2015-2016学期初二上册数学知识点归纳:整式的乘法
- 格式:doc
- 大小:1.44 KB
- 文档页数:1
初中数学八年级上《整式的乘法及因式分解》知识点及经典题型1.幂的运算性质:a m ·a n =a m +n (m 、n 为正整数)同底数幂相乘,底数不变,指数相加.例:(-2a )2(-3a 2)3 2.()nm a = a mn (m 、n 为正整数)幂的乘方,底数不变,指数相乘.例: (-a 5)53.()nn n b a ab = (n 为正整数)积的乘方等于各因式乘方的积. 4.nm a a ÷= a m -n (a ≠0,m 、n 都是正整数,且m >n )同底数幂相除,底数不变,指数相减.5.零指数幂的概念:a 0=1 (a ≠0)任何一个不等于零的数的零指数幂都等于l .6.负指数幂的概念:a -p =pa 1 (a ≠0,p 是正整数)任何一个不等于零的数的-p (p 是正整数)指数幂,等于这个数的p 指数幂的倒数.也可表示为:ppn m m n ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-(m ≠0,n ≠0,p 为正整数)7.单项式的乘法法则:单项式相乘,把系数、同底数幂分别相乘,作为积的因式;对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.8.单项式与多项式的乘法法则:单项式与多项式相乘,用单项式和多项式的每一项分别相乘,再把所得的积相加.9.多项式与多项式的乘法法则:多项式与多项式相乘,先用一个多项式的每一项与另一个多项式的每一项相乘,再把所得的积相加.10、因式分解中常用的公式,例如:(1)(a+b)(a-b) = a 2-b 2 ---------a 2-b 2=(a+b)(a-b);(2) (a ±b)2 = a 2±2ab+b 2 ——— a 2±2ab+b 2=(a ±b)2;(3) (a+b)(a 2-ab+b 2) =a 3+b 3------ a 3+b 3=(a+b)(a 2-ab+b 2);(4) (a-b)(a 2+ab+b 2) = a 3-b 3 ------a 3-b 3=(a-b)(a 2+ab+b 2). 下面再补充两个常用的公式:(5)a 2+b 2+c 2+2ab+2bc+2ca=(a+b+c)2;(6)a 3+b 3+c 3-3abc=(a+b+c)(a 2+b 2+c 2-ab-bc-ca);11、凡是能用十字相乘法分解因式的二次三项式ax 2+bx+c ,都要求()nm a >0而且是一个完全平方数。
专题14.3整式的乘法(6大知识点15类题型)(知识梳理与题型分类讲解)第一部分【知识点归纳与题型目录】【知识点1】同底数幂的除法法则同底数幂相除,底数不变,指数相减,即mnm na a a -÷=(a ≠0,m n 、都是正整数,并且m n >)【要点提示】(1)同底数幂乘法与同底数幂的除法是互逆运算.(2)被除式、除式的底数相同,被除式的指数大于除式指数,0不能作除式.(3)当三个或三个以上同底数幂相除时,也具有这一性质.(4)底数可以是一个数,也可以是单项式或多项式.【知识点2】单项式的乘法法则单项式与单项式相乘,把它们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它们的指数作为积的一个因式.【要点提示】(1)单项式的乘法法则的实质是乘法的交换律和同底数幂的乘法法则的综合应用.(2)单项式的乘法方法步骤:积的系数等于各系数的积,是把各单项式的系数交换到一起进行有理数的乘法计算,先确定符号,再计算绝对值;相同字母相乘,是同底数幂的乘法,按照“底数不变,指数相加”进行计算;只在一个单项式里含有的字母,要连同它的指数写在积里作为积的一个因式.(3)运算的结果仍为单项式,也是由系数、字母、字母的指数这三部分组成.(4)三个或三个以上的单项式相乘同样适用以上法则.【知识点3】单项式与多项式相乘的运算法则单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.即()m a b c ma mb mc ++=++.【要点提示】(1)单项式与多项式相乘的计算方法,实质利用乘法分配律将其转化为多个单项式乘单项式的问题.(2)单项式与多项式的乘积仍是一个多项式,项数与原多项式的项数相同.(3)计算过程中要注意符号问题,多项式中的每一项包括它前面的符号,还要注意单项式的符号.(4)对混合运算,应注意运算顺序,最后有同类项时,必须合并,从而得到最简的结果.【知识点4】多项式与多项式相乘的运算法则多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.即()()a b m n am an bm bn ++=+++.【要点提示】多项式与多项式相乘,仍得多项式.在合并同类项之前,积的项数应该等于两个多项式的项数之积.多项式与多项式相乘的最后结果需化简,有同类项的要合并.特殊的二项式相乘:()()()2x a x b x a b x ab ++=+++.知识点与题型目录【知识点一】同底数幂的除法【题型1】同底数幂的除法运算及逆运算.........................................3;【知识点二】单项式相乘【题型2】单项式相乘.........................................................4;【题型3】利用单项式相乘求字母或代数式的值...................................5;【知识点三】单项式乘以多项式【题型4】单项式乘以多项式的运算与求值.......................................7;【题型5】单项式乘以多项式的应用.............................................8;【题型6】利用单项式乘以多项式求字母的值....................................10;【知识点四】多项式相乘【题型7】计算多项式乘以多项式..............................................11;【题型8】计算多项式乘以多项式化简求值......................................12;【题型9】(x+p)(x+q)型多项式相乘.........................................14;【题型10】整式乘法中的不含某个字母问题.....................................15;【题型11】多项式相乘中的几何问题...........................................16;【知识点五】多项式除以单项式【题型12】多项式除以单项式.................................................18;【知识点六】多项式除以单项式【题型13】整式乘法混合运算.................................................19;【直通中考与拓展延伸】【题型14】直通中考.........................................................21;【题型15】拓展延伸.........................................................22.第二部分【题型展示与方法点拨】【题型1】同底数的除法运算及逆运算【例1】(23-24八年级上·天津滨海新·期末)计算:()()23432253339xy x x y xy x y ⎡⎤-÷⎢⎥⎦⋅-⋅⎣.【答案】523y y -【分析】本题考查了整式的混合运算的应用,先算乘方,再算乘法,最后算除法即可.