培优七年级第2讲——从算术到代数
- 格式:doc
- 大小:549.87 KB
- 文档页数:7
数学初中七年级第二单元代数运算教学解析代数运算是数学中的重要基础部分,也是初中数学的重点内容之一。
在初中七年级的第二单元中,学生将初步学习代数运算的基本概念和方法,为进一步学习和应用代数打下坚实的基础。
本文将对初中七年级第二单元的代数运算教学进行解析,帮助教师和学生更好地理解和应用代数运算。
一、代数运算的基本概念代数运算是一种将数学问题转化为符号运算的方法,通过使用字母与符号进行表达,从而研究运算过程中的各种规律和性质。
在初中七年级的代数运算中,主要涉及以下几个基本概念:1.1 代数式与代数方程代数式是一个或多个数与字母及其运算符号组成的式子,其中的字母表示未知数。
代数方程则是将代数式中的字母表示的未知数置于等号两侧,通过求解未知数的值来满足方程。
1.2 代数运算的基本运算法则在代数运算中,有加法、减法、乘法和除法等基本运算法则。
其中,加法满足交换律和结合律,乘法满足交换律和结合律,减法和除法分别有减法公式和除法公式。
1.3 多项式多项式是由系数与字母的乘积相加而成的代数表达式。
多项式可以包含常数项、一次项、二次项等不同次数的项。
二、代数运算的基本方法与技巧在初中七年级的代数运算中,学生需要掌握一些基本的方法和技巧,以便能够正确地进行代数运算。
2.1 符号替换与代数式化简在代数运算中,常常需要进行符号替换和代数式化简的操作。
通过合并同类项、符号展开、因式分解等方法,可以将复杂的代数式化简为简单的形式,便于进一步处理和计算。
2.2 方程的解法方程是代数运算中的重要内容,解方程需要运用到代数运算的各种法则和技巧。
常见的方程解法有加法逆元法、等式对称法、因式分解法等,每种方法都有其适合的场景和运用条件。
2.3 思维方法和推理能力培养代数运算的过程需要培养学生的思维方法和推理能力。
通过分析问题、寻找规律、抽象思维等方法,能够更好地理解和解决代数运算中的问题。
三、代数运算在实际问题中的应用代数运算不仅是数学的一种基本概念和方法,也是解决实际问题的有力工具。
初一数学基础知识讲义第一讲和绝对值有关的问题一、知识结构框图:数二、绝对值的意义:(1)几何意义:一般地,数轴上表示数a的点到原点的距离叫做数a的绝对值,记作|a|。
(2)代数意义:①正数的绝对值是它的本身;②负数的绝对值是它的相反数;③零的绝对值是零。
也可以写成:()()() ||0a aa aa a⎧⎪⎪=⎨⎪-⎪⎩当为正数当为0当为负数说明:(Ⅰ)|a|≥0即|a|是一个非负数;(Ⅱ)|a|概念中蕴含分类讨论思想。
三、典型例题例1.(数形结合思想)已知a、b、c在数轴上位置如图:则代数式| a | + | a+b | + | c-a | - | b-c | 的值等于(A )A.-3a B. 2c-a C.2a-2b D. b解:| a | + | a+b | + | c-a | - | b-c |=-a-(a+b)+(c-a)+b-c=-3a分析:解绝对值的问题时,往往需要脱去绝对值符号,化成一般的有理数计算。
脱去绝对值的符号时,必须先确定绝对值符号内各个数的正负性,再根据绝对值的代数意义脱去绝对值符号。
这道例题运用了数形结合的数学思想,由a 、b 、c 在数轴上的对应位置判断绝对值符号内数的符号,从而去掉绝对值符号,完成化简。
例2.已知:z x <<0,0>xy ,且x z y >>, 那么y x z y z x --+++的值( C )A .是正数B .是负数C .是零D .不能确定符号解:由题意,x 、y 、z 在数轴上的位置如图所示:所以分析:数与代数这一领域中数形结合的重要载体是数轴。
这道例题中三个看似复杂的不等关系借助数轴直观、轻松的找到了x 、y 、z 三个数的大小关系,为我们顺利化简铺平了道路。
虽然例题中没有给出数轴,但我们应该有数形结合解决问题的意识。
例3.(分类讨论的思想)已知甲数的绝对值是乙数绝对值的3倍,且在数轴上表示这两数的点位于原点的两侧,两点之间的距离为8,求这两个数;若数轴上表示这两数的点位于原点同侧呢?分析:从题目中寻找关键的解题信息,“数轴上表示这两数的点位于原点的两侧”意味着甲乙两数符号相反,即一正一负。
第一讲有理数的巧算有理数运算是中学数学中一切运算的基础.它要求同学们在理解有理数的有关概念、法则的基础上,能根据法则、公式等正确、迅速地进行运算.不仅如此,还要善于根据题目条件,将推理与计算相结合,灵活巧妙地选择合理的简捷的算法解决问题,从而提高运算能力,发展思维的敏捷性与灵活性.1.括号的使用在代数运算中,可以根据运算法则和运算律,去掉或者添上括号,以此来改变运算的次序,使复杂的问题变得较简单.例1计算:分析中学数学中,由于负数的引入,符号“+”与“-”具有了双重涵义,它既是表示加法与减法的运算符号,也是表示正数与负数的性质符号.因此进行有理数运算时,一定要正确运用有理数的运算法则,尤其是要注意去括号时符号的变化.注意在本例中的乘除运算中,常常把小数变成分数,把带分数变成假分数,这样便于计算.例2计算下式的值:211×555+445×789+555×789+211×445.分析直接计算很麻烦,根据运算规则,添加括号改变运算次序,可使计算简单.本题可将第一、第四项和第二、第三项分别结合起来计算.解原式=(211×555+211×445)+(445×789+555×789)=211×(555+445)+(445+555)×789=211×1000+1000×789=1000×(211+789)=1 000 000.说明加括号的一般思想方法是“分组求和”,它是有理数巧算中的常用技巧.例3计算:S=1-2+3-4+…+(-1)n+1·n.分析不难看出这个算式的规律是任何相邻两项之和或为“1”或为“-1”.如果按照将第一、第二项,第三、第四项,…,分别配对的方式计算,就能得到一系列的“-1”,于是一改“去括号”的习惯,而取“添括号”之法.解 S=(1-2)+(3-4)+…+(-1)n+1·n.下面需对n的奇偶性进行讨论:当n为偶数时,上式是n/2个(-1)的和,所以有当n为奇数时,上式是(n-1)/2个(-1)的和,再加上最后一项(-1)n+1·n=n,所以有例4在数1,2,3,…,1998前添符号“+”和“-”,并依次运算,所得可能的最小非负数是多少?分析与解因为若干个整数和的奇偶性,只与奇数的个数有关,所以在1,2,3,…,1998之前任意添加符号“+”或“-”,不会改变和的奇偶性.在1,2,3,…,1998中有1998÷2个奇数,即有999个奇数,所以任意添加符号“+”或“-”之后,所得的代数和总为奇数,故最小非负数不小于1.现考虑在自然数n,n+1,n+2,n+3之间添加符号“+”或“-”,显然n-(n+1)-(n+2)+(n+3)=0.这启发我们将1,2,3,…,1998每连续四个数分为一组,再按上述规则添加符号,即(1-2-3+4)+(5-6-7+8)+…+(1993-1994-1995+1996)-1997+1998=1.所以,所求最小非负数是1.说明本例中,添括号是为了造出一系列的“零”,这种方法可使计算大大简化.2.用字母表示数我们先来计算(100+2)×(100-2)的值:(100+2)×(100-2)=100×100-2×100+2×100-4=1002-22.这是一个对具体数的运算,若用字母a代换100,用字母b代换2,上述运算过程变为(a+b)(a-b)=a2-ab+ab-b2=a2-b2.于是我们得到了一个重要的计算公式(a+b)(a-b)=a2-b2,①这个公式叫平方差公式,以后应用这个公式计算时,不必重复公式的证明过程,可直接利用该公式计算.例5计算 3001×2999的值.解 3001×2999=(3000+1)(3000-1)=30002-12=8 999 999.例6计算 103×97×10 009的值.解原式=(100+3)(100-3)(10000+9)=(1002-9)(1002+9)=1004-92=99 999 919.