对应的数是多少?参考答案一、选择题1—5 BCDBC6—10 DCBDB二、填空题11.7212.3x-2x=10 13.2 14.2031 15.y=-2三、解答题16.解:(1)去括号得:,移项,合并同类项得:,未知数系数化为1得:.(2)去分母,得:,去括号,得:,移项,合并同类项,得:,系数化成1,得:.17.解:(1)去括号,得:2x+6=-x移项,得:2x+x=-6合并同类项,得:3x=-6系数化成1,得:x=-2(2)去分母,得:2(x-1)-12(x+1)=1去括号,得:2x-2-12x-12=1移项,合并同类项,得: -10x=15系数化成1,得:18..四、解答题19、解:设小李预定了小组赛球票x张,则预定了淘汰赛球票(10-x)张,根据题意,得550x+700(10-x)=5 800.解得x=8.则10-x=10-8=2(张).答:小李预定了小组赛球票8张、淘汰赛球票2张.20.解:设安排x人生产长方形铁片,则(42-x)人生产圆形铁片,依题意得120(42-x)=2x80x,解得x=18,所以42-18=24(人)则安排24人生产圆形铁片,18人生产长方形铁片21.解:设笔袋的单价为x元,则水笔的单价为(x-22)元,所以x=6(x-22)+2, 解得x=26,则x-22=26-22=4(元),答:笔袋的单价为26元,则水笔的单价为4元.(2)甲书店:50x26+4(a- 20) = 4a +1220(元),乙书店:50x 26 + 4a x 0.5 = 2a+1300(元),所以到甲书店购买所花的费用是(4a+1220)元,到乙书店购买所花的费用是(2a+1300)元(3) 甲书店:4a+1220≤1400,解得a ≤45,此时购买的笔袋和水笔的总数量为 50+a ≤50+45= 95<100,不满足题意,乙书店:2a+1300≤1400,解得a ≤50,此时购买的笔袋和水笔的总数量为50+a ≤50+50=100,满足题意,所以王老师到乙书店能完成本次采购任务.五、解答题22、解:(1)3x-(6+x)=-16, 解得 x=-5,2x+4=x+10, 解得 x=6.∵(-5)+6=1,∴方程3x-(6+x)=-16与方程2x+4=x+10互为“美好方程”.(2)x2+m=0, 解得 x=-2m ,3x=x+4,解得 x=2.∵关于x 的方程一+m=0与方程3x=x+4互为“美好方程”,.∴.-2m+2=1,解得 m=12.23(1)9(2)-2.5(3)解:设 AB'=x ,∵AB′=,则 B'C =5x .∴由题意BC =B′C =5x ,∴ AC =B'C ﹣AB'=4x ,∴ AB =AC+BC =AC+B'C =9x ,即9x =9,∴x=1,∴由题意AC=4,又∵点A表示的数为2,2﹣4=﹣2,∴点C在数轴上对应的数为﹣2.。
北师大版七年级数学上册《第五章 一元一次方程》测试题-带参考答案一、选择题1.下列方程属于一元一次方程的是( )A .3x=4B .3x-2y=1C .1-x 2=0D .3x =4 2.已知关于x 的方程mx +2=x 的解是x =4,则m 的值为( )A .12B .2C .32D .23 3.已知ax =ay ,下列等式变形不一定成立的是( )A .1−ax =1−ayB .x b =y bC .πax =πayD .ax m 2+1=ay m 2+1 4.下列解方程中,移项正确的是( )A .由5+x=18,得x=18+5B .由5x+ 13=3x ,得5x-3x= 13C .由12x+3= −32x-4,得12x+ 32x=-4-3D .由3x-4=6x ,得3x+6x=4. 5.某车间有22名工人每人每天可以生产1200个螺钉或2000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套 ,设有 x 名工人生产螺钉,其他工人生产螺母,根据题意列出方程( )A .2000x =1200(22−x)B .2×1200x =2000(22−x)C .2×2000x =1200(22−x)D .1200x =2000(22−x) 6.对于等式x 3−12=23y +1,下列变形正确的是( )A .x −1=2y +1B .2x −3=4y +1C .2x −3=4y +6D .x −3=2y +6 7.