解:()()23432253339xyx x y xy x y ⎡⎤-÷⎢⎥⎦⋅-⋅⎣()2832233539279x y x x y x y x y =⋅-⋅÷()5855539279x y x y x y ÷=-523y y =-.【变式1】(22-23七年级下·广东深圳·阶段练习)若4m a =,8n a =,则32m n a -的值为()A .12B .1C .2D .4【答案】B【分析】本题考查了逆用同底数幂除法法则和幂的乘方的运算法则,先逆用同底数幂除法法则、然后再运用幂的乘方的运算法则将32m n a -化成含有m a 和n a 的形式,然后代入即可解答.解:()()32323232481m n m n m n a a a a a -=÷=÷=÷=,故选:B .【变式2】(23-24七年级下·全国·单元测试)已知2320x y --=,则()()231010x y ÷=.【答案】100【分析】本题主要考查了幂的乘方计算,同底数幂除法计算,先根据题意得到232x y -=,再根据幂的乘方计算和同底数幂除法计算法则得到()()2323101010x y x y -÷=,据此求解即可.解:∵2320x y --=,∴232x y -=∴()()231010x y ÷231010x y =÷2310x y -=210=100=,故答案为:100.【题型2】单项式相乘【例2】(22-23八年级上·福建厦门·期中)计算:(1)()2243623a a a a ⋅+-;(2)()()23225x x y -⋅-【答案】(1)0;(2)820x y-【分析】本题考查了单项式乘以单项式,幂的乘方,积的乘方,合并同类项,熟练掌握公式是解题的关键.(1)根据单项式乘以单项式,幂的乘方,合并同类项解答即可.(2)根据积的乘方,单项式乘以单项式解答即可.解:(1)()2243623a a a a ⋅+-66623a a a =+-0=.(2)()()23225x x y -⋅-()6245x x y=⋅-820x y =-.【变式1】(23-24七年级下·全国·单元测试)计算()222133x y xy ⎛⎫-⋅- ⎪⎝⎭的结果为()A .45x y -B .4513x y C .3213x y -D .4513x y -【答案】D【分析】本题考查整混合运算,熟练掌握幂的乘方和积的乘方法则、单项式乘以单项式法则是解题的关键.先计算乘方,再计算运用单项式乘以单项式法则计算即可.解:()222133x y xy ⎛⎫-⋅- ⎪⎝⎭()224139x y x y =-⋅4513x y =-,故选:D .【变式2】(23-24七年级下·全国·单元测试)计算:()()3222324623418ab a b a b a b -⋅+⋅=.【答案】0【分析】本题主要考查了积的乘方计算,单项式乘以单项式,合并同类项,先计算积的乘方,再计算单项式乘以单项式,最后合并同类项即可.解:()()3222324623418ab a b a b a b -⋅+⋅3642788972a b a b a b =-⋅+78787272a b a b =-+0=,故答案为:0.【题型3】利用单项式相乘求字母或代数式的值【例3】(22-23七年级下·广东梅州·期中)先化简,后求值:2332223141644x y x y x y xy ⎛⎫⎛⎫⋅-+-⋅ ⎪ ⎪⎝⎭⎝⎭,其中0.4x =,2.5y =-.【答案】7533944x y x y -,16325【分析】此题考查了整式的混合运算,首先根据积的乘方和单项式乘以单项式运算法则化简,然后代入求解即可,解题的关键掌握运算法则.解:2332223141644x y x y x y xy ⎛⎫⎛⎫⋅-+-⋅ ⎪ ⎪⎝⎭⎝⎭()33423394416x y x y x y +-⋅=7533944x y x y =-当20.45x ==,52.52y =-=-时,原式753349252545252⎛⎫⎛⎫⎛⎫⎛⎫=⨯⨯-⨯⨯- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭-3757592525445252⎛⎫=-⨯⨯-⨯-⨯ ⎪⎝⎭9425=-+16325=.【变式1】(2024·陕西榆林·三模)已知单项式24xy 与313x y -的积为3n mx y ,则m ,n 的值为()A .43m =-,4n =B .12=-m ,2n =-C .43m =-,3n =D .12=-m ,3n =【答案】A【分析】此题考查了单项式的乘法运算,按照单项式乘单项式计算单项24xy 与313x y -的积,再根据单项式24xy 与313x y -的积为3n mx y ,即可求得答案.解:∵234314433xy x y x y ⎛⎫⨯-=- ⎪⎝⎭,单项式24xy 与313x y -的积为3n mx y ,∴43m =-,4n =,故选:A .【变式2】(23-24七年级下·全国·假期作业)若()()1221253m n n n a b a b a b ++-⋅=,则m n +的值为.【答案】143/243【分析】本题主要考查了单项式乘以单项式,根据单项式乘以单项式的计算法则得到1212253m n n n a b a b ++-++=,据此可得25323m n n +=⎧⎨+=⎩,解之即可得到答案.解:∵()()1221253m n n nababa b++-⋅=,∴1212253m n n n a b a b ++-++=,∴25323m n n +=⎧⎨+=⎩,∴13313m n ⎧=⎪⎪⎨⎪=⎪⎩,∴143m n +=,故答案为:143.【题型4】单项式乘以多项式的运算与求值【例4】(23-24八年级上·吉林·阶段练习)先化简,再求值:()()223243234a a a a a -+-+,其中1a =-.【答案】2209a a -+,29-【分析】本题考查整式化简求值,熟练掌握整式混合运算法则是解题的关键.先根据单项式乘以多项式法则展开,再合并同类项,即可化简,然后把1a =-代入化简式计算即可.解:()()223243234a a a a a -+-+,3232612968a a a a a =-+--,2209a a =-+.当1a =-时,原式()()22019129=-⨯-+⨯-=-.【变式1】(2024·陕西咸阳·模拟预测)计算132xy x y ⎛⎫-⋅- ⎪⎝⎭的结果是()A .223x y xy +B .22332x y xy --C .22332x y xy -+D .22132x y xy -+【答案】C【分析】此题主要考查了单项式乘以多项式,正确掌握运算法则是解题关键.直接利用单项式乘以多项式运算法则计算得出答案.解:132xy x y ⎛⎫-⋅-⎪⎝⎭22332x y xy =-+.故选:C .【变式2】(23-24七年级下·江苏南京·阶段练习)若220240a a +-=,代数式()()220241a a -+的值是.【答案】2024-【分析】此题考查了代数式的值,整体代入是解题的关键.首先根据220240a a +-=,可得22024a a -=-,把22024a a -=-代入()()220241a a -+,然后把22024a a +=代入化简后的算式计算即可.解:∵220240a a +-=,∴22024a a -=-,∴()()220241a a -+()1a a =-+()2a a =-+.∵220240a a +-=,∴22024a a +=,∴原式()2a a =-+2024=-.故答案为:2024-.【题型5】单项式乘以多项式的应用【例5】(23-24七年级下·广东佛山·阶段练习)小红的爸爸将一块长为322455a b ⎛⎫+⎪⎝⎭分米、宽55a 分米的长方形铁皮的四个角都剪去一个边长为412a 分米的小正方形,然后沿虚线折成一个无盖的盒子.(1)用含a ,b 的整式表示盒子的外表面积;(2)若1a =,0.2b =,现往盒子的外表面上喷漆,每平方分米喷漆价格为15元,求喷漆共需要多少元?【答案】(1)8522325a a b +(平方分米);(2)360元【分析】此题考查了整式的混合运算,以及代数式求值,熟练掌握运算法则是解本题的关键.