例7计算:分析与解直接计算繁.仔细观察,发现分母中涉及到三个连续整数:12 345,12 346,12 347.可设字母n=12 346,那么12 345=n-1,12 347=n+1,于是分母变为n2-(n-1)(n+1).应用平方差公式化简得n2-(n2-12)=n2-n2+1=1,即原式分母的值是1,所以原式=24 690.例8计算:(2+1)(22+1)(24+1)(28+1)(216+1)(232+1).分析式子中2,22,24,…每一个数都是前一个数的平方,若在(2+1)前面有一个(2-1),就可以连续递进地运用(a+b)(a-b)=a2-b2了.解原式=(2-1)(2+1)(22+1)(24+1)(28+1)×(216+1)(232+1)=(22-1)(22+1)(24+1)(28+1)(216+1)×(232+1)=(24-1)(24+1)(28+1)(216+1)(232+1)=……=(232-1)(232+1)=264-1.例9计算:分析在前面的例题中,应用过公式(a+b)(a-b)=a2-b2.这个公式也可以反着使用,即a2-b2=(a+b)(a-b).本题就是一个例子.通过以上例题可以看到,用字母表示数给我们的计算带来很大的益处.下面再看一个例题,从中可以看到用字母表示一个式子,也可使计算简化.例10计算:我们用一个字母表示它以简化计算.3.观察算式找规律例11某班20名学生的数学期末考试成绩如下,请计算他们的总分与平均分.87,91,94,88,93,91,89,87,92,86,90,92,88,90,91,86,89,92,95,88.分析与解若直接把20个数加起来,显然运算量较大,粗略地估计一下,这些数均在90上下,所以可取90为基准数,大于90的数取“正”,小于90的数取“负”,考察这20个数与90的差,这样会大大简化运算.所以总分为90×20+(-3)+1+4+(-2)+3+1+(-1)+(-3)+2+(-4)+0+2+(-2)+0+1+(-4)+(-1)+2+5+(-2)=1800-1=1799,平均分为 90+(-1)÷20=89.95.例12 计算1+3+5+7+…+1997+1999的值.分析观察发现:首先算式中,从第二项开始,后项减前项的差都等于2;其次算式中首末两项之和与距首末两项等距离的两项之和都等于2000,于是可有如下解法.解用字母S表示所求算式,即S=1+3+5+…+1997+1999.①再将S各项倒过来写为S=1999+1997+1995+…+3+1.②将①,②两式左右分别相加,得2S=(1+1999)+(3+1997)+…+(1997+3)+(1999+1)=2000+2000+…+2000+2000(500个2000)=2000×500.从而有 S=500 000.说明一般地,一列数,如果从第二项开始,后项减前项的差都相等(本题3-1=5-3=7-5=…=1999-1997,都等于2),那么,这列数的求和问题,都可以用上例中的“倒写相加”的方法解决.例13计算 1+5+52+53+…+599+5100的值.分析观察发现,上式从第二项起,每一项都是它前面一项的5倍.如果将和式各项都乘以5,所得新和式中除个别项外,其余与原和式中的项相同,于是两式相减将使差易于计算.解设S=1+5+52+…+599+5100,①所以5S=5+52+53+…+5100+5101.②②—①得4S=5101-1,说明如果一列数,从第二项起每一项与前一项之比都相等(本例中是都等于5),那么这列数的求和问题,均可用上述“错位相减”法来解决.例14 计算:分析一般情况下,分数计算是先通分.本题通分计算将很繁,所以我们不但不通分,反而利用如下一个关系式来把每一项拆成两项之差,然后再计算,这种方法叫做拆项法.解由于所以说明本例使用拆项法的目的是使总和中出现一些可以相消的相反数的项,这种方法在有理数巧算中很常用.练习一1.计算下列各式的值:(1)-1+3-5+7-9+11-…-1997+1999;(2)11+12-13-14+15+16-17-18+…+99+100;(3)1991×1999-1990×2000;(4)4726342+472 6352-472 633×472 635-472 634×472 636;(6)1+4+7+ (244)2.某小组20名同学的数学测验成绩如下,试计算他们的平均分.81,72,77,83,73,85,92,84,75,63,76,97,80,90,76,91,86,78,74,85.第二讲绝对值绝对值是初中代数中的一个基本概念,在求代数式的值、化简代数式、证明恒等式与不等式,以及求解方程与不等式时,经常会遇到含有绝对值符号的问题,同学们要学会根据绝对值的定义来解决这些问题.下面我们先复习一下有关绝对值的基本知识,然后进行例题分析.一个正实数的绝对值是它本身;一个负实数的绝对值是它的相反数;零的绝对值是零.即绝对值的几何意义可以借助于数轴来认识,它与距离的概念密切相关.在数轴上表示一个数的点离开原点的距离叫这个数的绝对值.结合相反数的概念可知,除零外,绝对值相等的数有两个,它们恰好互为相反数.反之,相反数的绝对值相等也成立.由此还可得到一个常用的结论:任何一个实数的绝对值是非负数.例1 a,b为实数,下列各式对吗?若不对,应附加什么条件?(1)|a+b|=|a|+|b|;(2)|ab|=|a||b|;(3)|a-b|=|b-a|;(4)若|a|=b,则a=b;(5)若|a|<|b|,则a<b;(6)若a>b,则|a|>|b|.解 (1)不对.当a,b同号或其中一个为0时成立.(2)对.(3)对.(4)不对.当a≥0时成立.(5)不对.当b>0时成立.(6)不对.当a+b>0时成立.例2设有理数a,b,c在数轴上的对应点如图1-1所示,化简|b-a|+|a+c|+|c-b|.解由图1-1可知,a>0,b<0,c<0,且有|c|>|a|>|b|>0.根据有理数加减运算的符号法则,有b-a<0,a+c<0,c-b<0.再根据绝对值的概念,得|b-a|=a-b,|a+c|=-(a+c),|c-b|=b-c.于是有原式=(a-b)-(a+c)+(b-c)=a-b-a-c+b-c=-2c.例3已知x<-3,化简:|3+|2-|1+x|||.分析这是一个含有多层绝对值符号的问题,可从里往外一层一层地去绝对值符号.解原式=|3+|2+(1+x)||(因为1+x<0)=|3+|3+x||=|3-(3+x)|(因为3+x<0)=|-x|=-x.解因为 abc≠0,所以a≠0,b≠0,c≠0.(1)当a,b,c均大于零时,原式=3;(2)当a,b,c均小于零时,原式=-3;(3)当a,b,c中有两个大于零,一个小于零时,原式=1;(4)当a,b,c中有两个小于零,一个大于零时,原式=-1.说明本例的解法是采取把a,b,c中大于零与小于零的个数分情况加以解决的,这种解法叫作分类讨论法,它在解决绝对值问题时很常用.例5若|x|=3,|y|=2,且|x-y|=y-x,求x+y的值.解因为|x-y|≥0,所以y-x≥0,y≥x.由|x|=3,|y|=2可知,x<0,即x=-3.(1)当y=2时,x+y=-1;(2)当y=-2时,x+y=-5.所以x+y的值为-1或-5.例6若a,b,c为整数,且|a-b|19+|c-a|99=1,试计算|c-a|+|a-b|+|b-c|的值.解 a,b,c均为整数,则a-b,c-a也应为整数,且|a-b|19,|c-a|99为两个非负整数,和为1,所以只能是|a-b|19=0且|c-a|99=1,①或|a-b|19=1且|c-a|99=0.②由①有a=b且c=a±1,于是|b-c|=|c-a|=1;由②有c=a且a=b±1,于是|b-c|=|a-b|=1.无论①或②都有|b-c|=1且|a-b|+|c-a|=1,所以|c-a|+|a-b|+|b-c|=2.解依相反数的意义有|x-y+3|=-|x+y-1999|.