Coated nanoparticles and quantum dots for solution-based fabrication of photovoltaic cells
- 格式:pdf
- 大小:228.74 KB
- 文档页数:17
几种新型无机纳米药物载体的研究进展学院:专业:学号:姓名:日期:摘要:无机纳米药物载体系统作为新型的药物投递和控制释放系统受到国内外学者的广泛关注,本文主要介绍磁性纳米粒、载药纳米羟基磷灰石、量子点几种新型无机载药纳米粒子的典型制备工艺及存在的问题,并展望了这几种载药纳米粒子的发展前景。
关键词:磁性纳米粒载药纳米羟基磷灰石量子点前言:常见的纳米药物载体主要包括无机纳米药物载体和有机高分子纳米药物载体.其中,高分子纳米粒子作为药物载体研究得比较早,目前已有少量基于高分子纳米载体的药物得到欧美一些国家药监部门批准用于临床治疗[1].这是因为高分子纳米粒子生物相容性好,毒性小,药物可通过物理包覆或者化学键合的方式结合到高分子纳米粒子中,其释放后高分子载体可通过降解排出体外[2].常见的无机纳米药物载体包括磁性纳米粒子、介孔二氧化硅、纳米碳材料、量子点等这些无机纳米药物载体,在实现靶向性给药、控释和缓释药物以及癌症靶向治疗等方面表现出良好的应用前景.[3]与高分子纳米粒子相比,无机纳米粒子不仅尺寸、形貌可控性好比表面积大,而且独特的光、电、磁性质赋予其具有潜在的成像显影、靶向输送和协同药物治疗等功能,使其更适于在细胞内进行药物输送[4].本文主要介绍Fe3O4磁性纳米粒、载药纳米羟基磷灰石、量子点几种新型载药纳米粒子的典型制备工艺及存在的问题,并展望了这几种载药纳米粒子的发展前景。
1.Fe3O4磁性纳米粒生物医学领域使用磁性纳米粒子主要就是由于其具有特殊的磁性能,通常是以磁性纳米粒子(如铁、铁氧化物、镍、钴等)为核、有机物或无机物为壳,通过表面修饰包覆或组装等作用形成的具有独特功能的复合粒子。
纳米磁靶向药物载体作为一种新型药物载体,能在特定的导向机制下,将药物高效的运输到靶器官,使药物在局部发挥作用,大大地降低了药物对全身的毒副作用[5]。
磁性纳米粒子因其良好的超顺磁性可使其在外磁场的作用下方便地进行磁性分离和导向,而且由于磁性纳米粒子能够在磁场中不被永久磁化,因此在体内既安全又易于控制。
材料化工专业英语生词本Synthesis 合成Properties 性质Anatase 锐钛矿rutile 金红石brookite板钛矿Crystalline 结晶的nanometer 纳米nanorods/wires纳米棒/线nanocrystals 纳米晶体nanocarriers 纳米载体nanoparticles (NPs)纳米颗粒nanocomposite纳米复合Hierarchical Nanostructures 分层纳米材料titanium dioxide TiO2 polymorphs of titania 多晶型 TiO2 amorphous 非晶的Three-dimensional 3Dfacile and controlled 容易控制hydrothermal 热液的annealing 退火investigate 调查,研究radially 放射状地petal 花瓣thin 薄的thick 厚的morphology 形态The surface area 表面积adsorption-desorption 吸附-解析(ads)orption isotherms 吸附等温线the Brunauer-Emmett-Teller BET 比表面积测试法specific surface areas 比表面积sensitivity 灵敏、灵敏性ethanol 乙醇、酒精ethylene glycol 乙二醇EG化学式C2H6O2分子式:HOC2H4OHsensor 传感器、感应器solar cells太阳能电池biosensors 生物传感器catalyst 催化剂Catalysis 催化photo-catalytic 光催化的inorganic 无机的objective 目标optimize 使完善、使优化optical 光学的magnetic 磁的application 应用bandgap 带隙transition metal oxides 过渡金属氧化物paint 油漆、颜料gas sensor 气敏元件、气敏传感器Li-ion battery 锂离子电池Electrochromic 电致变色的Photochromism 光致变色macro/mesoporous materials 宏/介孔材料CVD(Chemical Vapor Deposition, 化学气相沉积)Anodic 阳极的hydrothermal method 水热法Template 样板、模板oriented attachment 定向附着primary nanoparticle 初级纳米粒子anisotropic非等方性的、各向异性的capping agents 盖髓剂kirkendall effect柯肯达尔效应tetragonal structure 四方结构photovoltaic cells 光伏电池smart surface coatings 智能表面涂层single-phase 单相precursor 先驱、前导Herein 在此处、鉴于、如此 Nanoflakes 纳米片metal-enhanced fluorescence 金属增强荧光fluorophores 荧光团The Royal Society of Chemistry 英国皇家化学学会ESI (Electronic Supplementary Material) 电子补充材料 Innovative 创新的 Polymer 聚合物 Chemical 化学品 Silica 硅 FITC (fluorescein isothiocyanate )荧光异硫氰酸酯EiTC ( Eosin isothiocyanate ) 异硫氰酸曙红Fluorescence spectra 荧光光谱 control sample 对照样品 Dissolve 溶解Characterization 表征 analytical grade 分析纯 ethanol 乙醇ethylene glycol 乙二醇 ammonia aqueous solution (28 wt %)氨水溶液(100公斤里含28公斤) acetone 丙酮分子式:C3H6O 简式:CH3COCH3EtoH 乙醇 ( PS :Et 代表乙基CH3CH2- Me 代表甲基CH3-)TEOS (tetraethyl orthosilicate ) 原硅酸四乙酯the TEOS concentration TEOS 浓度 CTAB (hexadecyltrimethylammonium bromide ) 十六甲基溴化铵The CTAB surfactant CATB 表面活性剂Sinopharm Chemical Reagent Co. 