(1)根据题意列出关系式,去括号合并即可得到结果;(2)把a 与b 的值代入计算,再根据每平方分米喷漆价格为15元,求出喷漆的费用即可.解:(1)根据题意得:2325424155452a b a a ⎛⎫⎛⎫+⋅-⨯ ⎪ ⎪⎝⎭⎝⎭85282425a a b a =+-8522325a a b =+(平方分米)∴盒子的外表面积为()8522325a a b +平方分米;(2)当1a =,0.2b =时,85285223252312510.224a a b +=⨯+⨯⨯=(平方分米)则喷漆的费用为1524360⨯=(元).答:喷漆共需要360元.【变式1】(23-24七年级下·山东菏泽·期中)某同学在计算一个多项式乘24x 时,因抄错运算符号,算成了加上24x ,得到的结果是2321x x +-,那么正确的计算结果是()A .432484x x x -+-B .432484x x x +-C .43244x x x -+-D .432484x x x --【答案】A【分析】设这个多项式为M ,根据题意可得221M x x =-+-,最后利用单项式乘以多项式的运算法则即可解答.本题考查了整式的加减运算法则,单项式乘以多项式的运算法则,掌握单项式乘以多项式的运算法则是解题的关键.解:设这个多项式为M ,∵计算一个多项式乘24x 时,因抄错运算符号,算成了加上24x ,得到的结果是2321x x +-,∴224321M x x x +=+-,∴222321421M x x x x x =+--=-+-,∴正确的结果为()()22432214484x x x x x x -+-=-+-,故选A .【变式2】(22-23八年级上·福建泉州·阶段练习)已知:2210x x --=,则352020x x -+=.【答案】2022【分析】本题考查了整式的乘法的应用,熟练掌握求高次式子时的思路:降次是解题的关键.将2210x x --=变形为221x x =+,利用降次的思想求352020x x -+即可.解:∵2210x x --=,∴221x x =+,∴352020x x -+252020x x x =⋅-+()2152020x x x =+-+2252020x x x =+-+()22142020x x =+-+2022=故答案为:2022.【题型6】利用单项式乘以多项式求字母的值【例6】(21-22七年级下·河南驻马店·阶段练习)已知x (x ﹣m )+n (x +m )=2x +5x ﹣6对任意数都成立,求m (n ﹣1)+n (m +1)的值.【答案】-7【分析】把x (x ﹣m )+n (x +m )去括号、合并同类项,然后根据与2x +5x -6对应项的系数相同,即可求得m 、n 的值,然后代入求值即可.解:x (x ﹣m )+n (x +m )=2x ﹣mx +nx +mn =2x +(n ﹣m )x +mn ,∴56n m mn -=⎧⎨=-⎩,则m (n ﹣1)+n (m +1)=n ﹣m +2mn =5﹣12=﹣7.【点拨】此题考查单项式乘多项式和代数式求值,解题关键在于掌握运算法则.【变式1】(23-24七年级下·河南周口·阶段练习)若()24x ax x x +=+,则a 的值为()A .2B .3C .4D .8【答案】C【分析】本题主要考查了单项式乘以多项式,根据单项式乘以多项式的计算法则求出()4x x +的结果即可得到答案.解:∵()24x ax x x +=+,∴224x ax x x +=+,∴4a =,故选:C .【变式2】(23-24七年级下·山东济南·阶段练习)要使()32412x x ax x -+++中不含有x 的四次项,则a =.【答案】2【分析】本题主要考查了多项式的混合运算.先算乘法,再合并,然后根据原多项式中不含有x 的四次项,可得20a -=,即可求解.解:()32412xxax x -+++45432x x a x x --+=-()4352x x a x =-+--,∵()32412xxax x -+++中不含有x 的四次项,∴20a -=,∴2a =.故答案为:2【题型7】计算多项式乘以多项式【例7】(24-25八年级上·全国·单元测试)计算:(1)()()()222323x x x x +---+;(2)22(1)(1)x x x x ++-+;(3)2(1)(2)(2)x x x x +-++【答案】(1)312x -;(2)421x x ++;(3)4244x x x ---.【分析】本题考查了多项式的乘法:(1)根据多项式乘多项式的运算法则计算,再合并同类项即可;(2)根据多项式乘多项式的运算法则计算,再合并同类项即可;(3)根据多项式乘多项式的运算法则计算,再合并同类项即可.解:(1)()()()222323x x x x +---+222436226x x x x x =+---+-312x =-.(2)22(1)(1)x x x x ++-+4323221x x x x x x x x =-++-++-+421x x =++.(3)2(1)(2)(2)x x x x +-++22(2)(2)x x x x =--++43232222224x x x x x x x x =++------4244x x x =---.【变式1】(22-23七年级下·甘肃张掖·期中)下列计算正确的是()A .()()324242ab ab a b ⋅-=B .()()22356m m m m +-=--C .()()245920y y y y +-=+-D .()()21454x x x x ++=++【答案】D【分析】本题主要考查了单项式乘以单项式,多项式乘以多项式,熟知相关计算法则是解题的关键.解:A 、()()324248ab ab a b =-⋅-,原式计算错误,不符合题意;B 、()()22233266m m m m m m m +-=-+-=--,原式计算错误,不符合题意;C 、()()2245452020y y y y y y y +-==-+---,原式计算错误,不符合题意;D 、()()22144454x x x x x x x ++=+++=++,原式计算正确,符合题意;故选:D .【变式2】(22-23七年级下·山东菏泽·期中)如果()()()()32912x x x x ---+-=,那么x 的值是.【答案】1【分析】本题考查了多项式乘以多项式,以及解一元一次方程,熟练掌握多项式乘以多项式的法则是解题的关键.根据多项式乘以多项式的法则进行计算,然后解一元一次方程即可.解:()()()()3291x x x x ---+-22236(99)x x x x x x =--+--+-1315x =-+∴13152x -+=,解得1x =,故答案为:1.【题型8】计算多项式乘以多项式化简求值【例8】(24-25八年级上·河南南阳·阶段练习)先化简,再求值:()()()222112a a a a a a +--+-,其中3a =-.【答案】2-a a ,12【分析】本题主要考查了整式的化简求值,先根据单项式乘以多项式的计算法则,多项式乘以多项式的计算法则去括号,然后合并同类项化简,最后代值计算即可.解:()()()222112a a a a a a +--+-()3232222222a a a a a a a =+--+--3232222222a a a a a a a=+---++2a a =-,当3a =-时,原式()()2339312=---=+=.【变式1】(23-24七年级下·安徽合肥·期中)我们规定a b ad bc cd=-,例如121423234=⨯-⨯=-,已知2523m n nm n m n+=-+-,则代数式2261m n --的值是()A .4B .5C .8D .9【答案】D【分析】本题主要查了整式的混合运算.根据新定义可得()()()2235m n m n n m n +---+=,从而得到235m n -=,再代入,即可求解.