因为任何一个实数的绝对值是非负数,所以必有|x-y+3|=0且|x+y-1999|=0.即由①有x-y=-3,由②有x+y=1999.②-①得2y=2002, y=1001,所以例8 化简:|3x+1|+|2x-1|.分析本题是两个绝对值和的问题.解题的关键是如何同时去掉两个绝对值符号.若分别去掉每个绝对值符号,则是很容易的事.例如,化简|3x+1|,只要考虑3x+1的正负,即可去掉绝对值符号.这里我们为三个部分(如图1-2所示),即这样我们就可以分类讨论化简了.原式=-(3x+1)-(2x-1)=5x;原式=(3x+1)-(2x-1)=x+2;原式=(3x+1)+(2x-1)=5x.即说明解这类题目,可先求出使各个绝对值等于零的变数字母的值,即先求出各个分界点,然后在数轴上标出这些分界点,这样就将数轴分成几个部分,根据变数字母的这些取值范围分类讨论化简,这种方法又称为“零点分段法”.例9已知y=|2x+6|+|x-1|-4|x+1|,求y的最大值.分析首先使用“零点分段法”将y化简,然后在各个取值范围内求出y的最大值,再加以比较,从中选出最大者.解有三个分界点:-3,1,-1.(1)当x≤-3时,y=-(2x+6)-(x-1)+4(x+1)=x-1,由于x≤-3,所以y=x-1≤-4,y的最大值是-4.(2)当-3≤x≤-1时,y=(2x+6)-(x-1)+4(x+1)=5x+11,由于-3≤x≤-1,所以-4≤5x+11≤6,y的最大值是6.(3)当-1≤x≤1时,y=(2x+6)-(x-1)-4(x+1)=-3x+3,由于-1≤x≤1,所以0≤-3x+3≤6,y的最大值是6.(4)当x≥1时,y=(2x+6)+(x-1)-4(x+1)=-x+1,由于x≥1,所以1-x≤0,y的最大值是0.综上可知,当x=-1时,y取得最大值为6.例10设a<b<c<d,求|x-a|+|x-b|+|x-c|+|x-d|的最小值.分析本题也可用“零点分段法”讨论计算,但比较麻烦.若能利用|x-a|,|x-b|,|x-c|,|x-d|的几何意义来解题,将显得更加简捷便利.解设a,b,c,d,x在数轴上的对应点分别为A,B,C,D,X,则|x-a|表示线段AX之长,同理,|x-b|,|x-c|,|x-d|分别表示线段BX,CX,DX之长.现要求|x-a|,|x-b|,|x-c|,|x-d|之和的值最小,就是要在数轴上找一点X,使该点到A,B,C,D四点距离之和最小.因为a<b<c<d,所以A,B,C,D的排列应如图1-3所示:所以当X在B,C之间时,距离和最小,这个最小值为AD+BC,即(d-a)+(c-b).例11若2x+|4-5x|+|1-3x|+4的值恒为常数,求x该满足的条件及此常数的值.分析与解要使原式对任何数x恒为常数,则去掉绝对值符号,化简合并时,必须使含x的项相加为零,即x的系数之和为零.故本题只有2x-5x+3x=0一种情况.因此必须有|4-5x|=4-5x且|1-3x|=3x-1.故x应满足的条件是此时原式=2x+(4-5x)-(1-3x)+4=7.练习二1.x是什么实数时,下列等式成立:(1)|(x-2)+(x-4)|=|x-2|+|x-4|;(2)|(7x+6)(3x-5)|=(7x+6)(3x-5).2.化简下列各式:(2)|x+5|+|x-7|+|x+10|.3.若a+b<0,化简|a+b-1|-|3-a-b|.4.已知y=|x+3|+|x-2|-|3x-9|,求y的最大值.5.设T=|x-p|+|x-15|+|x-p-15|,其中0<p<15,对于满足p≤x≤15的x 来说,T的最小值是多少?6.已知a<b,求|x-a|+|x-b|的最小值.7.不相等的有理数a,b,c在数轴上的对应点分别为A,B,C,如果|a-b|+|b-c|=|a-c|,那么B点应为( ).(1)在A,C点的右边;(2)在A,C点的左边;(3)在A,C点之间;(4)以上三种情况都有可能.第三讲求代数式的值用具体的数代替代数式里的字母进行计算,求出代数式的值,是一个由一般到特殊的过程.具体求解代数式值的问题时,对于较简单的问题,代入直接计算并不困难,但对于较复杂的代数式,往往是先化简,然后再求值.下面结合例题初步看一看代数式求值的常用技巧.例1求下列代数式的值:分析上面两题均可直接代入求值,但会很麻烦,容易出错.我们可以利用已经学过的有关概念、法则,如合并同类项,添、去括号等,先将代数式化简,然后再求值,这样会大大提高运算的速度和结果的准确性.=0-4a3b2-a2b-5=-4×13×(- 2)2- 12×(-2)-5=-16+2-5=-19.(2)原式=3x2y-xyz+(2xyz-x2z)+4x2?[3x2y-(xyz-5x2z)]=3x2y-xyz+2xyz-x2z+4x2z-3x2y+(xyz-5x2z)=(3x2y-3x2y)+(-xyz+2xyz+xyz)+(-x2z+4x2z-5x2z)=2xyz-2x2z=2×(-1)×2×(-3)-2×(-1)2×(-3)=12+6=18.说明本例中(1)的化简是添括号,将同类项合并后,再代入求值;(2)是先去括号,然后再添括号,合并化简后,再代入求值.去、添括号时,一定要注意各项符号的变化.例2已知a-b=-1,求a3+3ab-b3的值.分析由已知条件a-b=-1,我们无法求出a,b的确定值,因此本题不能像例1那样,代入a,b的值求代数式的值.下面给出本题的五种解法.解法1由a-b=-1得a=b-1,代入所求代数式化简a3+3ab-b3=(b-1)3+3(b-1)b-b3=b3-3b2+3b-1+3b2-3b-b3=-1.说明这是用代入消元法消去a化简求值的.解法2因为a-b=-1,所以原式=(a3-b3)+3ab=(a-b)(a2+ab+b2)+3ab=-1×(a2+ab+b2)+3ab=-a2-ab-b2+3ab=-(a2-2ab+b2)=-(a-b)2=-(-1)2=-1.说明这种解法是利用了乘法公式,将原式化简求值的.解法3 因为a-b=-1,所以原式=a3-3ab(-1)-b3=a3-3ab(a-b)-b3=a3-3a2b+3ab2-b3=(a-b)3=(-1)3=-1.说明这种解法巧妙地利用了-1=a-b,并将3ab化为-3ab(-1)=-3ab(a-b),从而凑成了(a-b)3.解法4 因为a-b=-1,所以(a-b)3=(-1)3=1,即 a3+3ab2-3a2b-b3=-1,a3-b3-3ab(a-b)=-1,所以 a3-b3-3ab(-1)=-1,即 a3-b3+3ab=-1.说明这种解法是由a-b=-1,演绎推理出所求代数式的值.解法 5a3+3ab-b3=a3+3ab2-3a2b-b3-3ab2+3a2b+3ab=(a-b)3+3ab(a-b)+3ab=(-1)3+3ab(-1)+3ab=-1.说明这种解法是添项,凑出(a-b)3,然后化简求值.通过这个例题可以看出,求代数式的值的方法是很灵活的,需要认真思考,才能找到简便的算法.在本例的各种解法中,用到了几个常用的乘法公式,现总结如下:(a+b)2=a2+2ab+b2;(a-b)2=a2-2ab+b2;(a+b)3=a3+3a2b+3ab2+b3;(a-b)3=a3-3a2b+3ab2-b3;a3+b3=(a+b)(a2-ab+b2);a3-b3=(a-b)(a2+ab+b2).解由已知,xy=2(x+y),代入所求代数式中,消去xy,然后化简.所以解因为a=3b,所以c=5a=5×(3b)=15b.将a,c代入所求代数式,化简得解因为(x-5)2,|m|都是非负数,所以由(1)有由(2)得y+1=3,所以y=2.下面先化简所求代数式,然后再代入求值.=x2y+5m2x+10xy2=52×2+0+10×5×22=250例6如果4a-3b=7,并且3a+2b=19,求14a-2b的值.分析此题可以用方程组求出a,b的值,再分别代入14a-2b求值.下面介绍一种不必求出a,b的值的解法.