国药集团化学试剂有限公司Polyvinylpyrrolidone (PVP, Mw = 55000) 聚乙烯吡咯烷酮(PVP ,MW = 55000=兆瓦,百万瓦特(megawatt))Rhodamine B (Rh B) 玫瑰精,若丹明B poly(allylamine hydrochloride) (PAH, Mw = 56000) 聚(烯丙胺盐酸盐) Deionized water 去离子水PAH ( polycyclic aromatic hydrocarbon )多环芳族烃 Via 经由、通过the three-neck flask 三颈烧瓶 oil bath 油浴precipitate 沉淀centrifugation 离心分离 rpm 每分钟转数 core-shell 核-壳a surfactant-templating sol-gel approach 表面活性剂模板溶胶 - 凝胶法homo-dispersed solution 均聚物分散夜agitate 搅拌ultrasonically and mechanically 超声波地、机械地solvent extraction method 溶剂萃取法reflux 回流an impregnation method 浸渍方法 vial 小瓶 dilute 稀释composite 合成物、复合物TEM (Transmission electron microscopy )透射电子显微镜copper grids 铜网carbon films 碳膜SEM(Scanning electron microscopy)扫描电子显微镜Spray 喷FESEM(Field-emission scanning el ectron microscopy)场发射扫描电子显微镜LCSM(Laser confocal scanning microscopy )激光共聚焦扫描显微镜X-ray diffraction (XRD) X 射线衍射X-ray diffractometer X射线衍射仪Nitrogen 氮Micromeritcs n. 微晶(粒)学,粉末工艺学;粉体学degas除去瓦斯vacuum 真空BET(The Brunauer-Emmett-Teller) pore volume 孔体积spectrofluorometer 荧光分光剂spectrophotometer分光光度计bandpass 带通PMT voltage (Photomultiplier Tube)光电倍增管电压Confocal luminescence images共聚焦荧光图像Silver 银silica spacer 硅垫片fabricate制造; 伪造; 组装; 杜撰the metal-enhancedMEF(the metal-enhanced fluorescence )金属增强荧光Fluorescence quenching 荧光猝灭FRET (Fo¨rs ter resonance energy transfer )福斯特共振能量转移Optimization 最佳化; 最优化excited-state 激发态plasmon 等离子基元quantum yields 量子产率quantum dots 量子点resonance n.共振,共鸣, 反响, 回声donor–acceptor pairs 给体- 受体对proximity 接近efficiency 效率the transfer distances 传输距离deposite 被沉淀,存放plastic planar substrate塑料平面基板photoluminescence (PL)光致发光luminescent 发光的single nanoparticle sensing单一纳米粒子传感dielectric电介质; 绝缘体adj.非传导性的RE complexes稀土复合Polyelectrolytes聚合高分子电解质Electrolyte电解质Multilayer 多层Concentric 同中心的functionalized organic molecules 官能有机分子conjugation 结合,配合tedious and fussy繁琐和挑剔obstacle n.障碍, 阻碍, 妨害物controlled release,控释detection and probe applications 检测和探头应用general一般的; 综合的; 普通的universal普遍的, 通用的, 全体的Inspired 启发Possess 拥有Pore 孔drugs and macro-molecules 药物和大分子herein在此处, 鉴于, 如此Ag@SiO2@mSiO2(Ag-core@silica-spacer@mesoporo us silica )The preparation procedure编制程序Water-soluble可溶于水的; 水溶性的,微溶于水A high-temperature solvothermal method一种高温溶剂热法Solvent 溶剂Esolution 分辨率twinned structures 联动结构,孪生结构concentration 浓度tune 调节is ascribed to 归因于dilute稀释spherical morphology 球形形态type-IV curves IV型曲线polyelectrolytesodium chloride食盐; 氯化钠plasmonic absorption电浆吸收an intuitive way 以直观的方式unambiguous 不含糊的, 明白的demonstrate 证明antibody 抗体NSF(National Sanitation Foundation)美国国家卫生基金会PRC(The People's Republic of China)中华人民共和国Shanghai Municipality上海市Shanghai Leading Academic Discipline Project上海重点学科建设项目Tri-functional hierarchical三官能分层DSSCs(dye-sensitized solar cells)染料敏化太阳能电池DOI(Digital Object Unique Identifier)是一种数字对象标识体系acid thermal method 酸热法titanium n-butoxid正丁醇钛acetic acid乙酸、醋酸kinetic 动能light-scattering 光散射photoelectrodes 光电极opto-electronic 光电的calcine煅烧short-circuit photocurrent density短路光电流密度open-circuit voltage开路电压compared to 相比,把什么比作什么electron 电子recombination rates 重组率oxide 氧化物inorganic 无机的sub-microspheres 亚微球beads珠子To date 迄今a ruthenium complex light-harvester钌络合物的光收割机volatile 挥发性的photoanode光阳极superior 好的,卓越的photons 光子photovoltaic performance光伏性能In addition to 除。