解:根据题意得:()()()2235m n m n n m n +---+=,∴22222235m mn mn n mn n n +---+-=,即235m n -=,∴()22232610m n m n -=-=,∴22611019m n --=-=.故选:D【变式2】(2024·湖南长沙·模拟预测)已知235a ab +=,则2()(2)2a b a b b ++-的值为.【答案】5【分析】本题考查整式的化简求值,把要求的式子展开化简后,利用整体思想求值即可.解:∵235a ab +=,∴22222()(2)222235a b a b b a ab ab b b a ab ++-=+++-=+=.故答案为:5.【题型9】(x+p)(x+q)型多项式相乘【例9】(22-23七年级下·辽宁沈阳·期中)先化简,再求值:()()()()()23333442x x x x x +-++---,其中2x =.【答案】1361x -,35-【分析】本题考查了整式的化简求值.熟练掌握平方差公式,完全平方公式,多顶式乘多项式法则,是解题的关键.先根据平方差公式,完全平方公式,多顶式乘多项式法则展开,合并同类项化简,最后将字母的值代入求解即可.解:()()()()()23333442x x x x x +-++---()()2229312444x x x x x =-+----+2229333641616x x x x x =-+---+-1361x =-,当2x =时,原式1326135=⨯-=-.【变式1】(23-24七年级下·辽宁锦州·阶段练习)若()()2315x x n x mx ++=+-,则mn 的值为()A .5-B .5C .10D .10-【答案】C【分析】此题考查了多项式的乘法,根据多项式的乘法法则展开对比得到3,315n m n +==-,求出m 、n 的值,即可得到答案.解:∵()()()2333x x n x n x n ++=+++,()()2315x x n x mx ++=+-,∴3,315n m n +==-,解得2,5m n =-=-∴()()2510mn =-⨯-=,故选:C【变式2】(22-23七年级下·江苏盐城·阶段练习)若()()228x m x x nx +-=+-,则2m n +=.【答案】8【分析】本题考查多项式乘以多项式,利用多项式乘以多项式的法则,将等式左边展开,进而求出,m n 的值,进一步求出代数式的值即可.解:()()()222228x m x x m x m x nx +-=+--=+-,∴2,28m n m -==,∴4,2m n ==,∴24228m n +=+⨯=;故答案为:8.【题型10】整式乘法中的不含某个字母问题【例10】(22-23七年级下·四川达州·期中)已知代数式()22mx x +与()232x nx ++积是一个关于x 的三次多项式,且化简后含2x 项的系数为1,求m 和n 的值.【答案】0m =,16n =【分析】此题考查了多项式乘多项式的计算能力,运用多项式乘多项式的运算法则进行求解即可.解:()()22232mx x x nx +++4323232264mx mnx mx x nx x=+++++()()43232264mx mn x m n x x =+++++,由题意得,0m =,261m n +=,解得0m =,16n =.【变式1】(23-24七年级下·全国·期中)已知多项式x a -与221x x +-的乘积中2x 的项系数与x 的项系数之和为4,则常数a 的值为()A .1-B .1C .2-D .2【答案】A【分析】根据多项式乘以多项式的计算法则得()()()()23221212x a x x x a x a x a -+-=+--++,然后根据“乘积中2x 的项系数与x 的项系数之和为4”,据此得到()()2124a a --+=,解此方程即可求出a .解:()()221x a x x -+-32222x x x ax ax a=+---+()()32212x a x a x a =+--++,乘积中2x 的项系数与x 的项系数之和为4,∴()()2124a a --+=,∴1a =-,故答案为:A .【变式2】(24-25八年级上·吉林长春·阶段练习)若()()23x m x x n +-+的积中不含2x x 、项,则m =,n =.【答案】39【分析】本题主要考查了多项式乘法中的无关型问题,先根据多项式乘以多项式的计算法则求出()()23x m x x n +-+的结果,再根据乘积中不含2x x 、项,即含2x x 、项的系数为0进行求解即可.解:()()23x m x x n +-+32233x x nx mx mx mn =-++-+()()3233x m x n m x mn =+-+-+,∵()()23x m x x n +-+的积中不含2x x 、项,∴3030m n m -=-=,,∴39m n ==,,故答案为:3;9.【题型11】多项式相乘中的几何问题【例11】(22-23八年级上·四川绵阳·期末)学校需要设计一处长方形文化景观,分为中央雕塑区和四周绿化区.中央雕塑区的长边为(33m -)米,短边为2m 米,绿化区外边沿的长边为(42m -)米,短边为(31m -)米.试比较雕塑区和绿化区的面积大小.(m 为正数)【答案】绿化区面积大于雕塑区面积.【分析】本题考查的是多项式的乘法运算与图形面积,先分别列式计算绿化区面积,雕塑区面积,再作差比较大小即可.解:绿化区面积为()()()4231233m m m m ----221246266m m m m m =--+-+2642m m =-+.雕塑区面积为()223366m m m m -=-.因为()()226426622m m m m m -+--=+,由m 为正数,所以得220m +>,即2264266m m m m -+>-,所以,绿化区面积大于雕塑区面积.【变式1】(23-24七年级上·湖南长沙·期末)下面四个整式中,不能..表示图中阴影部分面积的是()A .(4)(3)3x x x ++-B .24(3)x x ++C .24x x +D .(4)12x x ++【答案】C【分析】本题主要考查整式与图形,根据题意,结合图形,分别判断得到答案即可.解:A .图中阴影部分面积用整个长方形的面积-空白部分的面积,即(4)(3)3x x x ++-,故该选项不符合题意;B .图中阴影部分面积用右边阴影部分长方形的面积+左边阴影部分正方形的面积,即24(3)x x ++,故该选项不符合题意;C .24x x +只有左边阴影部分正方形的面积+右边上面阴影部分长方形的面积,缺少右边下面长方形的面积,故该选项符合题意;D .图中阴影部分面积用上面阴影长方形的面积+右边下面长方形的面积,即(4)12x x ++故该选项不符合题意;故选:C .【变式2】(23-24七年级下·全国·单元测试)有若干张如图所示的正方形A 类、B 类卡片和长方形C 类卡片.如果要拼成一个长为()2a b +,宽为()32a b +的大长方形,那么需要C 类卡片张.【答案】7【分析】本题考查了多项式乘以多项式,计算出长为()2a b +,宽为()32a b +的大长方形的面积以及A 类、B 类卡片和长方形C 类卡片的面积,即可得出答案.解:长为()2a b +,宽为()32a b +的大长方形的面积为()()22222326432672a b a b a ab ab b a ab b ++=+++=++,A 类卡片的面积为:2a ,B 类卡片的面积为:2b ,C 类卡片的面积为:ab ,∴要拼成一个长为()2a b +,宽为()32a b +的大长方形,需要6块A 类卡片,2块B 类卡片,7块C 类卡片,故答案为:7.【题型12】多项式除以单项式【例12】(22-23七年级下·宁夏银川·期末)老师在黑板上书写了一个正确的演算过程,随后用手掌捂住了一个多项式,2211322xy x y xy xy ⨯=-+(1)求所捂的多项式;(2)若2132x y ==,,求所捂多项式的值.【答案】(1)621x y -+;(2)4.