解方程2x−13−3x−44=1时,去分母正确的是( )A .4(2x-1)-9x-12=1B .8x-4-3(3x-4)=12C .4(2x-1)-9x+12=1D .8x-4+3(3x-4)=12 8.某商店的老板销售一种商品,他以高于进价20%的价格才能出售,但为了获得更多利润,他以高出进价80%的价格标价,若你想买下标价为360元的这种商品,且使商店老板愿出售,应降价( )A .80元B .100元C .120元D .160元二、填空题9.若 (m −1)x |m|+3=0 是关于x 的一元一次方程,则m 的值是 .10.关于 x 的一元一次方程 2ax −x =4b −1 的解是 x =−2 ,则 a +b 的值是 .11.若关于x 的方程3x ﹣7=2x+a 的解与方程4x+3=﹣5的解互为倒数,则a 的值为 .12.某人在解方程2x−13=x−a3−1去分母时,方程右边的-1忘记乘6,求得方程的解为x=-5,则a的值为13.在全国足球甲级A组的比赛中,某队在已赛的11场比赛中保持连续不败,积25分.已知胜一场得3分,平一场得1分,那么该队已胜场.三、解答题14.解方程(1)3(x−7)+5(x−4)=15(2)5y+16=9y+18−1−y315.已知,下列关于x的方程4x−2m=x−5的解与7x=m+2x的解的比为5:3,求m的值.16.某工厂工人急需在计划时间内加工一批零件用于机械制造,如果每天加工500个,就比规定任务少80个;如果每天加工550个,则超额20个.求规定加工的零件数和计划加工的天数分别是多少?17.七年级1班共有学生45人,其中男生人数比女生人数少3人.某节课上,老师组织同学们做圆柱形笔筒,每名学生每节课能做筒身30个或筒底90个.(1)七年级1班有男生、女生各多少人?(2)原计划女生负责做筒身,男生做筒底,要求每个筒身匹配2个筒底,那么每节课做出的筒身和筒底配套吗?如果不配套,男生要支援女生几人,才能使筒身和筒底配套?18.为抗击新冠肺炎疫情,某药店对消毒液和口罩开展优惠活动.已知消毒液每瓶定价比口罩每包定价多5元,按照定价售出4包口置和3瓶消毒液共需要43元.(1)求一包口罩和一瓶消毒液定价各多少元?(2)优惠方案有以下两种:方案一:以定价购买时,买一瓶消毒液送一包口罩;方案二:消毒液和口罩都按定价的九折付款.现某客户要到该药店购买消毒液20瓶,口罩x包(x>20).①若客户购买150包口罩时,请通过计算说明哪种方案购买较为省钱?②求当客户购买多少包口罩时,两种方案的购买总费用一样.参考答案1.A2.A3.B4.C5.B6.C7.B8.C9.-110.3411.−15212.213.714.(1)解:3x−21+5x−20=158x=56x=7(2)解:4(5y+1)=3(9y+1)−8(1−y)20y+4=27y+3−8−8y−15y=−9y=3515.解:解方程4x−2m=x−5得x=2m−53解方程7x=m+2x得x=m5由题意知:2m−53:m5=5:3m=516.解:设计划加工的天数为x天由题意得:500x+80=550x﹣20解得:x=2所以规定加工的零件数为500x+80=500×2+80=1080(个)答:规定加工零件数为1080个,计划加工天数为2天.17.(1)解:设女生有x人,则男生有(x﹣3)人由题意可得:x+(x﹣3)=45解得x=24∴x﹣3=21答:七年级1班有男生21人,女生24人.(2)解:女生可以做筒身:24×30=720(个),男生可以做筒底:21×90=1890(个)∵720×2<1890∴原计划每节课做出的筒身和筒底不配套;设男生要支援女生a人,才能使筒身和筒底配套,根据题意得:(24+a)×30×2=(21﹣a)×90解得a=3答:男生要支援女生3人,才能使筒身和筒底配套.18.(1)解:设一包口罩定价x元,则一瓶消毒液定价(x+5)元由题意得:4x+3(x+5)=43解得x=4则x+5=4+5=9答:一包口罩定价4元,一瓶消毒液定价9元.(2)解:①方案一:20×9+(150−20)×4=180+520=700(元)方案二:(20×9+150×4)×90%=780×90%=702(元)因为700<702所以方案一购买较为省钱;②由题意得:20×9+(x−20)×4=(20×9+4x)×90%解得x=155答:当客户购买155包口罩时,两种方案的购买总费用一样.。