2016年第35卷第12期 CHEMICAL INDUSTRY AND ENGINEERING PROGRESS ·3991·化工进展电化学免疫传感器在肿瘤标志物检测中的应用张浩春,吕佳,张冰,高文超,李兴,常宏宏,魏文珑(太原理工大学化学化工学院,山西太原 030024)摘要:肿瘤是严重威胁人类健康的疾病之一,降低恶性肿瘤死亡率的主要途径是早期诊断和治疗,肿瘤标志物在肿瘤早期诊断中具有重要的临床应用价值。
随着纳米技术的迅猛发展,基于纳米材料构建的电化学传感器可实现对肿瘤标志物的检测,且具有检测灵敏度高、选择性好等优点。
本文重点综述了碳纳米材料、贵金属纳米材料、氧化物纳米材料、量子点纳米材料等新型纳米材料电化学免疫传感器的构建原理及其在甲胎蛋白、前列腺抗原、癌胚抗原等肿瘤标志物检测中的应用,分析总结了基于不同纳米材料构建的电化学传感器在各种肿瘤标志物检测中的优缺点,并展望了电化学传感器的发展趋势,提出未来电化学免疫传感器应以微型化、高通量化和商业化为研究重点,并实现对肿瘤标志物的快速、在线、实时检测。
关键词:肿瘤;肿瘤标志物;电化学传感器;纳米材料中图分类号:O 652 文献标志码:A 文章编号:1000–6613(2016)12–3991–10DOI:10.16085/j.issn.1000-6613.2016.12.036Electrochemical immunosensors for the detection of tumor markersZHANG Haochun,LÜ Jia,ZHANG Bing,GAO Wenchao,LI Xing,CHANG Honghong,WEI Wenlong(College of Chemistry and Chemical Engineering,Taiyuan University of Technology,Taiyuan 030024,Shanxi,China)Abstract:Tumor is one of the severe threats to human health. The death rate of malignant can mainly reduced through early diagnosis and treatment. Therefore tumor markers are of significant clinic value in the early diagnosis. With the rapid development of nanotechnology,electrochemical sensor based on nanomatericals can make the detection of tumor markers with high sensitivity and selectivity. The protocol focused on the construction principle of electrochemical immunosensors using new nanomaterials such as carbon nanomaterials,noble metal nanoparticles,oxide nanomaterials,and quantum dot nanomaterials. It also focused on the applications of those immunosensors in the detection of alpha-fetoprotein,prostate antigen,carcinoembryonic antigen,and other tumor markers. The advantages and disadvantages of electrochemistrical sensors constructed on different nanomaterials in the detection of various tumor markers are analyzed and summarized. It is concluded that future development of the electrochemical immunosensors should be focus on miniaturization,high capacity,and commercialization of fast repoense,on-line,and real-time detection of tumor markers.Key words:tumor;cancer biomarkers;electrochemical biosensors;nanomaterial癌症也称恶性肿瘤,目前已成为中国乃至全世界最重要的死亡原因,也是非常重要的公共健康问题[1]。
Lyso-Tracker Red (溶酶体红色荧光探针)产品简介:Lyso-Tracker Red 是一种溶酶体(lysosome)红色荧光探针,能通透细胞膜,可以用于活细胞溶酶体特异性荧光染色。
Lyso-Tracker Red 为采用Molecular Probes 公司的DND-99进行了荧光标记的带有弱碱性的荧光探针,其中仅弱碱可部分提供质子,以维持pH 在中性,可以选择性地滞留在偏酸性的溶酶体中,从而实现对于溶酶体的特异性荧光标记。
中性红(Neutral Red)和吖啶橙(Acridine Orange)也都可以对溶酶体进行荧光染色,但中性红和吖啶橙的染色缺乏特异性。
Lyso-Tracker Red 适用于活细胞溶酶体的荧光染色,但不适合用于固定细胞溶酶体的荧光染色。
Lyso-Tracker Red 分子的化学结构式参考图1。
图1. Lyso-Tracker Red 的化学结构式。
Lyso-Tracker Red 的分子式为C 20H 24BF 2N 5O ,分子量为399.25,最大激发波长为577nm ,最大发射波长为590nm 。
Lyso-Tracker Red 的激发光谱和发射光谱参考图2。
图2. Lyso-Tracker Red的激发光谱和发射光谱。
Lyso-Tracker Red 是嗜酸性荧光探针,用于活细胞内酸性细胞器的标记和示踪。