【分析】本题主要考查了代数式求值,多项式除以单项式:(1)根据乘除法互为逆运算,只需要计算出2211322x y xy xy xy ⎛⎫⎛⎫-+÷ ⎪ ⎪⎝⎭⎝⎭的结果即可得到答案;(2)把2132x y ==,代入(1)所求结果中计算求解即可.解:(1)2211322x y xy xy xy ⎛⎫⎛⎫-+÷ ⎪ ⎪⎝⎭⎝⎭621x y =-+,∴所捂的多项式为621x y -+;(2)当2132x y ==,时,21621621411432x y -+=⨯-⨯=-+=.【变式1】(2024·湖北武汉·模拟预测)若22233241216m x y x y x y ⨯=-,则m =()A .43x y -B .43x y-+C .43x y+D .43x y--【答案】B【分析】本题考查了多项式除以单项式,根据一个因数等于积除以另一个因数,即可解答.解:∵22233241216m x y x y x y ⨯=-,∴()233222121643443m x y x y x y y x x y =-÷=-=-+,故选:B .【变式2】(22-23七年级下·浙江温州·期末)若223615xy A x y xy =- ,则A 代表的整式是.【答案】25x y-【分析】本题考查的是多项式除以单项式,多项式除以单项式的运算法则的实质是把多项式除以单项式的的运算转化为单项式的除法运算.根据多项式除以单项式的运算法则计算即可.解:()226153A x y xy xy-÷=2263153x y xy xy xy=÷-÷25x y =-.故答案为:25x y -.【题型13】整式乘法混合运算【例13】(23-24七年级下·贵州毕节·期末)先化简,再求值:(1)()()()()22224x y x y x y x x y -+-+--,其中1x =-,2y =.(2)已知2210x x +-=,求代数式()()()()21433x x x x x ++++-+的值.【答案】(1)2243x y +;16;(2)5-.【分析】本题主要考查了整式化简求值,解题的关键是熟练掌握整式混合运算法则,准确计算.(1)先根据整式混合运算法则进行化简,然后再代入数据进行计算即可;(2)先根据整式混合运算法则进行化简,然后再整体代入进行计算即可.解:(1)()()()()22224x y x y x y x x y-+-+--222224444x xy y x y x xy =-++--+2243x y =+,当1x =-,2y =时,原式()224132=⨯-+⨯412=+16=.(2)()()()()21433x x x x x ++++-+2222149x x x x x =+++++-2368x x =+-,∵2210x x +-=,∴221x x +=,∴原式()2328x x =+-318=⨯-38=-=5-.【变式1】(21-22六年级下·全国·单元测试)等式()()324322xyz x y z y ⎡⎤÷-⋅=⎣⎦中的括号内应填入()A .6538x y z B .228x y zC .222x y zD .222x y z±【答案】C【分析】运用整式的乘法运算法则、乘除法互为逆运算及幂的运算法则求解.解:由原式,得()()32432224366322322428(2)y xyz x y z y x y z x y z x y z x y z ⎡⎤=⋅-⋅=⋅⋅==⎣⎦∴括号中式子应为222x y z .故选C .【点拨】本题主要考查整式的乘法运算、乘除法互为逆运算、幂的运算法则等知识;能够运算乘、除法互为逆运算的性质,对原等式进行变形是解题关键.【变式2】(2024·福建厦门·二模)已知11x x-=-,则()()22131x x x +-+的值为.【答案】2【分析】本题考查整式的混合运算、代数式求值,熟练掌握运算法则,利用整体代入思想求解是解答的关键.先根据11x x -=-得出21x x +=,然后利用完全平方公式、单项式乘多项式化简原式,再整体代值求解即可.解:∵11x x-=-,∴21x x +=,()()22131x x x +-+2244133x x x x=++--21x x =++11=+2=.第三部分【中考链接与拓展延伸】【题型14】直通中考【例1】(2024·山东青岛·中考真题)下列计算正确的是()A .223a a a +=B .523a a a ÷=C .235()a a a -⋅=-D .()23622a a =【答案】B【分析】本题考查了整式的运算,根据合并同类项法则、同底数幂的乘除法、积的乘方逐项运算即可判断求解,掌握整式的运算法则是解题的关键.解:A 、23a a a +=,该选项错误,不合题意;B 、523a a a ÷=,该选项正确,符合题意;C 、235()a a a -⋅=,该选项错误,不合题意;D 、()23624a a =,该选项错误,不合题意;故选:B .【例2】(2023·黑龙江大庆·中考真题)1261年,我国宋朝数学家杨辉在其著作《详解九章算法》中提到了如图所示的数表,人们将这个数表称为“杨辉三角”.观察“杨辉三角”与右侧的等式图,根据图中各式的规律,7()a b +展开的多项式中各项系数之和为.【答案】128【分析】仿照阅读材料中的方法将原式展开,即可得出结果.解:根据题意得:()5a b +展开后系数为:1,5,10,10,5,1,系数和:515101051322+++++==,()6a b +展开后系数为:1,6,15,20,15,6,1,系数和:61615201561642++++++==,()7a b +展开后系数为:1,7,21,35,35,21,7,1,系数和:71721353521711282+++++++==,故答案为:128.【点拨】此题考查了多项式的乘法运算,以及规律型:数字的变化类,解题的关键是弄清系数中的规律.【题型15】拓展延伸【例1】(23-24八年级上·四川眉山·期中)观察下列各式:2(1)(1)1x x x -+=-;23(1)(1)1x x x x -++=-;324(1)(1)1x x x x x -+++=-;…根据规律计算:202220212020201943222222222-+-+⋯⋯+-+-的值是()A .2023223-B .202321-C .20232-【答案】A 【分析】根据题中规律每一个式子的结果等于两项的差,被减数的指数比第二个因式中第一项大1,减数都为1,即可得到规律为()()12321111n n n n x x x x x x x x --+-+++++++=- ,利用规律,当2x =-,2022n =时,代入其中即可求解.本题考查了平方差公式、及数字类的规律题,解题的关键是认真阅读,总结规律,并利用规律解决问题.解:由2(1)(1)1x x x -+=-;23(1)(1)1x x x x -++=-;324(1)(1)1x x x x x -+++=-;…观察发现:()()12321111n n n n x x x x x x x x --+-+++++++=- ,当2x =-,2022n =时,得202220212020201943220232122222222121()()()---+-+-+-+=-- ,∴2023202320232022202120202019432212121222222221333()----+-+-+-+-+===-- ,∴202320232022202120202019432212222222222133+--+-+-+-=-= .故选:A .【例2】(2024七年级上·全国·专题练习)按如图所示的程序进行计算,如果第一次输入x 的值是3-,则第2024次计算后输出的结果为.【答案】8-【分析】本题考查了规律型:数字的变化类,代数式求值,仔细计算,观察出即从第2次开始,以5-、8-、3-为一个循环组循环出现,是解题的关键.总结规律后结合202436742÷=⋅⋅⋅,即可得到答案.解:第1次输出的结果为:()33191522⨯----==-;第2次输出的结果为:()351151822⨯----==-;第3次输出的结果为:8232-+=-;第4次输出的结果为:()33191522⨯----==-;第5次输出的结果为:()351151822⨯----==-;第6次输出的结果为:8232-+=-…,则从第1次输出开始,以5-、8-、3-为一个循环组循环出现,∵202436742÷=⋅⋅⋅,∴第2024次输出的结果为8-.故答案为:8-.。