解 14a-2b=2(7a-b)=2[(4a+3a)+(-3b+2b)]=2[(4a-3b)+(3a+2b)]=2(7+19)=52.|x|+|x-1|+|x-2|+|x-3|+|x-4|+|x-5|的值.分析所求代数式中六个绝对值的分界点,分别为:0,1,2,据绝对值的意义去掉绝对值的符号,将有3个x和3个-x,这样将抵消掉x,使求值变得容易.原式=x+(x-1)+(x-2)-(x-3)-(x-4)-(x-5)=-1-2+3+4+5=9.说明实际上,本题只要x的值在2与3之间,那么这个代数式的值就是9,即它与x具体的取值无关.例8若x:y:z=3:4:7,且2x-y+z=18,那么x+2y-z的值是多少?分析 x:y:z=3:4:7可以写成的形式,对于等比,我们通常可以设它们的比值为常数k,这样可以给问题的解决带来便利.x=3k,y=4k,z=7k.因为2x-y+z=18,所以2×3k-4k+7k=18,所以k=2,所以x=6,y=8,z=14,所以x+2y-z=6+16-14=8.例9已知x=y=11,求(xy-1)2+(x+y-2)(x+y-2xy)的值.分析本题是可直接代入求值的.下面采用换元法,先将式子改写得较简洁,然后再求值.解设x+y=m,xy=n.原式=(n-1)2+(m-2)(m-2n)=(n-1)2+m2-2m-2mn+4n=n2-2n+1+4n-2m-2mn+m2=(n+1)2-2m(n+1)+m2=(n+1-m)2=(11×11+1-22)2=(121+1-22)2=1002=10000.说明换元法是处理较复杂的代数式的常用手法,通过换元,可以使代数式的特征更加突出,从而简化了题目的表述形式.练习三1.求下列代数式的值:(1)a4+3ab-6a2b2-3ab2+4ab+6a2b-7a2b2-2a4,其中a=-2,b=1;的值.3.已知a=3.5,b=-0.8,求代数式|6-5b|-|3a-2b|-|8b-1|的值.4.已知(a+1)2-(3a2+4ab+4b2+2)=0,求 a,b的值.5.已知第四讲一元一次方程方程是中学数学中最重要的内容.最简单的方程是一元一次方程,它是进一步学习代数方程的基础,很多方程都可以通过变形化为一元一次方程来解决.本讲主要介绍一些解一元一次方程的基本方法和技巧.用等号连结两个代数式的式子叫等式.如果给等式中的文字代以任何数值,等式都成立,这种等式叫恒等式.一个等式是否是恒等式是要通过证明来确定的.如果给等式中的文字(未知数)代以某些值,等式成立,而代以其他的值,则等式不成立,这种等式叫作条件等式.条件等式也称为方程.使方程成立的未知数的值叫作方程的解.方程的解的集合,叫作方程的解集.解方程就是求出方程的解集.只含有一个未知数(又称为一元),且其次数是1的方程叫作一元一次方程.任何一个一元一次方程总可以化为ax=b(a≠0)的形式,这是一元一次方程的标准形式(最简形式).解一元一次方程的一般步骤:(1)去分母;(2)去括号;(3)移项;(4)合并同类项,化为最简形式ax=b;(5)方程两边同除以未知数的系数,得出方程的解.一元一次方程ax=b的解由a,b的取值来确定:(2)若a=0,且b=0,方程变为0·x=0,则方程有无数多个解;(3)若a=0,且b≠0,方程变为0·x=b,则方程无解.例1解方程解法1从里到外逐级去括号.去小括号得去中括号得去大括号得解法2按照分配律由外及里去括号.去大括号得化简为去中括号得去小括号得例2已知下面两个方程3(x+2)=5x,①4x-3(a-x)=6x-7(a-x) ②有相同的解,试求a的值.分析本题解题思路是从方程①中求出x的值,代入方程②,求出a的值.解由方程①可求得3x-5x=-6,所以x=3.由已知,x=3也是方程②的解,根据方程解的定义,把x=3代入方程②时,应有4×3-3(a-3)=6×3-7(a-3),7(a-3)-3(a-3)=18-12,例3已知方程2(x+1)=3(x-1)的解为a+2,求方程2[2(x+3)-3(x-a)]=3a的解.解由方程2(x+1)=3(x-1)解得x=5.由题设知a+2=5,所以a=3.于是有2[2(x+3)-3(x-3)]=3×3,-2x=-21,例4解关于x的方程(mx-n)(m+n)=0.分析这个方程中未知数是x,m,n是可以取不同实数值的常数,因此需要讨论m,n取不同值时,方程解的情况.解把原方程化为m2x+mnx-mn-n2=0,整理得 m(m+n)x=n(m+n).当m+n≠0,且m=0时,方程无解;当m+n=0时,方程的解为一切实数.说明含有字母系数的方程,一定要注意字母的取值范围.解这类方程时,需要从方程有唯一解、无解、无数多个解三种情况进行讨论.例5解方程(a+x-b)(a-b-x)=(a2-x)(b2+x)-a2b2.分析本题将方程中的括号去掉后产生x2项,但整理化简后,可以消去x2,也就是说,原方程实际上仍是一个一元一次方程.解将原方程整理化简得(a-b)2-x2=a2b2+a2x-b2x-x2-a2b2,即 (a2-b2)x=(a-b)2.(1)当a2-b2≠0时,即a≠±b时,方程有唯一解(2)当a2-b2=0时,即a=b或a=-b时,若a-b≠0,即a≠b,即a=-b时,方程无解;若a-b=0,即a=b,方程有无数多个解.例6已知(m2-1)x2-(m+1)x+8=0是关于x的一元一次方程,求代数式199(m+x)(x-2m)+m的值.解因为(m2-1)x2-(m+1)x+8=0是关于x的一元一次方程,所以m2-1=0,即m=±1.(1)当m=1时,方程变为-2x+8=0,因此x=4,代数式的值为199(1+4)(4-2×1)+1=1991;(2)当m=-1时,原方程无解.所以所求代数式的值为1991.例7 已知关于x的方程a(2x-1)=3x-2无解,试求a的值.解将原方程变形为2ax-a=3x-2,即 (2a-3)x=a-2.由已知该方程无解,所以例8 k为何正数时,方程k2x-k2=2kx-5k的解是正数?来确定:(1)若b=0时,方程的解是零;反之,若方程ax=b的解是零,则b=0成立.(2)若ab>0时,则方程的解是正数;反之,若方程ax=b的解是正数,则ab>0成立.(3)若ab<0时,则方程的解是负数;反之,若方程ax=b的解是负数,则ab<0成立.解按未知数x整理方程得(k2-2k)x=k2-5k.要使方程的解为正数,需要(k2-2k)(k2-5k)>0.看不等式的左端(k2-2k)(k2-5k)=k2(k-2)(k-5).因为k2≥0,所以只要k>5或k<2时上式大于零,所以当k<2或k>5时,原方程的解是正数,所以k>5或0<k<2即为所求.例9若abc=1,解方程解因为abc=1,所以原方程可变形为化简整理为化简整理为说明像这种带有附加条件的方程,求解时恰当地利用附加条件可使方程的求解过程大大简化.例10若a,b,c是正数,解方程解法1原方程两边乘以abc,得到方程ab(x-a-b)+bc(x-b-c)+ac(x-c-a)=3abc.移项、合并同类项得ab[x-(a+b+c)]+bc[x-(a+b+c)]+ac[x-(a+b+c)]=0,因此有[x-(a+b+c)](ab+bc+ac)=0.因为a>0,b>0,c>0,所以ab+bc+ac≠0,所以x-(a+b+c)=0,即x=a+b+c为原方程的解.解法2将原方程右边的3移到左边变为-3,再拆为三个“-1”,并注意到其余两项做类似处理.设m=a+b+c,则原方程变形为所以即x-(a+b+c)=0.所以x=a+b+c为原方程的解.说明注意观察,巧妙变形,是产生简单优美解法所不可缺少的基本功之一.例11设n为自然数,[x]表示不超过x的最大整数,解方程:分析要解此方程,必须先去掉[ ],由于n是自然数,所以n与(n+1)…,n[x]都是整数,所以x必是整数.解根据分析,x必为整数,即x=[x],所以原方程化为合并同类项得故有所以x=n(n+1)为原方程的解.例12已知关于x的方程且a为某些自然数时,方程的解为自然数,试求自然数a的最小值.解由原方程可解得a最小,所以x应取x=160.