这些探针具有几个重要特征,包括高度选择靶向酸性细胞器和在纳摩尔浓度有效标记活细胞。
Lyso-Tracker Red 必须在极低浓度(通常约50nM)下才能获得优异的选择性。
这些探针的滞留(retention)机制虽然没有被研究清楚,但很可能与酸性细胞器的质子化和滞留性有关,Lyso-Tracker Red 探针的内吞作用动力学研究显示染料进入活细胞的摄入时间仅几秒即可。
然而,这些溶酶体探针会导致溶酶体被碱化,长期孵育会诱使溶酶体pH 值的增加。
纳米技术的发展英语作文The Evolution of Nanotechnology: Transforming the World.In the realm of scientific advancements, nanotechnology has emerged as a transformative force, revolutionizing various industries and opening up unprecedented possibilities. Nanotechnology refers to the manipulationand engineering of matter at the nanoscale, typically ranging from 1 to 100 nanometers. At this microscopic scale, materials exhibit unique properties and phenomena that are distinct from their macroscopic counterparts, enabling scientists and engineers to design and fabricate materials with exceptional characteristics.Origins and Historical Development.The concept of manipulating matter at the nanoscale can be traced back to the early 20th century. However, it wasnot until the 1980s, with the advent of scanning tunneling microscopes and atomic force microscopes, that scientistsgained the ability to visualize and manipulate individual atoms and molecules. The field of nanotechnology gained significant momentum in the 1990s and early 2000s, as advancements in microscopy, synthesis techniques, and computational modeling laid the foundation for the rapid development of nano-enabled technologies.Key Principles and Applications.Nanotechnology encompasses a diverse range of disciplines, including physics, chemistry, biology, and materials science. Its key principles revolve around the manipulation of materials at the nanoscale, enabling the creation of materials with tailored properties. Some of the fundamental concepts in nanotechnology include:Size Dependence: The properties of materials change significantly at the nanoscale, as quantum effects become dominant. This size dependence allows for the creation of materials with enhanced strength, reactivity, andelectrical conductivity.Surface Area to Volume Ratio: Nanoparticles have a large surface area relative to their volume, providing increased reactivity and interaction with surrounding molecules.Quantum Confinement: The confinement of electrons in nanoparticles results in discrete energy levels, leading to unique optical and electronic properties.Industries Impacted by Nanotechnology.Nanotechnology has found applications in a wide range of industries, including:Electronics: Nano-enabled materials are used to create smaller, faster, and more efficient electronic devices, such as transistors, displays, and sensors.Healthcare: Nanoparticles are utilized for drug delivery, gene therapy, and tissue engineering, offering targeted treatment and improved patient outcomes.Energy: Nano-materials are employed in the development of more efficient solar cells, batteries, and fuel cells.Manufacturing: Nanotechnology enables the creation of new materials with enhanced