一、整式的乘法1.几个常用公式:(a+b)² = a² + 2ab + b²(a-b)² = a² - 2ab + b²(a+b)(a-b)=a²-b²(a+b)³ = a³ + 3a²b + 3ab² + b³(a-b)³ = a³ - 3a²b + 3ab² - b³2.整式的乘法法则:(a+b)(c+d) = ac + ad + bc + bd加减混合运算:(a+b)(c-d) = ac - ad + bc - bd3.多项式的乘法:(a₁+a₂+...+aₙ)(b₁+b₂+...+bₙ)=a₁b₁+a₁b₂+...+a₁bₙ+a₂b₁+a₂b₂+...+a₂bₙ+...+aₙb₁+aₙb₂+...+aₙb ₙ4.整式的乘法性质:交换律:a·b=b·a结合律:(a·b)·c=a·(b·c)分配律:a·(b+c)=a·b+a·c5.整式的乘法应用:展开、计算、化简等二、因式分解1.因式分解的基本概念:将一个整式分解为两个或多个因式的乘积的过程。
2.因式分解的方法:a.公因式提取法:找出整个整式和各项中的公因式,并提取出来。
b.公式法:利用已知的一些公式对整式进行因式分解。
c.分组法:将整式中各项按一定的规则分组,然后在每组内部进行因式分解。
d.辗转相除法:若整式中存在因式公共因式,可以多次使用辗转相除法进行因式分解。
3.一些常见的因式分解公式:a.二次差平方公式:a²-b²=(a+b)(a-b)b. 平方差公式:a² + 2ab + b² = (a+b)²c. 平方和公式:a² - 2ab + b² = (a-b)²d. 三次和差公式:a³+b³ = (a+b)(a²-ab+b²)、a³-b³ = (a-b)(a²+ab+b²)e. 四次和差公式:a⁴+b⁴ = (a²+b²)(a²-ab+b²)、a⁴-b⁴ = (a+b)(a-b)(a²+b²)4.因式分解的应用:简化计算、寻找整式的根、列立方程等。
整式的乘法及因式分解知识点1 •幕的运算性质:a m a n= a m+n(m、n为正整数)同底数幕相乘,底数不变,指数相加. 例:(一2a)2(- 3a2)3mn2. a= a mn(m、n为正整数)幕的乘方,底数不变,指数相乘. 例:(-a5)53. ab “ a%" (n为正整数)积的乘方等于各因式乘方的积.4. a a= a"n(a^0, m、n都是正整数,且m>n) 同底数幕相除,底数不变,指数相减.5. 零指数幕的概念:a0= 1 (a z 0)任何一个不等于零的数的零指数幕都等于I.6. 负指数幕的概念:丄a p= a(a z0,p是正整数)任何一个不等于零的数的-p (p是正整数)指数幕,等于这个数的p指数幕的倒数.p pn m也可表示为:m n(m z0,n z0,p为正整数)7. 单项式的乘法法则:单项式相乘,把系数、同底数幕分别相乘,作为积的因式;对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.8. 单项式与多项式的乘法法则:单项式与多项式相乘,用单项式和多项式的每一项分别相乘,再把所得的积相加.9. 多项式与多项式的乘法法则:多项式与多项式相乘,先用一个多项式的每一项与另一个多项式的每一项相乘,再把所得的积相加.10、因式分解中常用的公式,例如:(1) -----------------------------------------(a+b)(a-b) = a 2-b2 a 2-b 2=(a+b)(a-b);2 2 2 2 2 2(2) (a ± b) = a ± 2ab+b -------------- a ± 2ab+b =(a ± b);(3) (a+b)(a 1 2-ab+b2) =a 3+b3 ------ a 3+b3=(a+b)(a 2-ab+b 2);(4) (a-b)(a 2+ab+b2) = a 3-b3-------- a 3-b 3=(a-b)(a 2+ab+b2).下面再补充两个常用的公式:2 2 2 2(5) a +b +c +2ab+2bc+2ca=(a+b+c);(6) a 3+b3+c3-3abc=(a+b+c)(a 2+b2+c2-ab-bc-ca);11、凡是能用十字相乘法分解因式的二次三项式ax2+bx+c,都要求b2 4ac >0而且是一个完全平方数。
人教版初二数学上册整式的乘除与因式分解基本知识点集团文件发布号:(9816-UATWW-MWUB-WUNN-INNUL-DQQTY-整式的乘除与因式分解基本知识点一、整式的乘除:1、合并同类项:把多项式中的同类项合并成一项,叫做合并同类项.例如:_______3=-a a ;________22=+a a ;________8253=+-+b a b a2、同底数幂的乘法法则:a m ·a n =a m+n (m ,n 是正整数).同底数幂相乘,底数不变,指数相加.例如:________3=⋅a a ;________32=⋅⋅a a a3、幂的乘方法则:(a m )n =a mn (m ,n 是正整数).幂的乘方,底数不变,指数相乘.例如:_________)(32=a ;_________)(25=x ;()334)()(a a =4、积的乘方的法则:(a b)m =a m b m (m 是正整数).积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘.例如:________)(3=ab ;________)2(32=-b a ;________)5(223=-b a5、同底数幂的除法法则:a m ÷a n =a m-n(a ≠0,m ,n 都是正整数,并且m >n).同底数幂相除,底数不变,指数相减. 规定:10=a 例如:________3=÷a a ;________210=÷a a ;________55=÷a a6、单项式乘法法则单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式。
7、单项式除法法则单项式相除,把系数与同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.8、单项式与多项式相乘的乘法法则:单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.9、多项式乘法法则:多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.10、多项式除以单项式的除法法则:多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加.()x x xy ÷+56; ()()a ab a 4482-÷-11、整式乘法的平方差公式:(a +b)(a -b)=a 2-b 2.两个数的和与这两个数的差的积,等于这两个数的平方差.例如:(4a -1)(4a+1)=___________; (3a -2b )(2b+3a )=___________;()()11-+mn mn = ; =--+-)3)(3(x x ;12、整式乘法的完全平方公式:(a +b)2=a 2+2a b+b 2,(a -b)2=a 2-2a b+b 2.两数和(或差)的平方,等于它们的平方和,加(或减)它们的积的2倍.例如:()____________522=+b a ; ()_______________32=-y x()_____________22=+-ab ; ()______________122=--m 二、因式分解:1、提公共因式法 (1)、 如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式.这种分解因式的方法叫做提公因式法.