第五章 一元一次方程
(总分:100分;时间: 分)
姓名 学号 成绩
一、选择题:(每题3分,共30分)
1.下面的等式中,是一元一次方程的为( )
A .3x +2y =0
B .3+m =10
C .2+
x 1=x D .a 2=16 2.下列结论中,正确的是( )
A .由5÷x =13,可得x =13÷5
B .由5 x =3 x +7,可得5 x +3 x =7
C .由9 x =-4,可得x =-4
9 D .由5 x =8-2x ,可得5 x +2 x =8 3.下列方程中,解为x =2的方程是( )
A .3x =x +3
B .-x +3=0
C .2x =6
D .5x -2=8
4.解方程时,去分母得( )
A .4(x +1)=x -3(5x -1)
B .x +1=12x -(5x -1)
C .3(x +1)=12x -4(5x -1)
D .3(x +1)=x -4(5x -1)
5.若3
1(y +1)与3-2y 互为相反数,则y 等于( ) A .-2 B .2 C .
78 D .-78 6.关于y 的方程3y +5=0与3y +3k =1的解完全相同,则k 的值为( )
A .-2
B .4
3 C .2 D .-3
4 7.父亲现年32岁,儿子现年5岁,x 年前,父亲的年龄是儿子年龄的10倍,则x 应满足的方程是( ) A .32-x =5-x B .32-x =10(5-x)
C .32-x =5×10
D .32+x =5×10
8.小华在某月的月历中圈出几个数,算出这三个数的和是36,那么这个数阵的形式可能是
( )
A .
B .
C .
D .
9.某商品的售价比原售价降低了15%,现售价是34元,那么原来的售价是( )
A .28元
B .32元
C .36元
D .40元
10.用72cm 长的铁丝做一个长方形的教具,要使宽为15cm,那么长是( )
A .28.5cm
B .42cm
C .21cm
D .33.5cm
一、 二、填空题:(每题3分,共30分)
11.设某数为x ,若它的3倍比这个数本身大2,则可列出方程___________.
12.将方程3x -7=-5x +3变形为3x +5x =3+7,这个变形过程叫做______.
13.当y =______时,代数式与41y +5的值相等. 14.若与3
1互为倒数,则x =______. 15.三个连续奇数的和是75,则这三个数分别是___________.
16.一件商品的成本是200元,提高30%后标价,然后打九折销售,则这件商品的利润为______元.
17.若x =-3是关于x 的方程3x -a =2x +5的解,则a 的值为______.
18.单项式-3a x +1b 4与9a 2x -1b 4是同类项,则x =______.
19.一只轮船在A 、B 两码头间航行,从A 到B 顺流需4小时,已知A 、B 间的路程是80千米,水流速度是2千米/时,则从B 返回A 用______小时.
20. 若n y x 32与
y x m 5 是同类项,则m= ,n= 三、解答题:(共40分)
21.(每个4分,共12分)
解方程:5x +2=7x -8 5(x +8)-5=6(2x -7)
31(x+1)=7
1(2x-3)
22.(8分)把500元钱按照3年定期存教育储蓄,如果到期可以得到本息和共540.5元,那么这3年定期教育储蓄的年利率是多少?
23.(8分)一队学生去校外进行军事野营训练,他们以6千米/时的速度行进,在他们走了一段时间后,学校要将一个紧急通知传给队长,通讯员从学校出发,以10千米/时的速度按原路追上去,用了15分钟追上了学生队伍,问通讯员出发前,学生走了多少时间?
24.(12分)下图的数阵是由77个偶数
排成:
(1)图中平行四边形框内的4个数有什么关系?
(2)在数阵图中任意作一类似(1)中的平行四边形框,设其中一个数为x,那么其他3个数怎样表示?
(3)小红说4个数的和是415,你能求出这4个数吗?
(4)小明说4个数的和是420,存在这样的4个数吗?若存在,请求出这4个数.。