所以所以满足题设的自然数a的最小值为2.练习四1.解下列方程:*2.解下列关于x的方程:(1)a2(x-2)-3a=x+1;4.当k取何值时,关于x的方程3(x+1)=5-kx,分别有:(1)正数解;(2)负数解;(3)不大于1的解.第五讲方程组的解法二元及多元(二元以上)一次方程组的求解,主要是通过同解变形进行消元,最终转化为一元一次方程来解决.所以,解方程组的基本思想是消元,主要的消元方法有代入消元和加减消元两种,下面结合例题予以介绍.例1解方程组解将原方程组改写为由方程②得x=6+4y,代入①化简得11y-4z=-19.④由③得2y+3z=4.⑤④×3+⑤×4得33y+8y=-57+16,所以 y=-1.将y=-1代入⑤,得z=2.将y=-1代入②,得x=2.所以为原方程组的解.说明本题解法中,由①,②消x时,采用了代入消元法;解④,⑤组成的方程组时,若用代入法消元,无论消y,还是消z,都会出现分数系数,计算较繁,而利用两个方程中z的系数是一正一负,且系数的绝对值较小,采用加减消元法较简单.解方程组消元时,是使用代入消元,还是使用加减消元,要根据方程的具体特点而定,灵活地采用各种方法与技巧,使解法简捷明快.例2解方程组解法1由①,④消x得由⑥,⑦消元,得解之得将y=2代入①得x=1.将z=3代入③得u=4.所以解法2由原方程组得所以x=5-2y=5-2(8-2z)=-11+4z=-11+4(11-2u)=33-8u=33-8(6-2x)=-15+16x,即x=-15+16x,解之得x=1.将x=1代入⑧得u=4.将u=4代入⑦得z=3.将z=3代入⑥得y=2.所以为原方程组的解.解法3①+②+③+④得x+y+z+u=10,⑤由⑤-(①+③)得y+u=6,⑥由①×2-④得4y-u=4,⑦⑥+⑦得y=2.以下略.说明解法2很好地利用了本题方程组的特点,解法简捷、流畅.例3解方程组分析与解注意到各方程中同一未知数系数的关系,可以先得到下面四个二元方程:①+②得x+u=3,⑥②+③得y+v=5,⑦③+④得z+x=7,⑧④+⑤得u+y=9.⑨又①+②+③+④+⑤得x+y+z+u+v=15.⑩⑩-⑥-⑦得z=7,把z=7代入⑧得x=0,把x=0代入⑥得u=3,把u=3代入⑨得y=6,把y=6代入⑦得v=-1.所以为原方程组的解.例4解方程组解法1①×2+②得由③得代入④得为原方程组的解.为原方程组的解.说明解法1称为整体处理法,即从整体上进行加减消元或代入消为换元法,也就是干脆引入一个新的辅助元来代替原方程组中的“整体元”,从而简化方程组的求解过程.例5已知分析与解一般想法是利用方程组求出x,y,z的值之后,代入所求的代数式计算.但本题中方程组是由三个未知数两个方程组成的,因此无法求出x,y,z的确定有限解,但我们可以利用加减消元法将原方程组变形.①-②消去x得①×3+②消去y得①×5+②×3消去z得例6已知关于x,y的方程组分别求出当a为何值时,方程组(1)有唯一一组解;(2)无解;(3)有无穷多组解.分析与一元一次方程一样,含有字母系数的一次方程组求解时也要进行讨论,一般是通过消元,归结为一元一次方程ax=b的形式进行讨论.但必须特别注意,消元时,若用含有字母的式子去乘或者去除方程的两边时,这个式子的值不能等于零.解由①得2y=(1+a)-ax,③将③代入②得(a-2)(a+1)x=(a-2)(a+2).④(1)当(a-2)(a+1)≠0,即a≠2且a≠-1时,方程④有因而原方程组有唯一一组解.(2)当(a-2)(a+1)=0且(a-2)(a+2)≠0时,即a=-1时,方程④无解,因此原方程组无解.(3)当(a-2)(a+1)=0且(a-2)(a+2)=0时,即a=2时,方程④有无穷多个解,因此原方程组有无穷多组解.例7已知关于x,y的二元一次方程(a-1)x+(a+2)y+5-2a=0,当a每取一个值时,就有一个方程,而这些方程有一个公共解,试求出这个公共解.解法1根据题意,可分别令a=1,a=-2代入原方程得到一个方程组将x=3,y=-1代入原方程得(a-1)·3+(a+2)·(-1)+5-2a=0.所以对任何a值都是原方程的解.说明取a=1为的是使方程中(a-1)x=0,方程无x项,可直接求出y值;取a=-2的道理类似.解法2可将原方程变形为a(x+y-2)-(x-2y-5)=0.由于公共解与a无关,故有例8甲、乙两人解方程组原方程的解.分析与解因为甲只看错了方程①中的a,所以甲所得到的解4×(-3)-b×(-1)=-2.③a×5+5×4=13.④解由③,④联立的方程组得所以原方程组应为练习五1.解方程组2.若x1,x2,x3,x4,x5满足方程组试确定3x4+2x5的值.3.将式子3x2+2x-5写成a(x+1)2+b(x+1)+c的形式,试求4.k为何值时,方程组有唯一一组解;无解;无穷多解?5.若方程组的解满足x+y=0,试求m的值.第六讲一次不等式(不等式组)的解法不等式和方程一样,也是代数里的一种重要模型.在概念方面,它与方程很类似,尤其重要的是不等式具有一系列基本性质,而且“数学的基本结果往往是一些不等式而不是等式”.本讲是系统学习不等式的基础.下面先介绍有关一次不等式的基本知识,然后进行例题分析.1.不等式的基本性质这里特别要强调的是在用一个不等于零的数或式子去乘(或去除)不等式时,一定要注意它与等式的类似性质上的差异,即当所乘(或除)的数或式子大于零时,不等号方向不变(性质(5));当所乘(或除)的数或式子小于零时,不等号方向要改变(性质(6)).2.区间概念在许多情况下,可以用不等式表示数集和点集.如果设a,b为实数,且a<b,那么(1)满足不等式a<x<b的数x的全体叫作一个开区间,记作(a,b).如图1-4(a).(2)满足不等式a≤x≤b的数x的全体叫作一个闭区间,记作[a,b].如图1-4(b).(3)满足不等式a<x≤b(或a≤x<b)的x的全体叫作一个半开半闭区间,记作(a,b](或[a,b)).如图1-4(c),(d).3.一次不等式的一般解法一元一次不等式像方程一样,经过移项、合并同类项、整理后,总可以写成下面的标准型:ax>b,或ax<b.为确定起见,下面仅讨论前一种形式.一元一次不等式ax>b.(3)当a=0时,用区间表示为(-∞,+∞).例1解不等式解两边同时乘以6得12(x+1)+2(x-2)≥21x-6,化简得-7x≥-14,两边同除以-7,有x≤2.所以不等式的解为x≤2,用区间表示为(-∞,2].例2求不等式的正整数解.正整数解,所以原不等式的正整数解为x=1,2,3.例3解不等式分析与解因y2+1>0,所以根据不等式的基本性质有例4解不等式为x+2>7,解为x>5.这种错误没有考虑到使原不等式有意义的条件:x≠6.解将原不等式变形为解之得所以原不等式的解为x>5且x≠6.例5已知2(x-2)-3(4x-1)=9(1-x),且y<x+9,试比较解首先解关于x的方程得x=-10.将x=-10代入不等式得y<-10+9,即y<-1.例6解关于x的不等式:解显然a≠0,将原不等式变形为3x+3-2a2>a-2ax,即(3+2a)x>(2a+3)(a-1).说明对含有字母系数的不等式的解,也要分情况讨论.例7已知a,b为实数,若不等式(2a-b)x+3a-4b<0解由(2a-b)x+3a-4b<0得(2a-b)x<4b-3a.。
第二章 代数式2.1 字母表示数和列代数式【本讲主要内容】一. 教学内容:用字母表示数、列代数式 二. 重点、难点:1. 重点:用字母表示数,代数式的意义,列代数式。
2. 难点:熟练地用字母表示数,列代数式。
三. 教学知识要点:1. 用字母表示数,不要使字母表示的数的范围缩小,一个字母可表示任何有理数。
2. 在同一个问题中,不同的量必须用不同的字母表示。
3. 字母与字母相乘,“乘号”可省略,数字与字母相乘,要把数字写在字母前面(如a ×3必须写成3a ,不能写成a3);带分数与字母相乘,一定要把带分数化成假分数。
5. 代数式的意义用运算符号——加、减、乘、除、乘方、开方,把数字与字母联结而成的式子叫代数式。