如:ab +ac =a (b +c )(2)、概念内涵:①因式分解的最后结果应当是“积”;②公因式可能是单项式,也可能是多项式;③提公因式法的理论依据是乘法对加法的分配律,即: ma +mb-mc=m(a +b-c)练习4y xy - 32x x + x 2+12x 3+4x )1()1(-+-a n a m2、公式法.:(1)、平方差公式:))((22b a b a b a -+=-(2)、完全平方公式:222)(2b a b ab a +=++ 222)(2b a b ab a -=+-3、分组分解法:如: ))(()()(n m b a n m b n m a bn bm an am ++=+++=+++(2)、概念内涵:分组分解法的关键是如何分组,要尝试通过分组后是否有公因式可提,并且可继续分解,分组后是否可利用公式法继续分解因式.(3)、 注意: 分组时要注意符号的变化.1a b ab +++ ab -c +b -ac a 2-2ab +b 2-c 24、“十字相乘法”:即式子x 2+(p+q)x+pq 的因式分解. x 2+(p+q)x+pq=(x+p)(x+q).有些二次三项式,可以把第一项和第三项的系数分别分解为两个数之积,然后借助画十字交叉线的方法,把二次三项式进行因式分解,这种方法叫十字相乘法。
整式乘法与因式分解知识点一、单项式:只含有数字与字母的积的代数式叫做单项式。
注意:单项式是由系数、字母、字母的指数组成的,其中系数不能用带分数表示,如b a 2314-,这种表示确实是错误的,应写成b a 2313-。
一个单项式中,所有字母的指数的和叫做那个单项式的次数。
如c b a 235-是6次单项式。
二、同类项:所有字母相同,而且相同字母的指数也别离相同的项叫做同类项。
几个常数项也是同类项。
三、去括号法则①括号前是“+”,把括号和它前面的“+”号一路去掉,括号里各项都不变号。
②括号前是“﹣”,把括号和它前面的“﹣”号一路去掉,括号里各项都变号。
四、整式的运算法则整式的加减法:(1)去括号;(2)归并同类项。
整式的乘法:),(都是正整数n m a a a n m n m +=•),(都是正整数)(n m a a mn n m = )()(都是正整数n b a ab n n n =22))((b a b a b a -=-+2222)(b ab a b a ++=+2222)(b ab a b a +-=-整式的除法:)0,,(≠=÷-a n m a a a n m n m 都是正整数注意:(1)单项式乘单项式的结果仍然是单项式。
(2)单项式与多项式相乘,结果是一个多项式,其项数与因式中多项式的项数相同。
(3)计算时要注意符号问题,多项式的每一项都包括它前面的符号, 同时还要注意单项式的符号。
(4)多项式与多项式相乘的展开式中,有同类项的要归并同类项。
(5)公式中的字母能够表示数,也能够表示单项式或多项式。
(6)),0(1);0(10为正整数p a a a a a pp ≠=≠=- (7)多项式除以单项式,先把那个多项式的每一项除以那个单项式,再把所得的商相加,单项式除以多项式是不能这么计算的。
五、因式分解一、因式分解:把一个多项式化成几个整式的积的形式,叫做把那个多项式因式分解,也叫做把那个多项式分解因式。
整式的乘除与因式分解初二数学总结整式的乘除与因式分解初二数学总结整式的乘除与因式分解初二数学总结一.定义1.整式乘法(1).aman=am+n[m,n都是正整数]同底数幂相乘,底数不变,指数相加.(2).(am)n=amn[m,n都是正整数]幂的乘方,底数不变,指数相乘.(3).(ab)n=anbn[n为正整数]积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘.(4).ac5bc2=(ab)(c5c2)=abc5+2=abc7单项式与单项式相乘,把它们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的.指数作为积的一个因式.(5).m(a+b+c)=ma+mb+mc单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加,(6).(a+b)(m+n)=am+an+bm+bn多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相乘.2.乘法公式(1).(a+b)(a-b)=a2-b2平方差公式:两个数的和与这两个数的差的积,等于这两个数的平方差.(2).(ab)2=a22ab+b2完全平方公式:两数和[或差]的平方,等于它们的平方和,加[或减]它们积的2倍.3.整式除法(1)aman=am-n[a0,m,n都是正整数,且mn]同底数幂相除,底数不变,指数相减.(2)a0=1[a0]任何不等于0的数的0次幂都等于1.(3)单项式相除,把系数与同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.(4)多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加.4.把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解,也叫做把这个多项式分解因式.二.重点1.(x+p)(x+q)=x2+(p+q)x+pq2.x3-y3=(x-y)(x2+xy+y2)3.因式分解两种基本方法:(1)提公因式法.提取:数字是各项的最大公约数,各项都含的字母,指数是各项中最低的.(2)公式法.①a2-b2=(a+b)(a-b)两个数的平方差,等于这两个数的和与这两个数的差的积②a22ab+b2=(ab)2两个数的平方和加上[或减去]这两个数的积的2倍,等于这两个数的和[或差]的平方.。
八上数学整式的乘法与因式分解知识详解整式的乘法与因式分解知识结构图:一、整式的有关概念1.整式整式是单项式与多项式的统称.2.单项式单项式是指由数字或字母的乘积组成的式子;单项式中的数字因数叫做单项式的系数;单项式中所有字母指数的和叫做单项式的次数.3.多项式几个单项式的和叫做多项式;多项式中,每一个单项式叫做多项式的项,其中不含字母的项叫做常数项;多项式中次数最高项的次数就是这个多项式的次数.二、整数指数幂的运算1、同底数幂乘法:同底数幂相乘,底数不变,指数相加。
2、同底数幂除法:同底数幂相除,底数不变,指数相减。
3、幂的乘方:幂的乘方,底数不变,指数相乘。
4、积的乘方:积的乘方等于各因式乘方的积。
注:(1)任何一个不等于零的数的零指数幂都等于1;(2)任何一个不等于零的数的-p(p为正整数)指数幂,等于这个数的p指数幂的倒数。
(3)科学记数法:或绝对值小于1的数可记成的形式,其中,n是正整数,n等于原数中第一个有效数字前面的零的个数(包括小数点前面的一个零)。
