高一数学第二次月考题
- 格式:doc
- 大小:463.00 KB
- 文档页数:5
2022-2023学年江苏省南通中学高一上学期第二次月考数学试题一、单选题1.已知集合{}{}21,R ,|A xx x B x x a ==∈=≥∣,若A B ⊆,则实数a 的取值范围是( ) A .(),1-∞- B .()1,+∞ C .(],1-∞- D .[)1,+∞【答案】C【分析】根据A B ⊆列不等式,由此求得a 的取值范围. 【详解】依题意{}1,1A =-,{}|B x x a =≥, 由于A B ⊆,所以1a ≤-, 即a 的取值范围是(],1-∞-. 故选:C2.已知角θ的终边经过点()2,3-,则sin θ=( )A .BC .D 【答案】A【分析】由任意角的三角函数的定义即可得出答案. 【详解】因为角θ的终边经过点()2,3-,所以sin θ=故选:A.3.下列运算正确的是( ) A .lg2lg502⋅= B .11552log 10log 0.252+=C .4251log 3log log 82⋅⋅= D .()log 12=-【答案】C【分析】结合基本不等式、对数运算、对数函数的性质等知识求得正确答案. 【详解】22lg2lg50lg100lg2lg50122+⎛⎫⎛⎫⋅<== ⎪ ⎪⎝⎭⎝⎭,A 选项错误.1511111555552log 10log 0.25log 100log 0.25log 25log 10+=+<==,B 选项错误.32242544355321log3log log8log3log5log8log3log5log832⋅⋅=⋅⋅=⋅⋅⋅⋅234211131log8log233322===⨯=,C选项正确.())2111log1log=))2111log12-==-,D选项错误.故选:C4.在平面直角坐标系中,点()tan2022,sin2022P位于第()象限A.一B.二C.三D.四【答案】D【分析】运用诱导公式计算出P点坐标的符号就可判断出P点所在的象限.【详解】()tan2022tan5360222tan2220︒︒︒︒=⨯+=>,()sin2022sin5360222sin2220︒︒︒︒=⨯+=<,()tan2022,sin2022P︒︒∴在第四象限;故选:D.5.设函数()f x的定义域为()1,3-,则函数()()()1ln1f xg xx+=-的定义域为()A.()2,1-B.()()2,00,1-⋃C.()0,1D.()(),00,1-∞⋃【答案】B【分析】要使()g x有意义,根据抽象函数的定义域、对数真数不为0、分母不为0可得到答案. 【详解】要使()()()1ln1f xg xx+=-有意义,只需1131011xxx-<+<⎧⎪->⎨⎪-≠⎩,即221xxx-<<⎧⎪<⎨⎪≠⎩,解得20x-<<或01x<<,则函数()g x的定义域为()()2,00,1-⋃.故选:B.6.已知函数()y f x=的图象如图所示,则此函数可能是()A .()cos 22x xxf x -=-B .()cos 22x x xf x -=-C .()sin 22x xxf x -=-D .()sin 22x xxf x -=-【答案】A【分析】由图象可得()y f x =为奇函数,故排除C ,D ,再结合图象求得0x >时,函数的第一个零点为π2x =,根据π3π22x <<时,函数的正负和题干图象即可得答案. 【详解】解:由图象可得()y f x =为奇函数, 对于C ,()sin 22xx x f x -=-,所以()sin(-)sin ()2222x x x x x xf x f x ---===--为偶函数,故排除; 对于D ,()sin 22x xx f x -=-,所以()sin(-)sin ()2222x x x x x x f x f x ---===--为偶函数,故排除; 对于A ,因为()cos 22x x xf x -=-,所以()cos(-)cos ()2222x x x xx x f x f x ---==-=---,为奇函数; 对于B ,因为()cos 22x xx f x -=-,所以()cos(-)cos ()2222x x x x x xf x f x ---==-=---,为奇函数; 因为当0x >时,22x x ->,即220x x -->, 当π2x =时,πcos cos02x ==, 所以当0x >时,函数的第一个零点为π2x =, 当π3π22x <<时, cos 0x <, 所以()0f x <,而此时函数()f x 的图象位于x 轴下方, 故A 选项的解析式符合. 故选:A.7.已知函数()2f x x x =,当[]2,2x ∈-时,()()83f a x f x --,则实数a 的取值范围是( )A .][(),128,∞∞--⋃+B .[]12,8-C .][(),04,∞∞-⋃+D .[]0,4【答案】D【分析】由解析式确定函数的奇偶性与单调性,并对函数式变形,然后利用性质化简不等式,转化为求函数的最值,从而得参数范围.【详解】首先22()()f x x x x x -=--=()f x =,()f x 为偶函数,0x ≥时,3()f x x =是增函数,22(2)(2)288()f x x x x x f x ===,因此不等式()()83f a x f x --先化为()(62)f a x f x -≤-,()f x 是偶函数,则有()(62)f a x f x -≤-,又0x ≥时,3()f x x =是增函数,因此62a x x -≤-,[2,2]x ∈-,620x ->,因此有62a x x -≤-,2662x a x x -≤-≤-,366x a x -≤≤-,所以366x a x -≤≤-对[2,2]x ∈-恒成立,360x -≤(2x =时取等号),64x -≥(2x =时等号成立),所以04a ≤≤. 故选:D .8.已知ln 1a a =,若1,ln5,e log 2a a x a y a z +==⋅=⋅,其中e 为自然对数的底数,则( )A .y x z <<B .y z x <<C .z y x <<D .x y z <<【答案】B【分析】先判断出a 的取值范围,然后结合差比较法、放缩法判断出,,x y z 的大小关系. 【详解】依题意,ln 1a a =,则1a >,1ln a a=, 画出()1ln ,0y x y x x==>的图象如下图所示,由图可知,两个函数有1个交点, 构造函数()1ln f x x x=-,则()f x 在()0,∞+上递增,()()11110,2ln 2022f f =-<=->=, 所以存在()()1,2,0a f a ∈=,即a 的取值范围是()1,2. ln ln 1,e a a a a a a ===,所以1e a a x a a a a +==⋅=⋅,而21ln e ln 5ln e 2e =<<=<,所以()e ln5e ln50,x y a a a x y -=⋅-⋅=->>.由于()()e e log 2e log 2e log log 2aa a a a x z a a a -=⋅-⋅=⋅-=⋅-()e log e log 20a a =⋅->,所以>x z ,由于1e 2.52222224232255>=⨯==>=, 所以e 1ln5ln 5log 5log 2elog 2ln a a a y a z a=⋅=⋅=<== 所以y z x <<. 故选:B【点睛】比较代数式的大小的方法有:利用函数的单调性比较大小,这种方法要求掌握基本初等函数的性质;利用差比较法比较大小或利用商比较法比较大小,这种方法先作差后,判断得到的式子的符号,从而确定大小关系.二、多选题9.中国清朝数学家李善兰在1859年翻译《代数学》中首次将“function ”译做:“函数”,沿用至今,为什么这么翻译,书中解释说“凡此变数中函彼变数者,则此为彼之函数”.1930年美国人给出了我们课本中所学的集合论的函数定义.已知集合M ={-1,1,2,4},N ={1,2,4,16},给出下列四个对应法则,请由函数定义判断,其中能构成从M 到N 的函数的是( ) A .2y x = B .2yxC .2x y =D .2log y x =【答案】BC【分析】根据选项中的解析式依次判断即可.【详解】对选项A ,当4x =时,8y N =∉,故A 错误; 对选项B ,任意x M ∈都有2y x N =∈,故B 正确. 对选项C ,任意x M ∈都有2x y N =∈,故C 正确. 对选项D ,当1x =时,0y N =∉,故D 错误; 故选:BC10.设0a >,0b >,且a b ,则“2a b +>”的一个必要条件可以是( )A .332a b +>B .222a b +>C .1ab >D .112a b+>【答案】AB【分析】题中为必要条件,则2a b +>能推出选项,逐一判断 【详解】对于A ,若2a b +>,则()()()()()()()22233223324a b a b a b a ab b a b a b ab a b a b ⎡⎤+⎡⎤+=+-+=++->++->⎢⎥⎣⎦⎢⎥⎣⎦成立; 对于B ,若2a b +>,则()22222a b a b++>>,成立;对于C ,22a b ab +⎛⎫< ⎪⎝⎭,无法判断出1ab >;对于D ,2112a b a b+>+,且()114a b a b ⎛⎫++> ⎪⎝⎭,因为2a b +>,所以不能得出11a b +与2的大小关系. 故选:AB11.已知x 的值使下列各式分母均不为零,则其中值总相等的式子有( ) A .sin 1cos xx-B .1cos sin 1cos sin x xx x -++-C .cos sin 1sin cos 1x x x x -++-D .1cos sin 1cos sin x x x x++-+【答案】ACD【分析】利用特殊值排除错误选项,结合同角三角函数的基本关系式证明相等的式子. 【详解】令π3x =,A选项,πsin32π11cos 132=--B选项,ππ1cossin 1333ππ1cos sin 33-+====+- C选项,ππcossin 13133ππsin cos 133-+====+-,D选项,ππ1cossin 3133ππ1cos sin 33+++===-+所以B 选项排除.由题意可得1cos 0x -≠,则cos 1x ≠;若sin 0,x =则cos 1x =-,则1cos sin 0x x +-=与题意不符,故sin 0,x ≠由()()22sin 1cos 1cos 1cos x x x x =-=+-,得sin 1cos 1cos sin x xx x +=-,令sin 1cos 1cos sin x x k x x+==-,依题意可知1k ≠±, 则()()()()1sin cos sin 11cos sin sin sin sin sin cos 1sin cos 11cos cos 111cos 1cos k x x x x x k x xx x x x x k x x k x x--++--====+-+--+----,()()()()1sin 1cos sin sin sin sin 1cos sin 1cos 1cos 11cos 1cos k x x x k x xx x x x k x k x x++++===-+-+-+--,所以ACD 选项的值总相等. 故选:ACD12.下列关于函数图象的对称性描述正确的有( )A .若()()222f x f x -=-,则函数()f x 的图象关于直线=1x -对称B .若()()2223f x f x -+-=,则函数()f x 的图象关于点31,2⎛⎫- ⎪⎝⎭对称C .函数()22y f x =-与()2y f x =-的图象关于直线1x =对称D .函数()322y f x =--与()2y f x =-的图象关于点13,22⎛⎫⎪⎝⎭对称【答案】ABD【分析】根据对称性对选项进行分析,从而确定正确选项.【详解】A 选项,由()()222f x f x -=-,以x 替换2x 得()()2f x f x -=-, 以1x +替换x 得()()()121f x f x +-=-+,即()()11f x f x -+=--,所以函数()f x 的图象关于直线=1x -对称,A 选项正确. B 选项,由()()2223f x f x -+-=,以x 替换2x 得()()23f x f x -+-=, 以1x +替换x 得()()()1213f x f x +-+-+=,即()()113f x f x -++--=,所以函数()f x 的图象关于点31,2⎛⎫- ⎪⎝⎭对称,B 选项正确.C 选项,对于函数()22y f x =-,以2x -替换x 得()()()22222y f x f x =--=-+, 所以函数()22y f x =-与()22y f x =-+的图象关于直线1x =对称,C 选项错误.D 选项,对于函数()322y f x =--,以1x -替换x ,以3y -替换y 得: ()()33212y f x -=---,即()()332,2y f x y f x -=--=-,所以函数()322y f x =--与()2y f x =-的图象关于点13,22⎛⎫⎪⎝⎭对称,D 选项正确.