说明:(1)单独的一个数或字母,虽没涉及运算,但可以看作是该数或字母乘以(或除以)1,规定它们也是代数式(如15,l ,t ,0……)。
(2)正确列出代数式的关键为:抓住关键词语的意义,理清它们之间的数量关系,弄清运算顺序和括号的使用方法。
(3)代数式中不含“=”号或“>、<、≠”号等表示相等关系或不等关系的符号。
四. 考点分析 ㈠用字母表示数用字母表示数可以简明地表达现实中浩繁的数量间的关系,表达数的各种运算定律、性质和法则。
如用字母a 、b 、c 表示三个数,则加法结合律可表示为:a+b+c=a+(b+c )=(a+b )+c.在用字母表示数时,应注意:(1)同一个问题中的相同量要用同一个字母表示,不同量必须用不同字母表示.同一个字母在不同问题中的意义也是不同的.如在表示长方形的面积公式时,用S 表示面积,a 表示长方形的长,b 表示长方形的宽,则有S=ab 。
在这里,S 、a 、b 分别表示不同的量,同样是字母a ,在不同的问题中可表示不同的数。
(2)应该遵循规定了的、约定俗成的、沿袭的表示习惯.如:用C 表示周长,用㎝表示厘米…… ㈡代数式1. 代数式的定义 像n-2,3b ,yx,m+3等由运算符号连接的式子都是代数式.单独一个数或一个字母也是代数式. 2. 写代数式(1)数与数相乘用“×”;数与字母,字母与字母相乘用“·”或省略不写;(2)字母与数字相乘,数字因式应放在字母因式之前,带分数与字母相乘,带分数要化为假分数.如34-a 不能写成311- a.(3)代数式中的除号一般用分数线表示.如2a ÷b 应写成ba2.(4)几个字母因数排列时,一般按字母顺序排列.如5a 2c 3b 通常写成5a 2bc3.(5)代数式若是和或差的形式,且结果中又有单位的,应用括号将代数式括起来,后面再带单位.如(2a+3)㎝不能写成2a+3㎝.3. 列代数式列代数式首先要确定数量与数量的运算关系,其次应抓住题中的一些关键词语,如和、差、积、商、平方、倒数以及几分之几、几成、倍等等.抓住这些关键词语,反复咀嚼,认真推敲,列好一般的代数式就不太难了.【典型例题】例1. 用代数式表示:(1)x 的平方与y 的一半的和 (2)x 与y 的平方的和的2倍 (3)a 与b 的倒数的差的平方(4)两个数的和为100,其中一个数为a ,求两数积 (5)m 与n 的和减去2的相反数 (6)二个连续偶数的积例2. 有若干张边长都是2的三角形纸片,从中取出一些纸片按如图所示的顺序拼接起来,可以组成一个大的平行四边形与一个大的梯形,如果取的纸片数为n ,试用含n 的代数式表示组成的平行四边形或梯形的周长。
七年级代数式知识点归纳总结金子塔七年级数学上册第二章代数式知识点归纳一、代数式代数式是由数、字母和运算符号(加、减、乘、除、乘方、开方等)连接而成的式子,用字母表示数,可以使问题变得准确又简单。
一个单独的数或字母也可以是代数式。
需要注意的是,代数式中可以含有括号,但不能含有“=。
<、≠”等符号。
在等式和不等式中,等号和不等号两边的式子一般都是代数式。
字母所表示的数必须符合实际问题的意义,才能使代数式有意义。
代数式的书写格式:在代数式中出现乘号时,通常省略不写,数字与字母相乘时,数字应写在字母前面。
带分数与字母相乘时,应先把带分数化成假分数。
数字与数字相乘时,一般仍用“×”号,即“×”号不省略。
在代数式中出现除法运算时,一般写成分数的形式,分数线具有“÷”号和括号的双重作用。
如果表示和(或)差的代数式后有单位名称,则必须把代数式括起来,再将单位名称写在式子的后面。
列代数式的步骤:抓住表示数量关系的关键词语,弄清运算顺序,用运算符号把数与表示数的字母连接。
代数式的值代数式的值是指把代数式里的字母用数代入,计算后得出的结果。
求代数式的值的步骤有两个:用数值代替代数式里的字母,简称“代入”;按照代数式指定的运算关系计算出结果,简称“计算”。
在代入时,将相应的字母换成指定的数,运算符号、原来的数及运算顺序都不能改变。
在代入时,需要恢复必要的运算符号,如省略的乘号要还原。
当字母取值为负数时,代入时要注意将该数添加括号。
二、整式由数与字母的积组成的代数式叫做单项式,也称为整式。
数字因数叫做这个单项式的系数;所有字母的指数之和叫做这个单项式的次数。
例如,a3b的次数是4.单项式是代数式中的一种,指只含有一个项的代数式。
单项式可以是一个数、一个字母或数与字母的乘积,其中字母可以有指数。
当单项式的系数为1或-1时,这个“1”应省略不写,如-ab的系数是-1,a3b的系数是1.多项式是由几个单项式相加或相减得到的代数式。
七年级数学培优计划(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用范文,如工作计划、工作总结、演讲稿、合同范本、心得体会、条据文书、应急预案、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of practical sample essays for everyone, such as work plans, work summaries, speech drafts, contract templates, personal experiences, policy documents, emergency plans, teaching materials, complete essays, and other sample essays. If you want to learn about different formats and writing methods of sample essays, please stay tuned!七年级数学培优计划七年级数学培优计划(精选3篇)七年级数学培优计划篇1一、指导思想:提高优生的自主和自觉学习能力,进一步巩固并提高中等生的学习成绩,帮助差生取得适当进步,让差生在教师的辅导和优生的帮助下,逐步提高学习成绩,并培养较好的学习习惯,形成基本能力。
七年级上册第一章有理数第一讲有理数益思对话认识数学领域中的中国面孔“一个国家只有数学蓬勃发展,才能表现它的国力强大。
” ——(法)拿破仑自1840年鸦片战争始,腐败的清王朝屡次对外战争的失败,致使国门洞开,一次次丧权辱国的割地赔款,使国人清醒地认识到西方世界科学技术之强大,而科学技术的强大又是建立在基础科学的强大之上,而基础科学的语言与工具之一就是数学,虽然,中华民族有着渊远博大、自成一派的数学体系,甚至从公元一世纪至十一世纪初长达一千多年的时间里傲立于世界数学之巅,但随着十四世纪中叶明王朝建立之后,统治者奉行八股文的科举制度,在国家科举考试中大幅度削减数学内容,自此中国古代数学开始全面衰弱,而几乎与此同时,西方世界正值文艺复兴时期,崇尚科学之风盛行,近代高等数学也在这种氛围中开始萌芽、发展、壮大,并为科学技术的发展提供了强有力的工具,而我国直至十九世纪末才开始近代高等数学的学习与研究,虽然经过几代数学工作者的奋力追赶,但时至今日仍能深切感受到与西方发达国家之间不小的差距,世界著名华人数学家、沃尔夫奖获得者陈省身曾说,我所做的一切只为实现一个理想——使中国成为21世纪数学大国,正是这种共同理想的激励之下,一批又一批志士仁人前赴后继投身其中。
益思互动1.整数和分数统称为有理数。
2.有理数还可以这样定义:形如pm(其中pm,均为整数,县0m)的数是有理数,这种表达形式被用来证明或判断某个数是不是有理数。
3.有理数的数系表:4.有理数可以用数轴上的点表示。
5.零是正数和负数的分界点;零不是正数也不是负数。
6.如果两个数的和为0,则称这两个数互为相反数,如果两个数的积为1,则称这两个数互为倒数。
7.有理数的运算法则:(1)加法:两数相加,同号的取原来的符号、并把绝对值相加;异号的取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,绝对值相等时,和为0;一个数与0相加,仍得这个数。