properties, leading to advancements in lightweight materials, coatings, and manufacturing processes.Consumer Products: Nano-additives are incorporated into textiles, cosmetics, and other consumer products to enhance their properties and introduce new functionalities.Nanoscale Phenomena and Novel Properties.The manipulation of matter at the nanoscale has led to the discovery of novel phenomena and properties, such as:Nanoparticle Self-Assembly: Nanoparticles can self-assemble into ordered structures, forming periodic patterns and even complex architectures with tunable properties.Surface Plasmons: The interaction of light with metalnanoparticles can generate surface plasmons, which are collective oscillations of electrons that give rise to unique optical properties.Quantum Dots: Quantum dots are semiconductor nanoparticles that exhibit quantum confinement effects, resulting in tunable emission colors and improved quantum efficiency.Challenges and Future Prospects.While nanotechnology holds immense promise, it also presents several challenges:Toxicity and Safety: Concerns exist regarding the potential toxicity and environmental impact of nanomaterials, necessitating thorough risk assessment and regulation.Mass Production and Cost: Scaling up nanotechnology for mass production remains a challenge, as the synthesis and processing of nanomaterials can be complex and expensive.Ethical and Regulatory Issues: The ethical implications of nanotechnology, such as privacy concerns and potential misuse, require careful consideration and regulation.Despite these challenges, the future of nanotechnology looks promising. Continued advancements in microscopy, synthesis techniques, and computational modeling will enable the development of even more advanced and sophisticated nano-enabled technologies. Research in areas such as quantum computing, nano-biotechnology, and nano-medicine is expected to lead to groundbreaking discoveries and transformative applications that will shape the world for generations to come.Conclusion.Nanotechnology has emerged as a transformative force in the 21st century, empowering scientists and engineers to create materials with unprecedented properties and functionalities. By harnessing the unique phenomena and interactions that occur at the nanoscale, nanotechnology isrevolutionizing industries, improving healthcare, and opening up new frontiers in scientific research. As the field continues to advance, we can expect even more remarkable innovations that will shape our future and improve the human experience.。