故选:ABD三、填空题13.已知扇形的圆心角为6π,面积为3π,则扇形的半径是________.【答案】2【分析】根据扇形的面积公式可以直接求解.【详解】设扇形的圆心角为α,半径为r ,扇形的面积公式为: 22211422326S r r r r ππα=⇒=⋅⋅⇒=⇒=.故答案为:2【点睛】本题考查了扇形的面积公式的应用,考查了数学运算能力.14.已知函数()f x 满足以下三个条件①()21f =-,②在定义域()0,∞+上是减函数,③()()()f x y f x f y ⋅=+,请写出一个同时符合上述三个条件的函数()f x 的解析式__________. 【答案】12()log f x x =(答案不唯一)【分析】由题意在学过的函数中找一个满足三个条件的函数即可.【详解】由()()()f x y f x f y ⋅=+可考虑对数函数()log a f x x =,又因为()f x 在定义域(0,)+∞上是减函数,所以()log a f x x =的底数(0,1)a ∈, 又因为(2)1f =-,所以12a =,所以12()log f x x =. 故答案为:12()log f x x=(答案不唯一).15.已知函数()2log 421x xy a a =+⋅+-的值域为R .则实数a 的取值范围是__________.【答案】1a >或1)a ≤-【分析】根据题意可得()421x x g x a a =+⋅+- 能取到所有的正数,采用换元法令2,0x t t =>,则可得2()1,0h t t at a t =++->能取到所有的正数,讨论a 的取值,结合二次函数性质即可求得答案.【详解】若使得函数()2log 421x xy a a =+⋅+-的值域为R ,令()421x x g x a a =+⋅+-,则()421x x g x a a =+⋅+-能取到所有的正数, 令2,0x t t =>,令2()1,0h t t at a t =++->, 则2()1,0h t t at a t =++->能取到所有的正数, 当02a-≤,即0a ≥时,()h t 在0t >时递增, 故需满足(0)0h <,即10,1a a -<∴>, 当>02a-,即a<0时,需满足()02a h -≤,即2()()1022a aa a -+-+-≤,解得1)a ≤-综合以上可得实数a 的取值范围是1a >或1)a ≤-,故答案为:1a >或1)a ≤-.16.关于x 1x <-的解集为__________. 【答案】[1,)+∞【分析】将不等式等价转化之后两边同时平方,然后化简,再次平方即可求解.【详解】1x -可化为:1x <-+222(21)1(1)2(1x x x x -+<-+-+,整理可得:(1)(x x x -<-10x x -≥⎧>,解得:1x ≥, 所以原不等式的解集为[1,)+∞, 故答案为:[1,)+∞.四、解答题17.已知集合(){}2211,2201x A xB x x m x m x ⎧⎫+=<=+--<⎨⎬-⎩⎭. (1)当1m =时,求A B ⋃;(2)已知A B B =,求实数m 的取值范围. 【答案】(1){}21x -<< (2)[]2,4-【分析】(1)计算{}21A x =-<<,112B x x ⎧⎫=-<<⎨⎬⎩⎭,再计算并集得到答案.(2)A B B =,故B A ⊆,考虑B =∅和B ≠∅两种情况,计算得到答案.【详解】(1)当1m =时,{}2121012B x x x x x ⎧⎫=--<=-<<⎨⎬⎩⎭,{}212102111x x A x x x x x ⎧⎫⎧⎫++=<=<=-<<⎨⎬⎨⎬--⎩⎭⎩⎭,故{}21A B x =-<<(2)A B B =,故B A ⊆,(){}()(){}2220120B x x m x m x x x m =+--<=-+<,对应方程的根为1和2m -, 当B =∅时,12m-=,2m =-; 当B ≠∅时,12m -<且22m-≥-,解得24m -<≤. 综上所述:24m -≤≤18.已知函数()()()sin πcos πf x x x =+-,且π04x <<. (1)若()14f x =,求πcos cos 2x x ⎛⎫++ ⎪⎝⎭的值;(2)若函数()g x 满足()()tan g x f x =,求14g ⎛⎫⎪⎝⎭的值.【答案】(2)417【分析】(1)利用同角三角函数的基本关系和诱导公式求解;(2)利用同角三角函数的基本关系求解. 【详解】(1)()()()sin πcos πsin (cos )sin cos f x x x x x x x =+-=-⋅-=, 因为()14f x =,所以1sin cos 4x x =,πcos cos cos sin 2x x x x ⎛⎫++=- ⎪⎝⎭,因为()2221cos sin cos sin 2sin cos 2x x x x x x -=+-=, 又因为π04x <<,所以cos sin x x >,所以cos sin x x -=,所以πcos cos cos sin 2x x x x ⎛⎫++=-=⎪⎝⎭(2)令01tan 4x =,则00sin 1cos 4x x =,又因为2200sin cos 1x x +=, 由002200sin 1cos 4sin cos 1x x x x ⎧=⎪⎨⎪+=⎩,解得00sin cos x x ⎧⎪⎪⎨⎪=⎪⎩00sin cos x x ⎧=⎪⎪⎨⎪=⎪⎩因为0π04x <<,所以00sin cos x x ⎧=⎪⎪⎨⎪=⎪⎩所以004sin cos 17x x =, 所以000014(tan )()sin cos 417g g x f x x x ⎛⎫==== ⎪⎝⎭.19.设0.66log 3,log 3m n ==. (1)试用,m n 表示lg18; (2)求证:2mn m n mn <+<. 【答案】(1)m mnm n+- (2)证明过程见解析.【分析】(1)根据题目中的整数底数6进行化归,并利用换底公式即可得解;(2)证明0mn <后利用换底公式和适当放缩即可求解. 【详解】(1)6666666log 18log (63)1log 31lg18log 10log 10log 10log 10n⨯++====,而0.6log 3m =, 所以66log 3log 0.6m =,即6log 0.6nm =, 所以66log 10nm=,即61log 10nm =-,故6log 101n m=-, 故611lg18log 101n n m mnn m n m+++===--.(2)()()0.66log 3log 30mn =⨯<,33330.661111log 0.6log 6log (0.66)log 3.6log 3log 3m n mn m n +=+=+=+=⨯=, 而3331log 3log 3.6log 92=<<=, 所以12m nmn+<<, 又因为0mn <, 所以2mn m n mn <+<. 故原式得证.20.汽车智能辅助驾驶已开始得到应用,其自动刹车的工作原理是用雷达测出车辆与前方障碍物之间的距离(并集合车速转化为所需时间),当此距离等于报警距离时就开始报警提醒,等于危险距离时就自动刹车.若将报警时间划分为4段,分别为准备时间0t 、人的反应时间1t 、系统反应时间2t 、制动时间3t ,相应的距离分别为0d ,1d ,2d ,3d ,如下图所示.当车速为v (米/秒),且(]0,33.3v ∈时,通过大数据统计分析得到下表给出的数据(其中系数k 随地面湿滑程度等路面情况而变化,[]1,2k ∈).阶段 0.准备 1.人的反应 2.系统反应 3.制动 时间10.8t =秒20.2t =秒3t距离010d =米1d2d2320v d k =米(1)请写出报警距离d (米)与车速v (米/秒)之间的函数关系式()d v ;并求当2k =,在汽车达到报警距离时,若人和系统均未采取任何制动措施,仍以此速度行驶的情况下,汽车撞上固定障碍物的最短时间;(2)若要求汽车不论在何种路面情况下行驶,报警距离均小于50米,则汽车的行驶速度应限制在多少千米/小时?【答案】(1)()21020v d v v k=++;2秒(2)20千米/小时【分析】(1)利用()0123d v d d d d =+++求得函数关系式,并利用基本不等式求得最短时间. (2)化简不等式()50d v <,利用分离常数法,结合一元二次不等式的解法求得v 的取值范围. 【详解】(1)由题意得()0123d v d d d d =+++, 所以()22100.80.2102020v v d v v v v k k =+++=++; 当2k =时,()21040v d v v =++,()10101121124040v v t v v v =++≥+⨯+=(秒). 即此种情况下汽车撞上固定障碍物的最短时间约为2秒.(2)根据题意要求对于任意[]1,2k ∈,()50d v <恒成立, 即对于任意[]1,2k ∈,2105020v v k++<,即2140120k v v <-恒成立, 由[]1,2k ∈,得111,204020k ⎡⎤∈⎢⎥⎣⎦. 所以2140120k v v<-, 即2401120v v ->, 即2208000v v +-<,解得4020v -<<. 所以020v <<.故要求汽车不论在何种路面情况下行驶,报警距离均小于50米,则汽车的行驶速度应限制在20千米/小时.21.已知函数()()22log 2,R f x x mx m =-∈.(1)记集合(){01,0}A xf x x =≤≤>∣,若[],A a b =,求证:1b a -≤; (2)设函数()(),32,3f x xg x x ⎧≥=⎨-<⎩,若存在实数0x ,使()()00g x g x -=-,求实数m 取值范围.【答案】(1)证明详见解析 (2)5,6⎡⎫+∞⎪⎢⎣⎭【分析】(1)解不等式()01f x ≤≤,根据其解集为[],a b ,求得b a -,进而证得不等式成立. (2)将问题转化为()2f x =在区间[)3,+∞有解,结合分离常数法以及函数的单调性求得m 的取值范围.【详解】(1)依题意集合()[]{01,0},A xf x x a b =≤≤>=∣, 由()220log 21x mx ≤-≤得2122x mx ≤-≤,222122x mx x mx ⎧-≥⎨-≤⎩,即22210220x mx x mx ⎧--≥⎨--≤⎩,由于0x >m m ≥,所以不等式2210x mx --≥解得x m ≥不等式 2220x mx --≤解得0x m <≤所以不等式组22210220x mxx mx⎧--≥⎨--≤⎩的解为m x m≤≤,所以a m b m==所以b a-=1=≤==.(2)依题意,函数()(),32,3f x xg xx⎧≥=⎨-<⎩,且存在实数x,使()()00g x g x-=-,所以()2f x=在区间[)3,+∞有解,即()22log22x mx-=在区间[)3,+∞有解,即()222log22log4x mx-==,2224,240x mx x mx-=--=,2442xm xx x-==-,函数4y xx=-在[)3,+∞上递增,所以45523,336m m≥-=≥,所以m的取值范围是5,6⎡⎫+∞⎪⎢⎣⎭.【点睛】本小题的第一问比较抽象和难理解,关键点是解对数不等式()01f x≤≤,大胆往下计算,即可求得,a b.第二问类似奇函数图象关于原点对称,突破口在于将问题进行转化,转化为()2f x=,研究方程有解来进行求解.22.若函数()f x与()g x对任意1x D∈,总存在唯一的2x D∈,使()()12f xg x m=成立,则称()f x是()g x在区间D上的“m阶伴随函数”;当()()f xg x=时,则称()f x为区间D上的“m阶自伴函数”.(1)若函数13xf x为区间[],(0)a b b a>>上的“1阶自伴函数”,求22aba b+的最大值;(2)若()44f xx=+是()222g x x ax a=-+在区间[]0,2上的“2阶伴随函数”,求实数a的取值范围.