(2)减法:减去一个数等于加上这个数的相反数。
第二讲:跨越----从算术到代数【知识纵横】“算术”可以理解为“计算的方法”,而“代数”可以理解为“以符号替代数字”,即“数学符号化”,著名数学教育家波利亚曾说:“代数是一种不用词句而只用符号所构成的语言。
”用字母表示数是数学发展史上的一件大事,是由算术跨越到代数的桥梁,是人类发展史上的一个飞跃,也是代数与算术的最显著的区别。
字母表示数使得数学具有简洁的语言,能更普遍地说明数量关系,在列代数式、求代数式的值、形成公式等方面有广泛的应用。
【例题求解】(重庆市中考题)思路点拨:(1)在观察给定的等式基础上,寻找数字特点、等式的共同特征,发现一般规律;例6.如图①,有9个方格,要求在每个方格里填入不同的数,使得每行、每列、每条对角线上三个数之和都相等。
问:图上左上角的数是多少?(北京市“迎春杯”竞赛题)※巩固训练※1.如果a 是一个三位数,现在把1放在它的右边得到一个四位数,这个四位数是()A.11000+aB.1100+aC.110+aD.1+a (重庆市中考题)2.某商场经销一批电视机,进价为每台a 元,原零售价比进价高%m ,后根据市场变化,把零售价调整为原零售价的%n ,调整后的零售价为每台()元。
A.%)%1(n m a ∙+B.%%)1(n m a +C.%)1%)(1(n m a -+D.%)1%(n m a -∙(广东省竞赛题)3.已知n 是整数,现有两个代数式:(1)32+n ,(2)14-n ,其中,能表示“任意奇数”的()A.只有(1)B.只有(2)C.有(1)和(2)D.一个也没有4.扑克牌游戏:小明背对小亮,让小亮按下列四个步骤操作:第一步:分发左、中、右三摊牌,没堆牌不少于两张,且各堆牌的张数相同;第二步:从左边一堆拿出两张,放入中间一堆;第三步:从右边一堆拿出一张,放入中间一堆;第四步:左边一堆有几张牌,就从中间一堆拿几张牌放入左边一堆.这时,小明准确说出了中间一堆牌现有的张数,你认为中间一堆牌的张数是多少?(河北省中考题)5.有一张纸,第一次把它分割成4片,第2次把其中的一片分割成4片,以后每一次都把前面所得的其中一片分割成4片,如此进行下去,试问:(1)把5次分割后,共得到多少张纸片?(2)经n 次分割后,共得到多少张纸片?(3)能否经若干次分割后共得到2003张纸片?为什么?(第十七届江苏省竞赛题)6.东方传统建筑中的塔,造型各异。
初一代数重点知识点归纳总结代数是数学的一个重要分支,也是初中数学学习的一项重点内容。
在初一阶段,学生接触到了代数的基本概念和运算法则。
本文将对初一代数的重点知识点进行归纳总结,以帮助同学们更好地理解和掌握代数知识。
一、代数式和代数方程1. 代数式:代数式是由数、字母和运算符号组成的式子,可以表示数,也可以表示未知数。
例如:3x + 2y,其中x和y是未知数。
2. 代数方程:代数方程是一个含有未知数的等式,其中包含有等号。
例如:2x + 5 = 10,这是一个代数方程,解x=2。
3. 代数式的运算法则:(1) 加减法法则:同类项相加减,不同类项不能相加减。
(2) 乘法法则:同底数幂相乘,指数相加;乘方的指数相乘。
(3) 除法法则:同底数幂相除,指数相减。
二、一元一次方程和方程的应用1. 一元一次方程:一元一次方程是指只含有一个未知数的一次幂和常数项,并且其次数为1。
例如:2x + 3 = 7,这是一个一元一次方程,解x=2。
2. 解一元一次方程的步骤:(1) 将方程中的未知数项移到等号的一边,常数项移到另一边。
(2) 合并同类项,并将未知数项系数化为1。
(3) 通过乘除法消去系数,求解未知数的值。
3. 方程的应用:方程的应用涵盖了许多实际问题,如等量关系、速度、工资等。
通过建立方程,可以求解未知数的值,进而解决问题。
三、平方根与整式的因式分解1. 平方根:平方根是指某个数的平方等于它的被开方数。
例如:√9 = 3,因为3的平方等于9。
2. 整式的因式分解:整式的因式分解是将一个多项式表示为几个整式的乘积。
例如:2x² + 4x = 2x(x + 2),这是对整式2x² + 4x的因式分解。
四、图表法解方程组1. 方程组:方程组是由若干个方程组成的一组方程。
例如:{2x + 3y = 8,4x - 2y = 2},这是一个方程组。
2. 图表法解方程组的步骤:(1) 将方程组的两个方程转化为图像。
第1讲 跨越---从算术到代数一、 知识梳理数量关系或变化规律字母表示数运算律、公式、法则表示 列代数式解释代数式 运算过程 代数式求值 值的变化 推断规律代数式运算 合并同类项、去括号 【目标与方法】1.梳理所学知识,形成一定的体系,并逐步掌握用代数式表达数量关系或变化规律的方法;2.理解代数式的含义,能解释一些简单代数式的实际背景或几何意义,体会数学与现实世界的联系; 3.经历探索事物之间的数量关系,并用字母与代数式表示,建立初步符号感,发展抽象思维.【错题回放】1.代数式书写规范.如a 的513倍写成513 a ,应为a 516. 2.代数式描述语句顺序不理解.如a ,b 两数的平方和写成()2b a +,应为22b a +. 3.合并同类项中出错.如325=-a a ,xy y x 352-=-.4.去括号中符号出错.如c b a c b a +-=+-)(,c b a c b a -+=-+32)(32.5.探索规律出错.如由1+3=4=22, 1+3+5=9=32,1+3+5+7=16=42,1+3+5+7+9=25=52,… 猜想1+3+5+7+…+(2n +1)=n 2 (n 为正整数). 【典例分析】考点一:字母表示数【例1】某同学在1月份栽了一棵树,每个月测量一交树的高度,得到下列表格:⑴、按照表格的规律,6月份树的高度为________cm ; ⑵、第x 个月时,树的高度为_________cm ; ⑶、在第_________月后,树的高度会超过185cm .【例2】(1)、某校艺术班同学,每人都会弹钢琴或古筝,其中会弹钢琴的人数会比会弹古筝的人数多10人,(2)、3个球队进行单循环比赛(参赛的每个队都与其他队赛一场),总的比赛场数是多少?4个球队呢?写出m个球队进行单循环比赛时总的比赛场数n的公式.(3)、已知n是整数,现在有两个代数式:(1)2n+3,(2)4n-1.其中能表示“任意奇数”的()A.只有(1)B.只有(2)C.有(1)和(2)D.一个也没有(4)、第十六届亚运会即将在广州召开,这必定会再一次激起全民参与体育运动的热情,我们知道,人在运动时的心跳速率通常和人的年龄有关,如果用a表示一个人的年龄,b表示正常情况下这个人在运动时所能承受的每分钟心跳的最高次数,那么有b=0.8(220-a).①正常情况下,在运动时一个14岁的少年所能承受的每分钟心跳的最高次数是多少?②一个45岁的人运动时,10秒心跳的次数为22次,他有危险吗?【例3】(1)、如图:正方形的边长为 a。
跨越----从算术到代数
如果一个学生要成为完全合格的、多方面武装的科学家,他在其发展初期必定来到一座大门,并且必须通过这座大门,在这座大门上用每一种人类语言刻着同样的一句话:这里使用数学语言。
---Q.Hong 知识纵横
“算术”可以理解为“计算的方法”,而“代数”可以理解为“以符号替代数字”,即“数学符号化”,著名数学教育家波利亚曾说:“代数是一种不用词句而只用符号所构成的语言。
” 用字母表示数是数学发展史上的一件大事,是由算术跨越到代数的桥梁,是人类发展史上的一个飞跃,也是代数与算术的最显著的区别。
字母表示数使得数学具有简洁的语言,能更普遍地说明数量关系,在列代数式、求代数式的值、形成公式等方面有广泛的应用。
例题求解
【例1】(1)观察下列等式
,81-9=
124-16=,
169-25=,
2016-36=,
这些等式反映出自然数间的某种规律,设n 表示自然数,用关于n 的等式表示出来: .