Advanced Optical MaterialsIntroductionAdvanced optical materials refer to materials that possess uniqueoptical properties and have applications in various fields such as electronics, photonics, and optoelectronics. These materials are designed and engineered to manipulate light at the nanoscale, enabling the development of novel devices and technologies.Classification of Advanced Optical MaterialsAdvanced optical materials can be classified into several categories based on their properties and applications:1.Photonic Crystals: These materials have a periodic arrangement ofrefractive index variations, enabling the control and manipulation of light propagation. Photonic crystals find applications inoptical filters, waveguides, and sensors.2.Metamaterials: Metamaterials are artificially engineeredmaterials that possess unusual optical properties not found innaturally occurring materials. They have a unique refractive index and can exhibit negative refraction, enabling the development ofsuperlenses, invisibility cloaks, and other exotic devices.3.Plasmonic Materials: Plasmonic materials exhibit stronginteraction between light and free electrons at the nanoscale.They can confine and manipulate light beyond the diffraction limit, enabling the development of nanophotonic devices, biosensors, andenhanced solar cells.4.Quantum Dots: Quantum dots are semiconductor nanoparticles withunique optical properties. They can emit light of different colors depending on their size, making them useful in displays, lighting, and biological imaging.5.Nanophotonics: Nanophotonics involves the study and manipulationof light at the nanoscale. It combines nanotechnology, optics, and materials science to develop devices such as nanolasers, photoniccircuits, and ultra-sensitive detectors.6.Optical Fibers: Optical fibers are thin, flexible strands ofglass or plastic that can transmit light over long distances withminimal loss. They are used in telecommunications, medical imaging, and sensing applications.Applications of Advanced Optical MaterialsAdvanced optical materials have a wide range of applications across various fields:rmation Technology: Advanced optical materials are crucialfor the development of faster and more efficient data storage andcommunication technologies. Photonic crystals and metamaterialsare used in optical data storage, high-speed optical communication, and optical computing.2.Sensing and Imaging: Advanced optical materials play a vital rolein sensing and imaging technologies. Plasmonic materials andquantum dots are used in biosensors for detecting biologicalmolecules and in medical imaging for improved contrast andresolution.3.Energy: Advanced optical materials are used in solar cells toenhance light absorption and improve energy conversion efficiency.They are also used in light-emitting diodes (LEDs) for efficientand high-quality lighting.4.Optical Devices: Advanced optical materials enable thedevelopment of compact and efficient optical devices.Nanophotonics and photonic crystals are used in the fabrication of nanolasers, photonic integrated circuits, and ultra-sensitivedetectors.5.Biotechnology: Advanced optical materials have applications inbiotechnology and medicine. Quantum dots and plasmonic materialsare used for cellular imaging, drug delivery, and cancer therapy.Future OutlookThe field of advanced