【答案】(1)25(2)3,2⎡⎡⎣⎣【分析】(1)根据函数新定义,将“1阶自伴函数”转化为值域之间的关系,列出不等式即可找到,a b之间的关系,再将22aba b+中分母一次项中的b乘以2a b+,再分子分母同除以ab,用基本不等式即可,注意取等条件;(2)先将“2阶伴随函数”转化为值域之间的关系,求出()2f x 值域为[]2,4,即()g x 在[]0,2的值域的包含[]2,4,且()g x 值域所对应的自变量唯一,结合二次函数图象的性质,分类讨论即可.【详解】(1)解:由题知13x f x为区间[](),0a b b a >>上的“1阶自伴函数”,则任意[]1,x a b ∈,总存在唯一的[]2,x a b ∈,使()()121f x f x =,()130x f x -=≠,则只需使()()121f x f x =成立即可, ()f x 单调递增,()()1111211,3,33,3a b b a f x f x ----⎡⎤⎡⎤∈∈∴⎣⎦⎣⎦, 因为任意[]1,x a b ∈,总存在唯一的[]2,x a b ∈,使()()121f x f x =成立, 即11113,33,3a b b a----⎡⎤⎡⎤⊆⎣⎦⎣⎦,则11113333b a a b ----⎧≤⎨≥⎩, 即1111b a a b -≤-⎧⎨-≥-⎩,即22a b a b +≥⎧⎨+≤⎩, 故2a b +=, 则222242ab aba b a b=++()224ab a a b b =++ 2224aba ab b =++241a b b a =++≤25=, 当且仅当4a bb a=,即423b a ==时取等,故22ab a b+的最大值为25; (2)由题()44f x x =+是()222g x x ax a =-+在区间[]0,2上的“2阶伴随函数”,即任意[]10,2x ∈,总存在唯一的[]20,2x ∈,使()()122f x g x =成立, 即()()212g x f x =成立, 即()2f x 在[]0,2的值域是()g x 在[]0,2的值域的子集,且()g x 值域所对应的自变量唯一, ()()424,42x f x x f x +=∴=+, ()[]22,3f x ∴∈, ()()2222g x x ax x a a ==--+, ()g x ∴对称轴为x a =,①0a ≤时,()g x 在[]0,2上单调递增, 只需()()0223g g ⎧≤⎪⎨≥⎪⎩, 即()22223a a ⎧≤⎪⎨-≥⎪⎩, 解得:0a ≤,②2a ≥时,()g x 在[]0,2上单调递减, 只需()()0322g g ⎧≥⎪⎨≤⎪⎩, 即()22322a a ⎧≥⎪⎨-≤⎪⎩, 解得:22a ≤≤,③01a <<时,()g x 在[]0,a 上单调递减,[],2a 单调递增, 只需()()0223g g ⎧<⎪⎨≥⎪⎩, 即()22223a a ⎧<⎪⎨-≥⎪⎩,解得:02a <≤④12a <<时,()g x 在[]0,a 上单调递减,[],2a 单调递增, 只需()()0322g g ⎧≥⎪⎨<⎪⎩, 即()22322a a ⎧≥⎪⎨-<⎪⎩,解得2a <,⑤1a =时不满足唯一,故舍,综上:3,2a ⎡⎡∈⎣⎣.。
陕西省安康市高新中学2024-2025学年高一上学期第二次月考(10月)数学试题一、单选题1.已知集合{}{}2,3,5,1,4,5,7A B ==,则()A .A B =∅ B .A B ⊆C .A B A= D .5A B∈ 2.已知函数()()21,223,2f x x f x x x x ⎧->-=⎨+-≤-⎩则()()1f f =()A .5B .0C .-3D .-43.已知不等式210ax bx +->的解集为11,23⎛⎫-- ⎪⎝⎭,则不等式20x bx a --≥的解集为()A .(][),32,-∞--+∞ B .[]3,2--C .[]2,3D .][()–,23,∞+∞ 4.设,,a b c 为实数,且0a b <<,则下列不等式正确的是()A .11a b <B .22ac bc <C .b a a b>D .22a ab b >>5.已知幂函数()2()1mf x m m x =+-的图像与坐标轴没有公共点,则(2)f =()A .12BC .14D.6.已知()e ex x xf x a -=+是偶函数,则a =()A .2-B .1-C .1D .27.若一系列函数的解析式相同,值域相同,但定义域不同,则称这些函数为“孪生函数”,那么函数解析式为223y x =-,值域为{}1,5-的“孪生函数”共有()A .10个B .9个C .8个D .4个8.已知数2,0,()1,04,x x f x x x+≤⎧⎪=⎨<≤⎪⎩若m n <且()()f n f m =,则n m +的取值范围是()A .(1,2]B .90,4⎡⎤⎢⎥⎣⎦C .3,24⎛⎤ ⎥⎝⎦D .3,24⎛⎫⎪⎝⎭二、多选题9.下面命题正确的是()A .“1a >”是“11a<”的充分不必要条件B .命题“若1x <,则21x <”的是真命题C .设,x y ∈R ,则“2x ≥且2y ≥”是“224x y +≥”的必要不充分条件D .设,a b ∈R ,则“0a ≠”是“0ab ≠”的必要不充分条件10.定义在R 上的函数()f x ,对任意的1x ,2x ∈R ,都有()()()12121f x x f x f x +=+-,且当0x >时,()()0f x f >恒成立,则下列说法正确的是()A .()01f =B .函数()f x 的单调递增区间为()0,∞+C .函数()f x 为R 上的增函数D .函数()()1g x f x =-为奇函数11.设正实数m ,n 满足1m n +=,则()A .12m n+的最小值为3+B C的最大值为1D .22m n +的最小值为12三、填空题12.已知集合A ={1,3},B ={1,m },A ∪B =A ,则m =.13.已知函数()f x 的定义域是[]0,4,则函数y =的定义域是.14.已知函数()f x 是定义在R 上的奇函数,且()20f -=,若对任意的()12,,0x x ∈-∞,当12x x ≠时,都有()()1122120x f x x f x x x ⋅-⋅<-成立,则不等式()0f x >的解集为.四、解答题15.已知集合{}250A x x x =-≤,(){}24B x x a =->.(1)若0a =,求A B ;(2)若“x A ∈”是“x B ∈R ð”的必要条件,求实数a 的取值范围16.已知幂函数()f x 与一次函数()g x 的图象都经过点()4,2,且()()95f g =.(1)求()f x 与()g x 的解析式;(2)求函数()()()h x g x f x =-在[]0,1上的值域.17.已知函数()21x bf x x +=-是定义域()1,1-上的奇函数.(1)确定()f x 的解析式;(2)用定义证明:()f x 在区间()1,1-上是减函数;(3)解不等式()()10f t f t -+<.18.设函数()y f x =是定义在()0∞,+上的减函数,并且满足()()()f xy f x f y =+,112f ⎛⎫= ⎪⎝⎭(1)求()1f 和()2f 的值(2)如果()128x f f x ⎛⎫+-< ⎪⎝⎭,求x 的取值范围19.已知函数()311a f x x x ⎛⎫⎛⎫=++ ⎪⎪⎝⎭⎝⎭为偶函数.(1)证明:函数()f x 在()0,∞+上单调递增;(2)若不等式()()21f x m f x ->+对任意的(]0,2x ∈恒成立,求实数m 的取值范围.。
高一上学期第二次月考数 学一. 选择题(每小题5分,满分60分)1.已知集合{}2,1=A ,集合B 满足{}32,1,=B A ,则集合B 有A.4个B.3个C.2个D.1个 2.下列函数中与函数x y =相等的函数是A.2)(x y =B.2x y =C.x y 2log 2=D.x y 2log 2= 3.函数)1lg(24)(2+--=x x x f 的定义域为A. ]21,(-B.]22[,-C. ]2001,(),( -D. ]2002[,(), - 4.若1.02=a ,21.0=b ,1.0log 2=c ,则( )A.c b a >>B. c a b >>C. b a c >>D. a c b >> 5. 方程2=-x e x 在实数范围内的解有( )个A. 0B.1C.2D.36. 若偶函数)(x f 在[]2,4上为增函数,且有最大值0,则它在[]4,2--上 A .是减函数,有最小值0 B .是减函数,有最大值0 C .是增函数,有最小值0 D .是增函数,有最大值07. 设函数330()|log |0x x f x x x ⎧≤=⎨>⎩,,,则())1(-f f 的值为A.1-B.21C. 1D. 2 8. 已知函数()y f x x =+是偶函数,且(2)3f =,则(2)f -=( ) A .7- B .7 C .5- D .59. 若幂函数322)(--=a a x x f 在)0(∞+上为减函数,则实数a 的取值范围是( )A. ),3()1,(+∞--∞B.)3,1(-C. ),3[]1,(+∞--∞D. ]3,1[-10.235log 25log log 9⋅=( )A.6B. 5C.4D.3 11. 设函数()()0ln 31>-=x x x x f ,则()x f y = ( ) A .在区间( 1e ,1)、(1,e)内均有零点B .在区间( 1e,1)、(1,e)内均无零点C .在区间( 1e ,1)内有零点,在区间(1,e)内无零点D .在区间( 1e,1)内无零点,在区间(1,e)内有零点12. 若当R x ∈时,函数||)(x a x f =(0>a ,且1≠a ),满足1)(0≤<x f ,则函数|1|log xy a =的图象大致是二.填空题(每小题5分,满分20分) 13. 已知函数)10(,32)(1≠>+=-a a ax f x 且,则其图像一定过定点14. 函数3()2,f x x x n x R =-+∈为奇函数,则n 的值为 .15. 若定义在(-1,0)内的函数()()1log 2+=x x f a 满足()0>x f ,则a 的取值范围是________.16. 对于实数x ,符号[]x 表示不超过x 的最大整数,例如[][]208.1,31.3-=-=,[]22=,定义函数()[]x x x f -=,则下列命题中正确的是 .(填上你认为正确的所有结论的序号)①函数()x f 的最大值为1; ②函数()x f 最小值为0; ③函数()()21-=x f x G 有无数个零点; ④函数()x f 是增函数. 三.解答题(写出必要的计算步骤、解答过程,只写最后结果的不得分,共70分)17. (本小题满分10分)已知集合{}{}m x x C x B x x x A x>=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧<⎪⎭⎫ ⎝⎛<=≤--=|,42121|,02|2.(I )求()B A C B A R ,; (II )若C C A = ,求实数m 的取值范围. 18. (本小题满分12分) 计算:(1) 2.5221log 6.25lgln(log (log 16)100+++; (2) 已知14,x x -+=求224x x -+-的值.19. (本小题满分12分)已知函数()⎪⎩⎪⎨⎧<+=>+-=0,0,00,222x mx x x x x x x f 为奇函数. (I )求()1-f 以及实数m 的值; (II )写出函数()x f 的单调递增区间; (III )若()1=a f ,求a 的值.20. (本小题满分12分)当x 满足2)3(log 21-≥-x 时,求函数()1241+-=--x xx f 的最值及相应的x 的值.21. (本小题满分12分)某所中学有一块矩形空地,学校要在这块空地上修建一个内接四边形的花坛(如图所示),该花坛的四个顶点分别落在矩形的四条边上,已知 AB=a (a >2),BC=2,且 AE=AH=CF=CG ,设 AE=x ,花坛面积为y .(1)写出y 关于x 的函数关系式,并指出这个函数的定义域; (2)当 AE 为何值时,花坛面积y 最大?22. (本小题满分12分)定义在(0,+∞)上的函数()x f ,对于任意的()+∞∈,0,n m ,都有()()()n f m f mn f +=成立,当1>x 时,()0<x f .(1)求证:1是函数()x f 的零点; (2)求证:()x f 是(0,+∞)上的减函数; (3)当()212=f 时,解不等式()14>+ax f .高一数学参考答案1-12ADCDC BCBDA DA13. 16 14. 0 15. 0<a <1216.17.