三、同类项与合并同类项1.所含字母相同,并且相同字母的指数也分别相同的单项式叫做同类项.2.把多项式中的同类项合并成一项叫做合并同类项,合并的法则是系数相加,所得的结果作为合并后的系数,字母和字母的指数不变.四、求代数式的值1.一般地,用数值代替代数式里的字母,按照代数式指明的运算关系计算出的结果就叫做代数式的值.2.求代数式的值的基本步骤:(1)代入:一般情况下,先对代数式进行化简,再将数值代入;(2)计算:按代数式指明的运算关系计算出结果.五、整式的运算1.整式的加减(1)整式的加减实质就是合并同类项;(2)整式加减的步骤:有括号,先去括号;有同类项,再合并同类项.注意去括号时,如果括号前面是负号,括号里各项的符号要变号.2.整式的乘除(1)整式的乘法①单项式与单项式相乘:把系数、同底数幂分别相乘,作为积的因式,只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.②单项式与多项式相乘:m(a+b+c)=ma+mb+mc.③多项式与多项式相乘:(m+n)(a+b)=ma+mb+na+nb.(2)整式的除法①单项式除以单项式:把系数、同底数幂相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.②多项式除以单项式:(a+b)÷m=a÷m+b÷m.3.乘法公式(1)平方差公式:(a+b)(a-b)=a2-b2;(2)完全平方公式:(a±b)2=a2±2ab+b2.六、因式分解1.因式分解的概念把一个多项式化成几个整式的积的形式,叫做多项式的因式分解.2.因式分解的方法(1)提公因式法公因式的确定:第一,确定系数(取各项整数系数的最大公约数);第二,确定字母或因式底数(取各项的相同字母);第三,确定字母或因式的指数(取各相同字母的最低次幂).(2)运用公式法①运用平方差公式:.②运用完全平方公式:.(3)十字相乘:.3.分解因式的技巧:(1) 因式分解时,有公因式要先提公因式,然后考虑其他方法;(2)因式分解时,有时项数较多时,看看分组分解法是否更简洁.典例1:计算的结果是( B )A.x B.C.D.典例2:下列算式中:①;②;③;④,其中正确的有②③.练习:已知3x+5y=8,求的值.解:.典例3:计算:(1) ;解:原式=;(2) .解:原式=.典例4:化简求值:,其中a=2,b=-1. 解:原式=-(8a+5b)(4a+b)=-77.练习:1.计算:(1);解:原式=;(2)(x+7)(x-3).解:原式==.2.先化简,再求值:(a+2)(a-2)+a(1-a),其中a=5. 解:原式=;当a=5时,原式=5-4=1.典例5:分解因式:(1) ;解:原式==(3x+3y-2)(3x-3y+2);(2) ;解:原式=;(3).解:原式=练习:分解因式:(1) ;解:原式=(2) .解:原式=典例6:若△ABC的三边长为a、b、c,且满足=2a +2b+2c,试判断△ABC的形状.解:∵=2a+2b+2c,∴,即,∴a=1,b=1,c=1,故a=b=c,则△ABC为等边三角形.。
《整式的乘法》课堂笔记一、知识点梳理1.单项式与单项式相乘:把他们的系数,相同字母的幂分别相乘,其余字母连同他的指数不变,作为积的因式。
2.单项式与多项式相乘:把单项式写在多项式的前面,和多项式的每一项相乘,再把所得的积相加。
3.多项式与多项式相乘:先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加。
4.平方差公式:两数和乘两数差,等于两数平方差。
积二倍角公式:一角二边和乘积,凑成二倍角不变。
5.完全平方公式:首平方又末平方,二倍首末在中央;和的平方加再加,先减后加差平方。
二、方法总结1.运用分配律进行计算,简化运算过程。
2.观察运算结果中各项的系数和指数,运用交换律和结合律进行变形,使运算更加简便。
3.掌握一些常见的运算技巧,如“头平方,尾平方,头尾相乘再平方”,“头大尾小两边排,尾平方来头平方,两数和(差)放中间”等,这些技巧能够简化运算过程,提高运算速度和准确度。
三、注意事项1.运算过程中要注意符号问题,尤其是当幂的底数为负数时,需要运用分配律进行变形,以得到正确的结果。
2.要注意运算的顺序,先进行乘方运算,再进行乘除运算,最后进行加减运算。
同时要遵循先括号内后括号外的原则。
3.对于一些特殊的运算结果,如0的任何次幂都等于0等,要注意直接引用结论以提高计算速度。
4.要注意养成验算的习惯,以检查计算结果是否正确。
验算可以采用重新计算一遍或者检查运算过程中的错误等方式进行。
5.要注意培养自己的观察能力和运算能力。
在面对复杂的运算问题时,要学会观察问题特征,寻找简便的解决方法。
同时要加强练习,熟悉各种运算技巧和解题思路。
八年级14.1整式的乘法知识点总结【知识点一】整式的混合运算例题一、计算:()()()2443][-a a a a -+-∙∙例题二、计算:3222132213⎪⎭⎫ ⎝⎛-∙⎪⎭⎫ ⎝⎛-+xy y y x例题三、计算:()()()()y x y x y x y x 4333223+--++【知识点二】利用幂的运算法则解决问题例题一、已知510=a ,610=b ,求b a 3210+的值。
例题二、解方程:486331222=-++x x例题三、已知0352=-+y x ,求y x 324∙的值。
【知识点三】整式除法的运用例题一、已知()p n y mx y x y x 72323212--=⎪⎭⎫ ⎝⎛-÷,求n,m,p 的值。
例题二、已知一个多项式与单项式457-y x 的积为()2234775272821y x y y x y x +-,求这个多项式【知识点四】整式化简求值例题一、先化简,再求值:()()()x x x x x x x x -+-----321589622,其中61-=x例题二、先化简,再求值:()()()⎪⎭⎫ ⎝⎛--++--+-y x x y x x y x y x 2563222,其中2,1=-=y x .【知识点五】开放探求题例题一、若多项式()()4322+-++xxnmxx展开后不含有3x项和2x项,试求m,n的值。
例题二、甲乙二人共同计算一道整式乘法:()()bxax++32,由于甲抄错了第一个多项式中a的符号,得到的结果为101162-+xx;由于乙漏抄了第二个多项式中x的系数,得到的结果为10922+-xx。
(1)你能知道式子中b a,的值各是多少吗?(2)请你计算出这道整式乘法的正确结果。
例题三、若x是整数,求证121223+-+--x x xxx是整数。
【知识点六】整式乘除法在实际问题中的应用例题一、某中学扩建教学楼,测量地基时,量得地基长为2a m,宽为(2a-24)m,试用a表示地基的面积,并计算当a=25时地基的面积例题二、大庆市环保局欲将一个长为2×103dm,宽为4×102dm,高为8×10dm的长方体废水池中的满池废水注入正方体贮水池净化,(1)请你考虑一下,这些废水能否刚好装满一个正方体贮水池________.(请填“能”或“不能”)(2)若能,则该正方体贮水池的棱长_________dm;(3)若不能,你能说出理由吗?(不要求作答)例题三、太阳可以近似的看作是球体,如果用V 、R 分别代表球的体积和半径,那么34 V π3R ,太阳的半径约为6×105千米,它的体积大约是多少立方千米?(π取3)。
尽快地掌握科学知识,迅速提高学习能力,由查字典数学网为您提供的2015-2016学期初二上册数学知识点归纳:整式的乘法,希望给您带来启发!1. 单项式乘法法则:单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,连同它的指数作为积的一个因式。
单项式乘法法则在运用时要注意以下几点:①积的系数等于各因式系数积,先确定符号,再计算绝对值。
这时容易出现的错误的是,将系数相乘与指数相加混淆;②相同字母相乘,运用同底数的乘法法则;③只在一个单项式里含有的字母,要连同它的指数作为积的一个因式;④单项式乘法法则对于三个以上的单项式相乘同样适用;⑤单项式乘以单项式,结果仍是一个单项式。
2.单项式与多项式相乘单项式乘以多项式,是通过乘法对加法的分配律,把它转化为单项式乘以单项式,即单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加。
单项式与多项式相乘时要注意以下几点:①单项式与多项式相乘,积是一个多项式,其项数与多项式的项数相同;②运算时要注意积的符号,多项式的每一项都包括它前面的符号;③在混合运算时,要注意运算顺序。
3.多项式与多项式相乘多项式与多项式相乘,先用一个多项式中的每一项乘以另一个多项式的每一项,再把所得的积相加。
多项式与多项式相乘时要注意以下几点:①多项式与多项式相乘要防止漏项,检查的方法是:在没有合并同类项之前,积的项数应等于原两个多项式项数的积;②多项式相乘的结果应注意合并同类项;③对含有同一个字母的一次项系数是1的两个一次二项式相乘,其二次项系数为1,一次项系数等于两个因式中常数项的和,常数项是两个因式中常数项的积。
以上就是查字典数学网为大家整理的2015-2016学期初二上册数学知识点归纳:整式的乘法,大家还满意吗?希望对大家有所帮助!。