optical materials continues to evolve rapidly, driven by advancements in nanotechnology, materials science, and optics. Future research and development efforts are focused on:1.Enhancing Performance: Researchers are working on improving theoptical properties of advanced materials, such as increasing their efficiency, stability, and tunability.2.Integration and Miniaturization: The integration of advancedoptical materials into compact and multifunctional devices is amajor focus of ongoing research. This includes the development of on-chip photonic circuits and nanoscale optical devices.3.Biomedical Applications: Advanced optical materials hold greatpromise in biotechnology and medicine. Ongoing research aims todevelop targeted drug delivery systems, high-resolution imagingtechniques, and optical sensors for disease detection.4.Emerging Technologies: The field of advanced optical materials isalso exploring new technologies such as plasmonics, quantumphotonics, and 2D materials for novel applications incommunications, sensing, and computing.In conclusion, advanced optical materials offer immense potential for the development of next-generation devices and technologies. Their unique optical properties and versatile applications make them a vital area of research and innovation. Continued advancements in this field will drive progress in various sectors, from information technology to healthcare.。
和纳米技术有关的科技术语1. 纳米技术 - Nanotechnology2. 纳米颗粒 - Nanoparticles3. 纳米管 - Nanotubes4. 纳米机器人 - Nanorobots5. 纳米电子 - Nanoelectronics6. 纳米传感器 - Nanosensors7. 纳米光学 - Nano-optics8. 纳米生物技术 - Nanobiotechnology9. 纳米光电学 - Nano-photonics10. 纳米材料 - Nanomaterials11. 纳米结构 - Nanostructures12. 石墨烯 - Graphene13. 石墨烯氧化物 - Graphene oxide14. 石墨烯纳米带 - Graphene nanoribbons15. 石墨烯纳米薄膜 - Graphene nanofilms16. 石墨烯荧光 - Graphene fluorescence17. 石墨烯传感 - Graphene sensing18. 石墨烯传输 - Graphene transport19. 石墨烯电荷转移 - Graphene charge transfer20. 石墨烯量子点 - Graphene quantum dots21. 碳纳米管 - Carbon nanotubes22. 碳纳米管场效应晶体管 - Carbon nanotube field-effect transistor23. 碳纳米管半导体 - Carbon nanotube semiconductor24. 碳纳米管生物传感器 - Carbon nanotube biosensor25. 碳纳米管能源储存 - Carbon nanotube energy storage26. 金属纳米粒子 - Metal nanoparticles27. 金属纳米线 - Metal nanowires28. 磁性纳米粒子 - Magnetic nanoparticles29. 磁性纳米层 - Magnetic nanolayers30. 磁性纳米材料 - Magnetic nanomaterials31. 功能性化学改性 - Functional chemical modification32. 毛细管电泳 - Capillary electrophoresis33. 载体 - Carrier34. 暗场光学显微镜 - Dark-field optical microscopy35. 扫描电子显微镜 - Scanning electron microscopy36. 透射电子显微镜 - Transmission electron microscopy37. 原子力显微镜 - Atomic force microscopy38. 热致光谱 - Thermo-optical spectroscopy39. 场发射 - Field emission40. 多纳米分析 - Multi-nanoparticle analysis41. 纳米杆阵列 - Nanorod array42. 纳米表面改性 - Nanosurface modification43. 纳米芯片 - Nanochips44. 纳米加工 - Nanofabrication45. 纳米压印 - Nanoimprinting46. 纳米刻蚀 - Nanolithography47. 纳米雕刻 - Nanosculpting48. 纳米沉积 - Nanodeposition49. 纳米涂层 - Nanocoating50. 纳米生物传感 - Nano-biosensing51. 