解:(1121116633233232-=⨯⨯⨯⨯= 1111102633332323++-⨯=⨯=(2)原式=2lg5+23lg23+lg5×lg(10×2)+lg 22=2lg5+2lg2+lg5+lg5×lg2+lg 22=2(lg5+lg2)+lg5+lg2(lg5+lg2)=3.18. (1)3.5 (2) 1019.解:根据集合中元素的互异性, 0x ≠ 且0y ≠,则0xy ≠,又A=B,故lg()0xy =,即1xy =①,所以xy y =②或xy x =③,①②联立得1x y ==,与集合互异性矛盾舍去,①③联立得1x y ==(舍去),或者1x y ==-,符合题意,此时22881log ()log 23x y +==. 21. 解:(1)S △AEH =S △CFG =x 2,(1分)S △BEF =S △DGH =(a ﹣x )(2﹣x ).(2分)∴y=S ABCD ﹣2S △AEH ﹣2S △BEF =2a ﹣x 2﹣(a ﹣x )(2﹣x )=﹣2x 2+(a+2)x .(5分)由,得0<x≤2(6分)∴y=﹣2x 2+(a+2)x ,0<x≤2(7分) (2)当<2,即a <6时,则x=时,y 取最大值.(9分)当≥2,即a≥6时,y=﹣2x2+(a+2)x,在(0,2]上是增函数,则x=2时,y取最大值2a﹣4(11分)综上所述:当a<6时,AE=时,绿地面积取最大值;当a≥6时,AE=2时,绿地面积取最大值2a﹣4(12分).22.解:(1)对于任意的正实数m,n都有f(mn)=f(m)+f(n)成立,所以令m=n =1,则f(1)=2f(1).∴f(1)=0,即1是函数f(x)的零点.(2) 设0<x1<x2,∵f(mn)=f(m)+f(n),∴f(mn)-f(m)=f(n).∴f(x2)-f(x1)=f(x2x1).因0<x1<x2,则x2x1>1.而当x>1时,f(x)<0,从而f(x2)<f(x1).所以f(x)在(0,+∞)上是减函数.(3) 因为f(4)=f(2)+f(2)=1,所以不等式f(ax+4)>1可以转化为f(ax+4)>f(4).因为f(x)在(0,+∞)上是减函数,所以0<ax+4<4.当a=0时,解集为 ;当a>0时,-4<ax<0,即-4a<x<0,解集为{x|-4a<x<0};当a<0时,-4<ax<0,即0<x<-4a,解集为{x|0<x<-4a}.。
武汉六中高一年级第二次月考数学试卷一、单选题(本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.已知集合, ,则( )A .B .0、1、 3}C .D .2.已知,则下列结论正确的是( )A . B . C .D .3.下列函数的最值中错误的是( )A .的最小值为2B .已知,的最大值是C .已知,的最小值为3D54.已知关于的不等式的解集是,则下列说法错误的是( )A . B .C .D .不等式的解集是5.已知函数f (x )=,在(0,a -5)上单调递减,则实数a 的取值范围是( )A .[6,8]B .[6,7]C .(5,8]D .(5,7]6.已知函数,且,则实数的取值范围是( )A .B .C .D .7.如图,中,,,,点从点出发,以的速度沿向点运动,同时点从点出发,以的速度沿向点运动,直到它们都到达点为止.若的面积为,点的运动时间为,则与的函数图象是( )A .B .C .D .4Z ,1P x y y x ⎧⎫=∈=∈⎨⎬+⎩⎭N {}14Q x x =-≤≤P Q = {}1,2,4{}03x x ≤≤{}14x x -≤≤0a b c >>>11a b a b+>+b ab a a b+<+c ba c a b>--b c ba c a->-1x x+0x >423x x--2-1x >11x x +-x 20ax bx c ++>{}13x x <<0a <0a b c ++=420a b c ++<20cx bx a -+<113x x x ⎧⎫--⎨⎩⎭或221,143,1x x x x x ⎧-+<⎨-+≥⎩()()4f x x x =+()()2230f a f a +-<a ()3,0-()3,1-()1,1-()1,3-Rt ABC △90C ∠=︒5cm AB =4cm AC =P A 1cm /s A C →C Q A 2cm /s A B C →→C C APQ △2(cm )S P (s)t S t8.已知函数为定义在上的偶函数,,,,且,,则不等式的解集为( )A .B .C .D .二、多选题(本题共3小题,每小题6分,共18分,在每小题给出的选项中,有多项符合题目要求,全部选对得6分,部分选对得部分分,有选错的得0分)9.若是的必要不充分条件,则实数a 的值可以为( )A .2B .C .D .010.下列说法正确的是( )A .若幂函数的图象经过点,则函数的解析式为B .若函数,则在区间上单调递减C .若正实数m ,n 满足,则D .若函数,则对任意,,且,有11.定义域为的奇函数,满足,下列叙述正确的是( )A .存在实数,使关于的方程有3个不同的解B .当时,恒有C .若当时,的最小值为1,则D .若关于的方程和的所有实数根之和为0,则或三、填空题(本题共3小题,每小题5分,共15分)12.已知不等式对任意恒成立,则正实数a 的取值范围是 .13.若函数的定义域为,则的定义域为 .14.设函数的定义域为,满足,且当时,.若()f x R()12,0,x x ∀∈+∞12x x <()()1221212x f x x f x x x -<-()12f =-()00f =()2f x >-[]1,1-()()1,00,1-U ()()1,01,-⋃+∞()1,1-2:60p x x +-=:10q ax +=12-1314,2⎛⎫ ⎪⎝⎭12y x -=2()f x x -=()f x (,0)-∞1122m n >1122m n --<1()f x x -=1x 2(,0)x ∈-∞12x x ≠()()122f x f x +<122x x f +⎛⎫ ⎪⎝⎭R ()f x 22,2()2322,02x f x x x x x ⎧>⎪=-⎨⎪-+<≤⎩k x ()f x k =1211x x -<<<()()12f x f x >(0,]x a ∈()f x 51,2a ⎡⎤∈⎢⎥⎣⎦x 3()2f x =()f x m =32m =-38m =-191ax x +≥-(0,1)x ∈()21f x -[]3,1-y =()f x R 1(1)()2f x f x +=(0,1]x ∈()(1)f x x x =--对任意,都有,则的取值范围是 .四、解答题(本题共5小题,共77分,解答应写出文字说明、证明过程或演算步骤)15.已知实数集,集合,集合(1)当时,求;(2)设,求实数的取值范围.16.中国芯片产业崛起,出口额增长迅猛,展现强劲实力和竞争力.中国自主创新,多项技术取得突破,全球布局加速.现有某芯片公司为了提高生产效率,决定投入万元买一套生产设备.预计使用该设备后,前n ()年的支出成本为万元,每年的销售收入98万元.使用若干年后对该设备处理的方案有两种,方案一:当总盈利额达到最大值时,该设备以20万元的价格处理;方案二:当年平均盈利额达到最大值时,该设备以30万元的价格处理,哪种方案较为合理?并说明理由(注:年平均盈利额)17.已知函数.(1)若,求在上的值域;(2)设,记的最小值为,求的最小值.[,)x m ∈+∞8()9f x ≤m R 2{2150}A x x x =--<{1}B x x a =-<1a =a 160*N n ∈()2102n n -=总盈利额年度()()2231,2f x x x g x x x a x =+-=--+1a =()g x []2,2x ∈-()()()x f x g x ϕ=-()x ϕ()h a ()h a18.已知函数的定义域为,对任意的,都有.当时,.(1)求的值,并证明:当时,;(2)判断的单调性,并证明你的结论;(3)若,求不等式的解集.19.若函数G 在上的最大值记为,最小值记为,且满足,则称函数G 是在上的“美好函数”.(1)下列三个函数①;②;③,哪个(些)是在上的美好函数,说明理由.(2)已知函数.①函数G 是在上的“美好函数”,求a 的值;②当时,函数G 是在上的“美好函数”,求t 的值;(3)已知函数,若函数G 是在(m 为整数)上的“美好函数”,且存在整数k ,使得,求a 的值.()f x +R ,a b +∈R ()()()f a f b f ab +=01x <<()0f x >()1f 1x >()0f x <()f x ()21f =-()2110f ax x ax +-++<()m x n m n ≤≤<max y min y max min 1y y -=m x n ≤≤1y x =+|2|y x =2y x =12x ≤≤2:23(0)G y ax ax a a =--≠12x ≤≤1a =1t x t ≤≤+2:23(0)G y ax ax a a =-->221m x m +≤≤+maxminy k y =参考答案:题号12345678910答案B B A C D B C D BCD ACD 题号11 答案ACD12.13.14.15.(1)(2)16.方案二更合理,理由如下:设为前年的总盈利额,单位:万元;由题意可得,方案一:总盈利额,当时,取得最大值;此时处理掉设备,则总利额为万元方案二:平均盈利额为,当且仅当,即时,等号成立;即时,平均盈利额最大,此时,此时处理掉设备:总利润为万元;综上,两种方案获利都是万元,但方案二仅需要年即可,故方案二更合适.17. (1) (2)18.(1)因为,都有,所以令,得,则,因为时,,所以当时,,则,令,得,所以,证毕.(2)在上单调递减,证明如下:不妨设,则,,令,则,所以,即,所以在上单调递减;[4,)+∞51,2⎛⎤ ⎥⎝⎦43m ≥-{|3025}x x x -<≤≤<或(,4]-∞()f n n ()()229810216010100160f n n n n n n =---=-+-()()221010016010590f n n n n =-+-=--+5n =()f n 909020110+=()210100160161010010020f n n n n nn n -+-⎛⎫==-++≤-= ⎪⎝⎭16n n=4n =4n =()80f n =8030110+=11043,92⎡⎤-⎢⎥⎣⎦1-,a b +∈R ()()()f a f b f ab +=1a b ==()()()111f f f +=01x <<()0f x >1x >101x <<1(0f x>1,a x b x ==()()110f x f f x ⎛⎫+== ⎪⎝⎭()10f x f x ⎛⎫=-< ⎪⎝⎭()f x +R 120x x <<1201x x <<12()0x f x >122,x a x b x ==1212()()()x f x f f x x +=1212()()()0x f x f x f x -=-<12()()f x f x >()f x +R(3)由,得,又,所以,由(2)知在上单调递减,所以,所以,所以,当时,不等式为,所以不等式的解集为;当时,不等式为,所以不等式的解集为;当时,不等式为,若时,则,所以不等式的解集为,若时,则,所以不等式的解集为,若时,则,所以不等式的解集为,综上所述:时,不等式的解集为,时,不等式的解集为,时,不等式的解集为,当时,不等式的解集为,时,不等式的解集为.19.(1)对于①在上单调递增当时,,当时,,∴,符合题意; 对于②在上单调递增当时,,当时,,∴,不符合题意; 对于③在上单调递增当时,,当时,,∴,不符合题意;故①是在上的美好函数;(2)①二次函数对称轴为直线,当时,,当时,,当时,在上单调递增,,,当时,在上单调递减,,,综上所述,或;②二次函数为,对称轴为直线,在上单调递增,在上单调递减,当,,当时,, 当时,.若,在上单调递增,()2110f ax x ax +-++<()211f ax x ax +-+<-()21f =-()()212f ax x ax f +-+<()f x +R 212ax x ax +-+>2(1)10ax a x +-->(1)(1)0ax x +->0a >1()(1)0x x a+->1(,)(1,)a -∞-⋃+∞0a =10x ->(1,)+∞0a <1()(1)0x x a+-<1a =-11a-=∅10a -<<11a ->1(1,a-1a <-11a -<1(,1)a-1a <-1(,1)a-1a =-∅10a -<<1(1,)a-0a =(1,)+∞0a >1(,)(1,)a-∞-⋃+∞1y x =+1x =2y =2x =3y =max min 1y y =-|2|y x =1x =2y =2x =4y =max min 1y y ≠-2y x =1x =1y =2x =4y =max min 1y y ≠-12x ≤≤2:23(0)G y ax ax a a =--≠1x =1x =14y a =-2x =23y a =-0a >2:23(0)G y ax ax a a =--≠()21341y y a a ∴-=---=1a ∴=0a <2:23(0)G y ax ax a a =--≠()21431y y a a ∴-=---=1a ∴=-1a =1a =-2:23(0)G y ax ax a a =--≠223y x x =--1x =223y x x =--(),1∞-x t =2123y t t =--1x t =+()()22212134y t t t =+-+-=-1x =34y =-1t >223y x x =--[],1t t +则,解得(舍去);若,在上单调递减,在上单调递增,则,解得(舍去),;若,在上单调递减,在上单调递增,则,解得,(舍去);若,在上单调递减,则,解得(舍去).综上所述,或;(3)由(2)可知,二次函数对称轴为直线,又,, ,当时,在上单调递增当时取得最大值,时取得最小值,∴,为整数,且,,即的值为5,又∵,,.()22214231y y t t t -=----=1t =112t ≤≤223y x x =--[],1t (]1,1t +()223441y y t -=---=1t =-1t =102t ≤<223y x x =--[],1t (]1,1t +()()2132341y y t t -=----=0t =2t =0t <223y x x =--[],1t t +()22122341y y t t t -=----=0t =0t =1t =2:23(0)G y ax ax a a =--≠1x =221m x m +≤≤+ 1m ∴>3221m x m ∴<+≤≤+221m x m +≤≤+2:23(0)G y ax ax a a =--≠[]2,21m m ++21x m =+2x m =+2max 2min (21)2(21)34484(2)2(2)333y a m a m a m k y a m a m a m m +-+-+====-+-+-++m k 1m >38m ∴+=m max min 1y y =-()()()()22101210135225231a a a a a a ⎡⎤∴+-+--+-+-=⎣⎦164a ∴=。
2024-2025学年安徽省合肥市合肥一六八中学高一上学期第二次月考数学试题一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.已知集合M ={x|6x−3<3},N ={−2,0,1,3},则M ∩N =( )A. {0,1,3}B. {−2}C. {−2,0}D. {−2,0,1,3}2.已知集合A ,B ,若A 不是B 的子集,则下列说法正确的是( )A. 对∀a ∈A ,都有a ∉B B. 对∀b ∈B ,都有b ∉A C. 存在a ,满足a ∈A 且a ∉BD. 存在a ,满足a ∈A 且a ∈B3.设函数f (x )={x 2+2x +1,x <03x +6,x ≥0,则不等式f (x )>f (1)的解集是( )A. (−∞,−4)∪(1,+∞) B. (−∞,−2)∪(1,+∞)C. (−∞,−4)∪(2,+∞) D. (−∞,−2)∪(2,+∞)4.下列命题是真命题的为( )A. 若a >b >0>c >d ,则ab >cd B. 若a >b ,则ac 2>bc 2C. 若a >b >0且c <0,则ca 2>cb 2D. 若a >b ,则1a >1b5.命题“∃x ∈[−1,2],12x 2+x−32−a ≥0”为真命题的一个必要不充分条件是( )A. a ≤0B. a ≤1C. a ≤2D. a ≤36.已知函数y =f(x +1)的定义域为[−2,3],则y =f (2x +1)x−1的定义域为( )A. [−5,5]B. (1,5]C. (1,32]D. [−5,32]7.如图,水平放置的矩形ABCD 中,AB =6cm,BC =8cm ,菱形EFGH 的顶点E ,G 在同一水平线上,点G 与AB 的中点重合,EF =2 3cm,∠E =60∘,现将菱形EFGH 以1cm/s 的速度沿BC 方向匀速运动,当点E 运动到CD 上时停止.在这个运动过程中,菱形EFGH 与矩形ABCD 重叠部分的面积S (cm 2)与运动时间t (s )之间的函数关系图象大致是( )A. B.C. D.8.设正实数x ,y ,z 满足x 2−xy +4y 2−z =0,则当xyz 取得最大值时,2x +1y −3z 的最大值为( )A. 2B. 1516C. 1D. 94二、多选题:本题共3小题,共18分。
高一数学 第二次月考试卷班级______姓名________ 命题教师——一、选择题(本题12小题,每题5分,共60分)1、函数1y x=+ D ) A. [)4,-+∞ B .()()4,00,-+∞ C .()4,-+∞ D. [)()4,00,-+∞2、若集合{}{}21,02,A x x B x x =-<<=<<则集合A B 等于(D )A 、{}11x x -<<B 、{}21x x -<<C 、{}22x x -<<D 、{}01x x <<3、若集合{}2228x A x Z +=∈<≤,{}220B x R x x =∈->,则()R A C B 所含的元素个数为( C )A 、0B 、1C 、2D 、34、函数1()f x x x=-的图像关于( C )。
A. y 轴对称 B .直线y x =-对称 C .坐标原点对称 D.直线y x =对称5、已知函数()f x 为奇函数,且当0x >时,21()f x x x=+,则(1)f -= (D) A.2 B.1 C.0 D.-26、若)(x f 是偶函数,其定义域为),(+∞-∞,且在[)+∞,0上是减函数,则)23(-f 与)252(2++a a f 的大小关系是 ( C ) A 、)252()23(2++>-a a f f B 、)252()23(2++<-a a f f C 、)252()23(2++≥-a a f f D 、)252()23(2++≤-a a f f 7、若)(x f ,)(x g 都是奇函数,且2)()()(++=x bg x af x F 在),0(+∞上有最大值8,则)(x F 在)0,(-∞上有 ( D )A 、最小值8-B 、最大值8-C 、最小值6-D 、最小值4-8、设253()5a =,352()5b =,252()5c =,则,,a b c 的大小关系是 ( A ) A 、a c b >> B 、a b c >> C 、c a b >> D 、b c a >>9、函数1()(0,1)x f x a a a +=>≠的值域为[)1,+∞,则(4)f -与(1)f 的关系是( A )A 、(4)(1)f f ->B 、(4)(1)f f -=C 、(4)(1)f f -<D 、不能确定10、若函数234y x x =--的定义域为[]0,m ,值域为25,44⎡⎤--⎢⎥⎣⎦,则m 的取值范( B )A. 3(,3)2 B. 3,32⎡⎤⎢⎥⎣⎦ C. (]0,3 D. 3,32⎡⎫⎪⎢⎣⎭11、已知[]1,1-∈x 时,02)(2>+-=a ax x x f 恒成立,则实数a 的取值范围是( A ) A.(0,2) B.),(∞+2 C. ),(∞+0 D.(0,4) 12、奇函数()f x 的定义域为R ,若(2)f x +为偶函数,且(1)1f =,则(8)(9)f f += ( D ) A 、2- B 、1- C 、0 D 、1二、填空题(本题共4小题,每题5分,共20分)13、设集合{}{}21,1,3,2,4,A B a a =-=++{}3A B =,则实数a 的值为_1____ 。
答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。
亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。
相信你是最棒的!第二学期第二次月考高一年级 数学试题满分150 时间:120分钟一、单项选择题(每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的)1. 以3i 2-的虚部为实部,以23i 2i +的实部为虚部的复数是( )A. 33i - B. 3i + C. 22i -+ D. 22i+【答案】A 【解析】【分析】确定所求复数的实部和虚部,即可得解.【详解】复数3i 2-的虚部为3,复数23i 2i 32i +=-+的实部为3-,故所求复数为33i -,故选:A.2. 下列命题中,正确的是( )A. 有两个侧面是矩形的棱柱是直棱柱B. 侧面都是等腰三角形的棱锥是正棱锥C. 侧面都是矩形的直四棱柱是长方体D. 底面为正多边形,且有相邻两个侧面与底面垂直的棱柱是正棱柱【答案】D 【解析】【分析】根据直棱柱,正棱锥,长方体,正棱柱的结构特征及定义逐一判断即可.【详解】解:对于A ,因为侧棱都垂直于底面的棱柱叫直棱柱,当两个侧面是矩形时,不能保证所有侧棱都垂直于底面,这样的棱柱不是直棱柱,故A 错误;对于B ,侧棱都相等且底面是正多边形的棱锥叫做正棱锥,故B 错误;对于C ,当底面不是矩形时,这样的四棱柱不是长方体,故C 错误;对于D ,因为棱柱的侧棱平行,则相邻两个侧面与底面垂直,可得所有的侧棱与底面都垂直,所以底面为正多边形,且有相邻两个侧面与底面垂直的棱柱是正棱柱,故D 正确.故选:D .3. 已知ABC V 中,4,30a b A ===°,则B 等于( )A. 60°或120°B. 30°或150°C. 60°D. 30°【答案】A 【解析】【分析】直接利用正弦定理即可得解.【详解】解:ABC V 中,因为4,30a b A ===°,所以B A >,因为sin sin a bA B=,所以sin sin b A B a ==,又0180A <<°°,所以60B =°或120°.故选:A .4. 若复数z 满足()212i z i +=-,则复数z 所对应的点位于A. 第一象限 B. 第二象限C. 第三象限D. 第四象限【答案】D 【解析】【详解】解:由题意可得:122iz i -====+ ,据此可知:复数z 所对应的点位于第四象限.本题选择D 选项.5. 已知平面向量,a b rr 满足3,2a b ==r r ,a r 与b r 的夹角为60°,若()a mb a -^r r r ,则实数m 的值为( )A. 1 B.32C. 2D. 3【答案】D 【解析】【详解】,a b r r的夹角为60o ,且3,2a b ==r r ,则·32cos 603a b =´´=o r r ,又由()a mb a -^r r r ,可得()·0a mb a -=r r r ,变形可得2·a ma b=r r r ,即93m =´ ,解可得3m = ,故选D.6. ABC D 内角A ,B ,C 的对边分别为a ,b ,c ,已知2b =,6B p=,4C p=,则ABC D 的面积的为A. 2+B.1+C. 2-D.1-【答案】B 【解析】详解】试题分析:根据正弦定理,,解得,,并且,所以考点:1.正弦定理;2.面积公式.7. 已知是球的球面上两点,,为该球面上的动点.若三棱锥体积的最大值为36,则球的表面积为( )A. 36πB. 64πC. 144πD. 256π【答案】C 【解析】【详解】如图所示,当点C 位于垂直于面AOB 的直径端点时,三棱锥O ABC -的体积最大,设球O 的半径为R ,此时2311136326O ABC C AOB V V R R R --==´´==,故6R =,则球O 的表面积为24144S R p p ==,故选C .考点:外接球表面积和椎体的体积.8. 向量()1,1a =-r ,且向量a r与向量2a b +r r 方向相同,则a b ×r r 的取值范围是( )A. ()1,1- B. ()1,-+µ【C. ()1,+µD. (),1-µ【答案】B 【解析】【分析】根据共线向量定理,结合条件列出方程,即可得到结果.【详解】因向量a r与向量2a b +r r 方向相同,则存在实数,0l l >,使得()2a a bl =+r r r 即()12a bl l -=r r所以12b a l l -=r r,因为()1,1a =-r ,所以22a =r 所以2112ab a l ll l --×=×=r r r 因为0l >,所以1a b ×>-r r故选:B .二、多项选择题:每小题5分,共20分.