纳米药物传输 - Nanodrug delivery52. 纳米光学传感 - Nano-optical sensing53. 纳米机械元件 - Nanomechanical devices54. 纳米薄膜技术 - Nanofilm technology55. 纳米过滤器 - Nanofilters56. 纳米水分离 - Nanowater separation57. 纳米运动学 - Nanokinetics58. 表面等离子体共振 - Surface plasmon resonance59. 尖端热法 - Tip-enhanced thermal method60. 量子阱 - Quantum well61. 量子点 - Quantum dots62. 量子点掺杂 - Quantum dot doping63. 碳化硅 - Silicon carbide64. 碳纤维 - Carbon fiber65. 核壳纳米颗粒 - Core-shell nanoparticles66. 纳米弹性体 - Nanocomposites67. 纳米悬浮液 - Nanosuspension68. 纳米钛金属 - Nano-titanium metal69. 点阵孔隙膜 - Ordered porous membrane70. 工程纳米元件 - Engineered nanodevices71. 共价有机骨架 - Covalent organic frameworks72. 大面积石墨烯工程 - Large-scale graphene engineering73. 碳纳米管增强太阳电池 - Carbon nanotube-enhanced solar cells74. 纳米包埋 - Nanopatterning75. 生物材料 - Biomaterials76. 拓扑绝缘体 - Topological insulators77. 量子纠缠 - Quantum entanglement78. 光电加速器 - Photonic accelerator79. 多光子能量转换 - Multiphotonic energy conversion80. 崭新量子计算 - Novel quantum computing81. 量子共振能级 - Quantum resonant level82. 基于荧光的纳米传感器 - Fluorescent-based nanosensors83. 核酸疗法 - Nucleic acid therapy84. 纳米银 - Nano-silver85. 纳米氧化铜 - Nano-Copper Oxide86. 定向自组装 - Directed self-assembly87. 自组装结构 - Self-assembled structures88. 单原子催化剂 - Single-atom catalyst89. 纳米材料增强的电池 - Nanomaterial-enhanced batteries90. 生物质燃料晶体管 - Biomass fuel cell91. 纳米热管技术 - Nanothermal technology92. 纳米线电极 - Nanowire electrode93. 硫化铜纳米结构 - Copper sulfide nanocomposites94. 纳滤器 - Nanofilters95. 纳米可打印电子 - Nanoprinted electronics96. 特异性纳米传感器 - Specific nanosensors97. 荧光标记的纳米颗粒 - Fluorescent-labeled nanoparticles98. 纳米液晶 - Nanoliquid crystal99. 纳米微球 - Nanospheres100. 纳米脂质体 - Nanoliposomes。
金纳米粒子对骨科相关细胞增殖与代谢作用的研究进展林 琛,邢更彦【摘要】 金纳米粒子(gold nanoparticles,AuNPs)已在不同的领域表现出了很好的研究与应用前景,如化学、生物与医药等。
其中,在骨科学领域亦表现出了独特的生物效能,尤其对骨科学相关细胞的作用,如成骨细胞、破骨细胞、软骨细胞及人骨髓间充质干细胞(human bone marrow-derived mesenchymal stem cells,hMSCs)等。
不同直径、不同官能团修饰的AuNPs 可以不同程度地影响这些细胞的生物效应表达,同时也可获得细胞内的相关信息。
【关键词】 金纳米粒子;骨细胞;骨科学【中国图书分类号】 R87Advances in the effect of AuNPs on proliferation and metabolism of orthopedic-related cellsLIN Chen and XING Gengyan. Clinical School of General Hospital of Chinese People's Armed Police Force, Anhui Medical University, Beijing 100039, ChinaCorresponding author: XING Gengyan, E-mail: xgy7766@【Abstract 】 Research on gold nanoparticles (AuNPs) has showed commendable results and application prospects in chemistry, biology and medicine. It also showed promise as a biomaterial for tissue engineering in orthopaedics cells, such as osteablast, osteoclast, chondrocyte and human bone marrow-derived mesenchymal stem cells (hMSCs) and so on. The AuNPs with different particle sizes and functional groups influence cell viability differently, and simultaneously obtain cell information.【Key words 】 AuNPs; osteocyte; orthopedicsDOI :10.13919/j.issn.2095-6274.2017.04.014作者单位:100039 北京,安徽医科大学武警总医院临床学院通信作者:邢更彦,E-mail:xgy7766@纳米科技与纳米技术在许多领域均有着广泛的影响,包括生物医学的应用,如银纳米粒子(silver nanoparticles,AgNPs)、C60(fullerene)、量子点(quantum dots)等。