在每小题给出的选项中有多项符合题目要求,全部选对的得5分,部分选对得2分,有选错的得0分)9. 在ABC V 中,222sin sin sin sin sin A B C B C +-≤,则A 可以是( )A.π12B.6p C.π3D.2π3【答案】ABC 【解析】【分析】利用正弦定理结合余弦定理可求得cos A 的取值范围,可求得角A 的取值范围,即可得出合适的选项.【详解】在ABC V 中,设内角A 、B 、C 的对边分别为a 、b 、c ,因为222sin sin sin sin sin A B C B C +-≤,可得222b c a bc +-³,则2221cos 22b c a A bc +-=³,0πA <<Q ,π03A \<£.故选:ABC.10. 下列命题中错误的有( )A. 若平面内有四点A B C D 、、、,则必有AC BD BC AD +=+uuu r uuu r uuu r uuu r;为B. 若e r为单位向量,且//a e r r ,则a a e =r r r ;C. 3a a a a =r r r r g g ;D. 若a r 与b r 共线,又b r 与c r 共线,则a r 与c r必共线;【答案】BCD 【解析】【分析】利用平面向量的减法化简判断选项A ;由向量共线以及单位向量的性质判断选项B ;由数量积的运算判断选项C ,由向量共线以及零向量的性质判断选项D .【详解】对于A ,AC BD BC AD -=-uuu r uu uuu r Q u r uuu r ,AC BD BC AD \+=+uuu r uuu r uuu r uuu r,正确;对于B ,e r为单位向量,且//a e r r ,则a a e =±r r r ,错误;对于C ,23a a a a a a =¹r r r r r r g g g ,错误;对于D ,若0b =r r ,则a r 与b r 共线,b r 与c r 共线,而a r 与c r不确定,错误;故选:BCD11. 在四棱锥P ABCD -中,已知PA ^底面ABCD ,且底面ABCD 为矩形,则下列结论中正确的是( )A. 平面PAB ^平面PADB. 平面PAB ^平面PBCC. 平面PBC ^平面PCDD. 平面PCD ^平面PAD【答案】ABD 【解析】【分析】根据线面垂直的判定定理和面面垂直的判定定理,逐项判定,即可求解.【详解】对于A 中,由已知PA ^底面ABCD ,且底面ABCD 为矩形,所以,PA AB AB AD ^^,且PA AD A Ç=,,PA AD Ì平面PAD ,所以AB ^平面PAD ,又由AB Ì平面PAB ,所以平面PAB ^平面PAD ,所以A 正确;对于B 中,由已知PA ^底面ABCD ,且底面ABCD 为矩形,所以,PA BC AB BC ^^,且PA AB A =I ,,PA AB Ì平面PAB ,所以BC ^平面PAB ,又由BC Ì平面PBC ,所以平面PAB ^平面PBC ,所以B 正确;对于C 中,假设平面PBC ^平面PCD ,过点B 作BE PC ^,可得BE ^平面PCD ,因为CD Ì平面PCD ,所以BE CD ^,又由CD BC ^,且BE BC B =I ,所以CD ^平面PBC ,可得CD PC ^,这与CD PD ^矛盾,所以平面PBC 与平面PCD 不垂直,所以C 不正确;对于D 中,由已知PA ^底面ABCD ,且底面ABCD 为矩形,所以,PA CD AD CD ^^,且PA AD A Ç=,,PA AD Ì平面PAD ,所以CD ^平面PAD ,又由CD Ì平面PCD ,所以平面PCD ^平面PAD ,所以D 正确.故选:ABD.12. 已知函数()sin f x x x =,则下列命题正确的是( )A. 函数π()(0,)2f x x éùÎêúëû的单调递增区间是π0,6éùêúëû;B. 函数()f x 的图象关于点π(,0)6-对称;C. 函数()f x 的图象向左平移(0)m m >个单位长度后,所得的图象关于y 轴对称,则m 的最小值是π6;D. 若实数m 使得方程()f x m =在[]02π,上恰好有三个实数解1x ,2x ,3x ,则1237π3x x x ++=.【答案】ACD 【解析】【分析】根据辅助角公式把函数的关系变形为正弦型函数,进一步利用正弦型函数的性质应用即可判断各选项.【详解】由()sin f x x x =,得()π2sin 3f x x æö=+ç÷èø.对于A ,当π0,2x éùÎêëû时,ππ56π,33x éù+Îêúëû,当πππ332x £+£即π06x ££时,函数()f x 单调递增,所以函数()f x 单调递增区间为π0,6éùêúëû,故A 正确;对于B ,当π6x =-时,ππππsin sin f æöæö-=-+==¹ç÷ç÷èøèø22106636,故B 不正确;对于C ,函数()f x 的图象向左平移(0)m m >个单位长度后,得到()πsin g x x m æö=++ç÷èø23所得的图象关于y 轴对称,所以πππ(Z)m k k +=+Î32,解得ππ(Z)m k k =+Î6,当0k =时,m 的最小值是π6,故C 正确;对于D ,如图所示,实数m 使得方程()f x m =在[]02π,上恰好有三个实数解1x ,2x ,3x ,则必有0x =,或2πx =,此时()πsin f x x æö=+=ç÷èø23π3.所以1237π3x x x ++=,故D 正确.故选:ACD.5分,共20分)13. 计算100的结果为______.【答案】1-【解析】【分析】先求出41=-,所以100425´=,代入即可得出答案.)i 1==+,)()221i 12i i 2ù=+==úû,42i 1==-,所以()1004252511´==-=-.故答案为:1-14. 在正四面体A -BCD 中,二面角A -BC -D 的余弦值是_______ .【答案】13【解析】【分析】根据二面角平面角的定义,结合正四面体的性质,找出该角,由余弦定理,可得答案.【详解】如图,取BC 的中点F ,连接AF ,DF ,则AF BC ^,DF BC ^,即AFD Ð为二面角A BC D --的平面角,设正四面体D ABC -的棱长为6,在正ABC V 中,sin 60AF AB==o sin 60DF BD ==o由余弦定理2221cos 23FD FA AD AFD FD FA +-Ð===××.故答案为:13.15. 若向量a r 、b r 满足1a =r ,2b =r ,且a r 与b r 的夹角为3p,则a b -=rr ________.【解析】【分析】利用平面向量数量积的运算律求得2a b -r r的值,进而可求得a b -r r 的值.【详解】由于向量a r 、b r 满足1a =r ,2b =r ,且a r 与b r 的夹角为3p ,则cos 13a b a b p ×=×=r r r r ,()222223a b a ba ab b -=-=-×+=r r r rr r r r Q,因此,a b -=r r .【点睛】本题考查利用平面向量的数量积求向量的模,考查计算能力,属于基础题.16. ABC V 中60B =o,AC =2AB BC +最大值______.【答案】【解析】【分析】根据余弦定理,列出方程,利用一元二次方程根的判别式,可得答案.详解】设AB c =,AC b =,BC a =,由余弦定理:222cos 2a c b B ac+-=,所以2223a c ac b +-==,设2c a m +=,则2c m a =-,代入上式得227530a am m -+-=,方程有解,所以28430m D =-³,故m £,当m =时,此时a =,c =,符合题意,因此最大值为.故答案为:.四、解答题(本大题共6小题,共70分.解答应有文字说明,证明过程或演算步骤)17. 已知三个点A (2,1),B (3,2),D (-1,4).(1)求证:AB uuu r ⊥AD uuu r;(2)要使四边形ABCD 为矩形,求点C 的坐标.【答案】(1)证明见解析 (2)(0,5)【解析】【分析】(1)计算AB AD ×uuu r uuu r得其为0可证;(2)由AB uuu r =DC uuu r可得C 点坐标.【小问1详解】证明:A (2,1),B (3,2),D (-1,4).∴AB uuu r =(1,1),AD uuu r=(-3,3).【又∵AB uuu r ·AD uuu r =1×(-3)+1×3=0,∴AB uuu r ⊥AD uuu r .【小问2详解】∵AB uuu r ⊥AD uuu r ,若四边形ABCD 为矩形,则AB uuu r =DC uuu r.设C 点的坐标为(x ,y ),则有(1,1)=(x +1,y -4),∴11,41,x y +=ìí-=î∴0,5.x y =ìí=î∴点C 的坐标为(0,5).18. 在正三棱柱111ABC A B C -中,1AB AA =,D 是1CC 的中点,F 是1A B 的中点.(1)求证://DF 平面ABC ;(2)求证:AF BD ^ .【答案】(1)证明见解析(2)证明见解析【解析】【分析】(1)取AB 的中点E ,连接CE 、EF ,证明出四边形CDFE 为平行四边形,可得出//DF CE ,再利用线面平行的判定定理可证得结论成立;(2)证明出CE ^平面11AA B B ,可得出CE AF ^,可得出AF DF ^,再证明出1AF A B ^,利用线面垂直的判定定理与性质定理可证得结论成立.【小问1详解】证明:取AB 的中点E ,连接CE 、EF ,如下图所示:在正三棱柱111ABC A B C -中,11//AA CC 且11AA CC =,因为E 、F 分别为AB 、1A B 的中点,则1//EF AA 且112EF AA =,D Q 为1CC 的中点,则1CD AA //且112CD AA =,//CD EF \且CD EF =,所以,四边形CDFE 为平行四边形,故//DF CE ,DF ËQ 平面ABC ,CE Ì平面ABC ,因此,//DF 平面ABC .【小问2详解】证明:1AA ^Q 平面ABC ,CE Ì平面ABC ,1CE AA \^,ABC Q V 为等边三角形,E 为AB 的中点,则CE AB ^,1AB AA A Ç=Q ,AB 、1AA Ì平面11AA B B ,CE \^平面11AA B B ,AF ÌQ 平面11AA B B ,则AF CE ^,//DF CE Q ,AF DF \^,1AB AA =Q ,F 为1A B 的中点,则1AF A B ^,1A B DF F =Q I ,1A B 、DF Ì平面1A BD ,AF \^平面1A BD ,BD ÌQ 平面1A BD ,AF BD \^.19. 当实数m 为何值时,复数()()2281532i 8z m m m m -+-+=+在复平面内的对应点满足下列条件:(1)位于第四象限;(2)位于实轴负半轴上(不含原点);(3)在上半平面(含实轴).【答案】(1)73m -<<(2)4m =(3)7m £-或4m ≥【解析】【分析】(1)由实部大于0且虚部小于0列出不等式组求解;(2)由实部小于0且虚部等于0列式求解;(3)由虚部大于或等于0列出不等式求解.【小问1详解】要使点位于第四象限,则有228150,3280,m m m m ì-+>í+-<î∴35,74,m m m <>ìí-<<î或∴73m -<<;【小问2详解】要使点位于实轴负半轴上(不含原点),则有228150,3280,m m m m ì-+<í+-=î∴35,74,m m m <<ìí=-=î或∴4m =;【小问3详解】要使点在上半平面(含实轴),则有20328m m +-³,解得7m £-或4m ≥.20. 已知ABC V 的三边长分别是3AC =,4BC =,5AB =,以AB 所在直线为轴,将此三角形旋转一周,求所得旋转体的表面积和体积.【答案】845p ,485p 【解析】【分析】根据旋转体的定义,明确组合体是由同底的两个圆锥组成的,结合圆锥的侧面积和体积公式可得答案.【详解】如图,在ABC V 中,过C 作CD ⊥AB ,垂足为D .由AC =3,BC =4,AB =5,知AC 2+BC 2=AB 2,则AC ⊥BC ,∵BC ·AC =AB ·CD ,∴CD =125,记为r =125,那么ABC V 以AB 所在直线为轴旋转所得旋转体是两个同底的圆锥,且底半径r =125,母线长分别是AC =3,BC =4,所以S 表面积=πr ·(AC +BC )=π×125×(3+4)=845π,V =13πr 2(AD +BD )=13πr 2·AB =13π×12()52×5=485π.21. 在锐角三角形ABC V 中,角,,A B C 对边分别为,,a b c2sin 0b A -=.(1)求角B 的大小;(2)若5a c +=,且,a c b >=,求AB AC ×u u u r u u u r的值.的【答案】(1)3B p=;(2)1AB AC ×=uuu r uuu r .【解析】【分析】(1)利用正弦定理,直接计算求解即可.(2)利用余弦定理,计算求出cos A ,然后,利用向量的内积公式,即可求解.【小问1详解】2sin 0b A -=2sin sin 0A B A -=,因为sin 0A ¹,所以sin B =,又B 为锐角,所以3B p =.【小问2详解】由(1)知,3B p =,因为b =,所以根据余弦定理得2272cos 3a c ac p =+-,整理得2()37a c ac +-=,又5a c +=,所以6ac =,又a c >,所以3,2a c ==,于是222cos 2b c a A bc +-===所以||||cos 21AB AC AB AC A ×===uuu r uuu r uuu r uuu r .22. 如图,四面体ABCD 中,O 、E 分别是BD 、BC 的中点,2,CA CB CD BD AB AD ======(1)求证:AO ^平面BCD ;(2)求异面直线AB 与CD 所成角的大小;(3)求点E 到平面ACD 的距离.【答案】(1)证明见解析(2)(3【解析】【分析】(1)根据线面垂直判定定理,结合勾股定理和等腰三角形的性质,可得答案;(2)根据异面直线夹角的定义,结合中位线性质和余弦定理,可得答案;(3)根据等体积法,结合三角形面积公式,可得答案.【小问1详解】证明:,,.BO DO AB AD AO BD ==\^Q 则222AO BO AB +=,即1AO =,,,.BO DO BC CD CO BD ==\^Q 则222CO BO BC +=,即CO =,在AOC △中,由已知可得2222,AC AO CO AC =\+=,.AO OC ^BD OC O Ç=Q ,,BD OC Ì平面BCD ,AO \^平面BCD【小问2详解】取AC 的中点M ,连结OM 、ME 、OE ,由E 为BC 的中点知,ME AB OE DC ////\直线OE 与EM 所成的锐角就是异面直线AB 与CD 所成的角在OME V 中,111,22EM AB OE DC ====OM Q 是直角AOC △斜边AC 上的中线,11,2OM AC \==222cos 2OE EM OM OEM OE EM +-\Ð==××\异面直线AB 与CD 所成角的大小为;【小问3详解】设点E 到平面ACD 的距离为.h 11,.33E ACD A CED ACDCED V V h S AO S --=\××=××V V Q 在ACD △中,2,CA CD AD ===12ACD S ==\V 而11,12CED AO S ===V,AC CED D AO S h S ×\===V V \点E 到平面ACD。
山东省潍坊市部分学校2023-2024学年高一下学期第二次月考数学试题一、单选题1.在ABC V 中,角,,A B C 的对边分别为,,a b c ,且222a c b a c+-=,4ac =,则B A B C ⋅=u u u r u u u r ( )AB .C .2D .2-2.在一次数学测试中,某学习小组6名同学的成绩(单位:分)分别为65,82,86,82,76,95.关于这组数据,下列说法错误的是A .众数是82B .中位数是82C .极差是30D .平均数是823.在复平面内,复数()4i 1i +的共轭复数对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限 4.宋代是中国瓷器的黄金时代,涌现出了五大名窑:汝窑、官窑、哥窑、钧窑、定窑.其中汝窑被认为是五大名窑之首.如图1,这是汝窑双耳罐,该汝窑双耳罐可近似看成由两个圆台拼接而成,其直观图如图2所示.已知该汝窑双耳罐下底面圆的直径是12厘米,中间圆的直径是20厘米,上底面圆的直径是8厘米,高是14厘米,且上、下两圆台的高之比是3:4,则该汝窑双耳罐的体积是( )A .1784π3B .1884π3C .2304π3D .2504π35.正四棱柱1111ABCD A B C D -中,三棱锥1A ABD -的体积为11,3AC 与底面ABCD 所成角的)A .10B .12C .14D .186.在ABC V 中,AB AC =,若点O 为ABC V 的垂心,且满足14AO AB xAC =+u u u r u u u r u u u r ,则c o s BAC ∠的值为( )A .12 B .13 C .14 D .157.在明代珠算发明之前,我们的先祖从春秋开始多是用算筹为工具来记数、列式和计算的.算筹实际上是一根根相同长度的小木棍,如图是利用算筹表示数1~9的一种方法,例如:47可以表示为“”,已知用算筹表示一个不含“0”且没有重复数字的三位数共有504种等可能的结果,则这个数至少要用8根小木棍的概率为( )A .1114B .314C .7384D .678.在一次考试中有一道4个选项的双选题,其中B 和C 是正确选项,A 和D 是错误选项,甲、乙两名同学都完全不会这道题目,只能在4个选项中随机选取两个选项.设事件M =“甲、乙两人所选选项恰有一个相同”,事件N =“甲、乙两人所选选项完全不同”,事件X =“甲、乙两人所选选项完全相同”,事件Y =“甲、乙两人均未选择B 选项”,则( )A .事件M 与事件N 相互独立B .事件X 与事件Y 相互独立C .事件M 与事件Y 相互独立D .事件N 与事件Y 相互独立二、多选题9.有下列说法,其中正确的说法为( )A .若sin 2sin 2AB =,则ABC V 是等腰三角形B .若PA PB PB PC PC PA ⋅=⋅=⋅u u u r u u u r u u u r u u u r u u u r u u u r ,则P 是三角形ABC 的垂心C .若222sin sin cos 1A B C ++<,则ABC V 为钝角三角形D .若//a b r r ,则存在唯一实数λ使得a b λ=r r10.已知m ,n 是不同的直线,α,β是不重合的平面,则下列命题中,真命题有( )A .若//αβ,m α⊥,//m n ,则n β⊥B .若//m α,//m β,n αβ=I ,则//m nC .若//m α,//m n ,则//n αD .若m α⊥,m β⊥,n ⊂α,则//n β11.正多面体也称柏拉图立体(被誉为最有规律的立体结构),是所有面都只由一种正多边形构成的多面体(各面都是全等的正多边形).数学家已经证明世界上只存在五种柏拉图立体,即正四面体、正六面体、正八面体、正十二面体、正二十面体.已知一个正八面体ABCDEF的棱长都是2(如图),则( )A .//BE 平面ADFB .直线BC 与平面BEDF 所成的角为60°C .若点P 为棱EB 上的动点,则AP CP +的最小值为D .若点P 为棱EB 上的动点,则三棱锥F ADP -的体积为定值43三、填空题12.已知三个复数1z ,2z ,3z ,且122z z ==,3z 1z ,2z 所对应的向量1OZ u u u u r ,2OZ u u u u r 满足120OZ OZ ⋅=u u u u r u u u u r ;则312z z z --的最大值为. 13.在棱长为2的正方体1111ABCD A B C D -中,则它的外接球的表面积为;若E 为11B C 的中点,则过B 、D 、E 三点的平面截正方体1111ABCD A B C D -所得的截面面积为.14.已知由小到大排列的6个数据1,2,3,5,6,m ,若这6个数据的极差是它们中位数的2倍,则m 的值是.四、解答题15.已知复数z 在复平面上对应点在第一象限,且z =2z 的虚部为2.(1)求复数z ;(2)设复数z 、2z 、2z z -在复平面上对应点分别为A 、B 、C ,求AB AC ⋅uu u r uu u r 的值.16.如图,在直四棱柱1111ABCD A B C D -中,底面ABCD 为正方形,E 为棱1AA 的中点,12,3AB AA ==.(1)求三棱锥A BDE -的体积.(2)在1DD 上是否存在一点P ,使得平面1//PAC 平面EBD .如果存在,请说明P 点位置并证明.如果不存在,请说明理由.17.如图,在长方体1111ABCD A B C D -中,13,2AB BC BB ===,(1)求证:11BD B C ⊥;(2)求直线1BD 与平面11ADD A 所成角的正切值.18.奔驰定理是一个关于三角形的几何定理,它的图形形状和奔驰轿车logo 相似,因此得名.如图,P 是ABC V 内的任意一点,角A ,B ,C 所对的边分别为a ,b ,c ,总有优美等式:0PBC PAC PAB PA S PB S PC S ⋅+⋅+⋅=u u u r u u u r u u u r r △△△.(1)若P 是ABC V 的内心,234b a c ==,延长AP 交BC 于点D ,求AP PD; (2)若P 是锐角ABC V 的外心,2A B =,PB xPA yPC =+u u u r u u u r u u u r ,求x y +的取值范围.19.第19届亚运会将于2023年9月23日至10月8日举办,本届亚运会共设40个竞赛大项.其中首次增设了电子竞技项目.与传统的淘汰赛不同,近年来一个新型的赛制“双败赛制”赢得了许多赛事的青睐.传统的淘汰赛失败一场就丧失了冠军争夺的权利,而在双败赛制下,每人或者每个队伍只有失败了两场才会淘汰出局,因此更有容错率.假设最终进入到半决赛有四支队伍,淘汰赛制下会将他们四支队伍两两分组进行比赛,胜者进入到总决赛,总决赛的胜者即为最终的冠军.双败赛制下,两两分组,胜者进入到胜者组,败者进入到败者组,胜者组两个队伍对决的胜者将进入到总决赛,败者进入到败者组.之前进入到败者组的两个队伍对决的败者将直接淘汰,胜者将跟胜者组的败者对决,其中的胜者进入总决赛,最后总决赛的胜者即为冠军,双败赛制下会发现一个有意思的事情,在胜者组中的胜者只要输一场比赛即总决赛就无法拿到冠军,但是其它的队伍却有一次失败的机会,近年来从败者组杀上来拿到冠军的不在少数,因此很多人戏谑这个赛制对强者不公平,是否真的如此呢?这里我们简单研究一下两个赛制,假设四支队伍分别为A、B、C、D,其中A对阵其他三个队伍获胜概率均为p,另外三支队伍彼此之间对阵时获胜概率均为12.最初分组时AB同组,CD同组.(1)若34p ,在淘汰赛赛制下,A、C获得冠军的概率分别为多少?(2)分别计算两种赛制下A获得冠军的概率(用p表示),并据此简单分析一下双败赛制下对队伍的影响,是否如很多人质疑的“对强者不公平”?。
2024级高一数学试题总分:150分 时间:120分钟一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.命题“,”的否定为( )x ∀∈R 2210x x -+>A., B.,x ∀∈R 2210x x -+<x ∀∉R 2210x x -+>C., D.,x ∃∈R 2210x x -+≥x ∃∈R 2210x x -+≤2.定义集合运算.设,,则集合的真子{},,A B c c a b a A b B ==+∈∈◇{}0,1,2A ={}2,3,4B =A B ◇集个数为( )A.32B.31C.30D.153.设集合,,那么下面的4个图形中,能表示集合到集合且{}02M x x =≤≤{}02N y y =≤≤M N 以集合为值域的函数关系的有( )NA ①②③④ B.①②③C.②③D.②4.已知函数.下列结论正确的是( )()223f x x x =-++A.函数的减区间()f x ()(),11,3-∞- B.函数在上单调递减()f x ()1,1-C.函数在上单调递增()f x ()0,1D.函数的增区间是()f x ()1,3-5.已知函数,则下列关于函数的结论错误的是( )()22,1,12x x f x x x +≤-⎧=⎨-<<⎩()f xA. B.若,则()()11f f -=()3f x =x C.的解集为 D.的值域为()1f x <(),1-∞()f x (),4-∞6.已知函数的定义域和值域都是,则函数的定义域和值域分别为( )()f x []0,1fA.和B.和⎡⎣[]1,0-⎡⎣[]0,1C.和D.和[]1,0-[]1,0-[]1,0-[]0,17.设函数;若,则实数的取值范围是( )()()()4,04,0x x x f x x x x +≥⎧⎪=⎨--<⎪⎩()()231f a f a ->-a A. B.()(),12,-∞-+∞ ()(),21,-∞-+∞ C. D.()(),13,-∞-+∞ ()(),31-∞-+∞ 8.已知函数满足,则( )()f x ()111f x f x x ⎛⎫+=+⎪-⎝⎭()2f =A. B. C. D.34-343294二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分9.设集合,集合,若,则实数的值可以为( {}2280A x x x =--={}40B x mx =-=A B =∅R m )A. B. C.0 D.12-1-10.已知对任意的,不等式恒成立,则下列说法正确的是( )0x <()()240ax x b -+≥A. B.0a >0b <C.的最小值为8 D.的最小值为2a b -1b a +16411.已知,均为正实数.则下列说法正确的是( )x y A.的最大值为22xy x y +128.若,则的最大值为84x y +=22x y +C.若,则的最小值为21y x+=1x y +3+D.若,则的最小值为22x y x y +=-12x y x y +++169三、填空题:本题共3小题,每小题5分,共15分.12.函数______()f x =13.已知函数满足对任意实数,都有成立,()25,1,1x ax x f x a x x⎧-+≤⎪=⎨>⎪⎩12x x ≠()()()21210x x f x f x --<⎡⎤⎣⎦则实数的取值范围是______a 14.记为,,中最大的数.设,,则的最小值为______.{}max ,,abc a b c 0x >0y >13max ,,y x x y ⎧⎫+⎨⎬⎩⎭四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(本小题满分13分)(1)已知是一次函数,且,求的解析式;()f x ()()94ff x x =+()f x (2)已知函数.求的解析式;()24212f x x x +=-()f x (3)已知函数满足,求函数的解析式.()f x ()1222f x f x x ⎛⎫-++= ⎪⎝⎭()y f x =16.(本小题满分15分)已知定义在的函数,,满足对,等式()0,+∞()f x ()21f =(),0,x y ∀∈+∞恒成立且当时,.()()()f xy f x f y =+1x >()0f x >(1)求,的值;()1f 14f ⎛⎫ ⎪⎝⎭(2)若,解关于的不等式:.()21f =x ()()64f x f x +-≤17.(本小题满分15分)已知函数()21,1,1x ax x f x ax x ⎧-++≤=⎨>⎩(1)若,用定义法证明:为递增函数;3a =()f x (2)若对任意的,都有,求实数的取值范围.x ()22f x x >-a 18.(本小题满分17分)两县城和相距20km ,现计划在县城外以为直径的半圆弧(不含A B AB AB 两点)上选择一点建造垃圾处理站,其对城市的影响度与所选地点到城市的距离有关,垃圾处理厂AB C 对城的影响度与所选地点到城的距离的平方成反比,比例系数为4;对城的影响度与所选地点到城A A B 的距离的平方成反比,比例系数为,对城市和城市的总影响度为城市和城市的影响度之和,B K A B A B 记点到城市的距离为,建在处的垃圾处理厂对城和城的总影响度为,统计调查表明:当C A x C A B y 垃圾处理厂建在的中点时,对城和城的总影响度为0.065.AB AB (1)将表示成的函数;y x(2)判断弧上是否存在一点,使得建在此处的垃圾处理厂对城市和城的总信影响度最小?若存AB A B 在,求出该点到坡的距离;若不存在,说明理由.A 19.(本小题满分17分)已知集合,其中,由中元{}()12,,2k A a a a k =⋅⋅⋅⋅⋅⋅≥()1,2,i a Z i k ∈=⋅⋅⋅⋅⋅⋅A 素可构成两个点集和:,.P Q (){},,,P x y x A y A x y A =∈∈+∈(){},,,Q x y x A y A x y A =∈∈-∈其中中有个元素,中有个元素.新定义一个性质:若对任意的,,则称集合具P m Q n G x A ∈x A -∉A 有性质G(1)已知集合与集合和集合,判断它们是否具有性{}0,1,2,3J ={}1,2,3K =-{}222L y y x x ==-+质,若有,则直接写出其对应的集合、;若无,请说明理由;G P Q (2)集合具有性质,若,求:集合最多有几个元素?A G 2024k =Q (3)试判断:集合具有性质是的什么条件并证明.A G m n =。
高一数学第二次月考题
第I 卷(选择题,共60分)
一、选择题(每小题5分,共60分,在每小题给出的四个选项中,只有一项符合题目要求)
1、(){}3,=+=y x y x A ,(){}1,=-=y x y x B ,则=B A
A 1,2==y x
B {}1,2
C ()1,2 D
(){}1,2
2.已知3
cos 5
∂=-
,且∂为第二象限角,那么tan ∂的值为 A 43 B 43- C 34 D 34-
3.角θ满足sin tan 0θθ,则角θ的终边在
A 第一,三象限
B 第二,三象限
C 第一,四象限
D 第三,四象限
4
D .(3,4)
5.设函数
{2,(10)
(6),(10)()x x f x x f x -≥+=,则(5)f =
A 8
B 9
C 10
D 11
6. ()f x 2
x mx =-+在(],1-∞上是增函数,则实数m 的取值范围为
A {}2
B (],2-∞
C [)2,+∞
D (],1-∞
7、张三在放学回家的路上,开始和同学边走边讨论问题,走得比较慢;然后他们索性
停下来将问题彻底解决;最后他快速地回到了家。
下列图象中与这一过程吻合得最好的
是
8. 函数y =的定义域是
A .1,2⎡⎫+∞⎪⎢⎣⎭
B .1,12⎛⎤ ⎥⎝⎦
C .]2,1()1,2[⋃--
D .1,12⎛⎫ ⎪⎝⎭
9.已知2)()
(
+=
x g x f ,且)(x g 为奇函数,若(2)3g =,则)2(-f =
A . 0
B .-3
C .-1
D .3
时间
时间
时间
时间
A
C
D
B
10.已知函数2()3f x ax bx a b =+++在
[]3,2a a -上为偶函数,则a b +的值为
A 0 B
1
3
C 1
D 1- 11. .已知函数()y f x =的图像与函数()21x h x -=-的图像关于直线y x =对称,则(3)f 的值
A 1
B -1
C 2
D -2
12.函数
2y ax bx =+与log (0,)b a
y x ab a b =≠≠在同一直角坐标系中的图
像可能是
第Ⅱ卷(非选择题,共90分)
二、填空题(本大题共4小题,每小题4分,共16分,把答案填在答题卷的相应位置) 13. 已知..4sin
25∂=,且∂在第二象限,则tan 2
∂
=
14.某工厂生产某种产品的固定成本为2000万元,每生产一个该产品,成本增加10万元,又知总收
入k 是产品数θ的函数:2
14020
k θθ=-,则利润L 的最大值为_____________。
15.若函数
()1x f x a =- (0a
且1a ≠)的定义域和值域均为[]0,2,则实数a =_____。
16.以下结论正确的有 (写出所有正确结论的序号)
①函数x
y 1
=
在()()+∞∞-,00, 上是减函数;②对于函数()12+-=x x f ,当12x x 时,
都有()()1
2
f x f x ;③已知幂函数的图象过点⎪⎪
⎭
⎫ ⎝⎛53
2,2,则当1>x 时,该函数的图象
始终在直线x y =的下方;④奇函数的图像必过坐标原点;⑤函数)
(x f 21x m =--
(m R ∈)只有一个零点,则1m ≥。
三、解答题(本大题共6小题,共74分,解答应写出文字说明、证明过程或演算步骤)
17.化解计算 (1)
(6分)
(2)
353s i n (1200)c o s (
)
c o s 585t a n ()
34
o
o
ππ---(6分)
18 (本小题满分12分)
已知函数)(x f 是定义在R 上的偶函数,且当
x ≤0时,
x x x f 2)(2+=
(1)现已画出函数)(x f 在y 轴左侧的图像,如图所示,请补出
)(x f 在y 轴右侧的图象并写出x R ∈时()f x 的解析式(5分)。
(2) 根据图象写出函数)(x f 的递增区间和值域
(3分)
(3),若x R ∈时不等式22x x m +≥恒成立,求实数m 的取值范围。
(3分)
19.已知函数1
()21
x
f x a =
++是奇函数 (1)求常数a 的值。
(3分)
( 2 ) 判断()f x 的单调性并给出证明。
(5分)
(3)求出()f x 的值域。
(4分)
20.《中华人民共和国个人所得税法》规定,公民全月工资、薪金等总收入不超过3500元的部分不必纳税,超过3500元的部分为全月应纳税所得额,此项税款按下表分段累
(1)若某人全月工资、薪金等总收入为x (125000≤<x )元,应纳税为y 元,写
出y 与x 的函数关系式(8分);
(2)若某人一月份纳税145元,那么他当月的工资、薪金等总收入是多少元。
(4分)
21.已知函数ax x x f 2)(2-=,[]1,1-∈x
(1)若函数)(x f 的最小值为()a g ,求()a g ;(4分) (2)判断并证明函数()x g 的奇偶性;(4分)
(3)若函数()()m x x g x h --=有两个零点,求实数m 的取值范围。
(4分)
22、两题选择一题(14分)
A:已知
)(x f 是定义在R 上函数,当0x 时()0f x ,且对于任意的
,(+)(a)()a b R f a b f f b ∈=+都有, 2
(1)
3
f =-。
(1)求证:)(x f 是R 上的减函数;(6分) (2)求)(x f 在[]3,3-的值域。
(8分)
B:若函数f (x )在定义域D 内任意两个不相等的实数1
2,x x
,
都有1212[()()]
()22
x x f x f x f ++>
,则称函数f (x )在定义域D 内为凸函数;若函数f (x )在定义域D 内任意两个不相等的实数12,x x ,都有12
12[()()]
(
)2
2
x x f x f x f ++,则称函数f (x )在定义域D 内为凹函数。
凸函数和凹函数统称函数的凹凸性。
(1)试判断函数2()f x x =及函数g (x )=2log x
在各自定义域内的凹凸性(4分),并
说明理由。
(6分)
(2)设函数()h x 在(0,+∞)上为凹函数,且值域为(0,1),()1
12
h >,试求出一个满足
以上条件的函数()h x 的解析式.(4分)
22、解:(1)()f x A ∈,()g x A ∉. ……………………………………… 2分
对于()f x A ∈的证明. 任意12,x x R ∈且12x x ≠,
2222
2121212121122212()()2()()222241
()04
f x f x x x x x x x x x x x f x x ++++-+-=-=
=-> 即
1212()()()22
f x f x x x
f ++>. ∴()f x A ∈ …………………………… 4分
对于()g x A ∉,举反例:当11x =,22x =时,
1222()()11
(log 1log 2)222g x g x +=+=,
122221231
()log log log 2222x x g ++==>=, 不满足
1212()()()22
g x g x x x
g ++>. ∴()g x A ∉. ………………………6分 ⑵函数2()3x
f x ⎛⎫
= ⎪⎝⎭
,当(0,)x ∈+∞时,值域为(0,1)且21(1)32f =>.…… 8分
任取12,(0,)x x ∈+∞且12x x ≠,则
12
121122122121222
22222
22()()1222()2222333122221222023333233x x x x x x x x x x f x f x x x f +⎡⎤
++⎛⎫⎛⎫⎛⎫⎢⎥
-=+-⋅ ⎪ ⎪ ⎪
⎢⎥⎝⎭⎝⎭⎝⎭
⎣⎦⎧⎫⎡⎤
⎡
⎤⎡⎤
⎪⎪⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎢⎥⎢⎥⎢⎥
=-⋅⋅+=->⎨⎬ ⎪ ⎪ ⎪ ⎪
⎪ ⎪
⎢⎥⎢⎥⎢⎥⎝⎭⎝⎭
⎝⎭
⎝⎭⎝⎭⎝⎭⎪⎪⎣
⎦⎣
⎦
⎣⎦⎩⎭
即
1212()()()22f x f x x x f ++>. ∴2()3x
f x A ⎛⎫
=∈ ⎪⎝⎭
. …………………14分 说明:本题中()f x 构造类型()x
f x a =1(1)2a <<或()k
f x x k
=
+(1)k >为常见.。