(2)如图,在图①中,互不重叠的三角形共有4个 ,在图②中,互不重叠的三角形共有7个 ,在图③中,互不重叠的三角形共有10个,〃〃〃〃〃〃〃,则在第n 个图形中,互不重叠的三角形共有 个(用含有n 的代数式表示)。
(重庆市中考题)
思路点拨:(1)在观察给定的等式基础上,寻找数字特点、等式的共同特征,发现一般规律;(2)从三角形个数规律或图形生成特点入手。
【例2】某商品原价为a 元,春节促销,降价%20,如果节后恢复到原价,则应将现售价提高()
A.%15
B.%20
C.%25
D.%30
(四川省竞赛题) 思路点拨 设应提价%x ,建立喊x 的方程。
【例3】(1)计算:
⎪⎭⎫ ⎝⎛+++⨯⎪⎭⎫ ⎝⎛++++⎪⎭⎫ ⎝⎛++++⨯⎪⎭⎫ ⎝⎛+++2004131212005131211-2004131211200513121
(2)设1005
10041005100410041003100410034343323221212
222222222⨯++⨯+++⨯++⨯++⨯+= A 求A 的整数部分。
(北京市竞赛题) 思路点拨:对于(1),直接计算复杂而繁难,注意括号内数式的联系,引入字母,将复杂
的数值计算转化为简单的式的计算;对于(2),从分析A 中第n 项()()112
2+⨯++n n n n 的特征入手。
【例4】有这样的两位数,交换该数数码所得到的两位数与原数的和是一个完全平方数,例如,29就是这样的两位数,因此2
111219229==+,请你找出所有这样的两位数。
(第十九届江苏省竞赛题) 思路点拨:设原数为ab ,则新数为ba ,发现ba ab +的特点是解本例的关键。
【例5】 现有a 根长度相同的火柴棒,按如图①摆放时可摆成m 个正方形,按如图②摆放可摆成n 2个正方形。
(1)用含n 的代数式表示m ;
(2)当这a 根火柴棒还能摆成如图③所示的形状时,求a 的最小值。
(浙江省竞赛题)
分析:设图③中有p 3个正方形(为什么这样设?),无论怎样摆设,火柴棒的总数相同,这样可以建立含p n m ,,的等式。
三阶幻方
【例6】如图①,有9个方格,要求在每个方格里填入不同的数,使得每行、每列、每条对角线上三个数之和都相等。
问:图上左上角的数是多少?(北京市“迎春杯”竞赛题)
学力训练
基础夯实
1.给出下列式子:21112⨯=+,
32222
⨯=+,
.43332⨯=+ 观察上面一列算式,你能发现上面规律,用代数式子表示这个规律 。
(福州市中考题)
2.用同样大小的黑色棋子按如图所示摆图形,按照这样的规律摆下去,则第n 个图形需棋子 枚(用含n 的代数式表示)。
(海南省中考题)
3.如果是用相同长度的小棒摆成一组有规律的图案,图案(1)需要4根小棒,图案(2)需要10根小棒,〃〃〃〃〃〃〃,按此规律摆设下去,第n 个图案需要小棒 根(用含有n 的代数式表示)。
(2011年山西省中考题)
4.某同学上学时步行,回家时坐车,路上一共要用90分钟,若往返都坐车,全部行程只需30分钟,如果往返都步行,那么需要的时间是 。
(河南省竞赛题)
5.如果a 是一个三位数,现在把1放在它的右边得到一个四位数,这个四位数是( )
A.11000+a
B.1100+a
C.110+a
D.1+a
(重庆市中考题)
6.图中的圆点是有规律地从里到外逐层排列的。
设y 为第n 层(n 为正
整数)圆点的个数,则下列关系式中正确的是()(吉林省中考题)
A.44-=n y
B.n y 4=
B. C.44+=n y D.2n y =
7.某商场经销一批电视机,进价为每台a 元,原零售价比进价高%m ,后根据市场变化,把零售价调整为原零售价的%n ,调整后的零售价为每台()元。
A.%)%1(n m a ∙+
B.%%)1(n m a +
C.%)1%)(1(n m a -+
D.%)1%(n m a -∙ (广东省竞赛题)
8.已知n 是整数,现有两个代数式:(1)32+n ,(2)14-n ,其中,能表示“任意奇数”的( )
A.只有(1)
B.只有(2)
C.有(1)和(2)
D.一个也没有
9.扑克牌游戏:小明背对小亮,让小亮按下列四个步骤操作:
第一步:分发左、中、右三摊牌,没堆牌不少于两张,且各堆牌的张数相同;
第二步:从左边一堆拿出两张,放入中间一堆;
第三步:从右边一堆拿出一张,放入中间一堆;
第四步:左边一堆有几张牌,就从中间一堆拿几张牌放入左边一堆.
这时,小明准确说出了中间一堆牌现有的张数,你认为中间一堆牌的张数是多少? (河北省中考题)
10.有一张纸,第一次把它分割成4片,第2次把其中的一片分割成4片,以后每一次都把前面所得的其中一片分割成4片,如此进行下去,试问:
(1)把5次分割后,共得到多少张纸片?
(2)经n 次分割后,共得到多少张纸片?
(3)能否经若干次分割后共得到2003张纸片?为什么?
(第十七届江苏省竞赛题)
能力拓展
11.东方传统建筑中的塔,造型各异。
数学中的宝塔更是千变万化、不计其数。
从1开始的奇数,按照规律排成下面形式的宝塔:
观察行中各数的规律:
前2行的各数之和2
33321531=+=++=;
前3行的各数之和233363211197531=++=+++++=;
前4行的各数之和2333310432119531=+++=++++= ;
前5行的各数之和233333155432129531=++++=++++= ;
因此,可推知前6行的各数之和=+++++=++++=33333365432141531 。
(《时代学报》数学文化节试题)
12.在图(1)中取阴影等边三角形各边的中点,连成一个等边三角形,将其挖去,得到图
(2);对图(2)中的每个阴影等边三角形仿照先前的做法,得到图(3),如此继续。
如果图(1)的等边三角形面价为1,则第n 个图形中所有阴影三角形面积和为 。
(第18届江苏省竞赛题)
13.已知17个连续整数的和是306,那么,紧接在这17个数后面的那17个整数的和为 (天津市竞赛题)
14.已知),3,2,1(11,21
11 =-==+n x x x n ,则=2004x 。
(重庆市竞赛题)
15.下列四个数中可以写成100个连续自然数之和的是()。
A.1627384950
B.2345678910
C.3579111300
D.4692581470
(第十七届江苏省竞赛题)
16.给出两列数:20019,7,5,3,1,, 和,,,200121,16,11,6,1 同时出现在这两列数中的数的
个数为()
A.199
B.200
C.201
D.202
(重庆市竞赛题)
17.老师报出一个五位数,同学们将它的顺序倒排后得到的五位数减去原数,学生甲、乙、丙、丁的结果分别是34567、34056、23456、34956,老师判定四个结果中只有一个正确,答对的是()。
A.甲
B.乙
C.丙
D.丁
(第16届“五羊杯”竞赛题)
18.某工厂3月份的产值比2月份增加%10,四月份的产值比3月份减少%10,则()。
A.4月份的产值与2月份相等
B.4月份的产值比2月份增加
99
1 B.C.4月份的产值比2月份减少991 D.4月份的产值比2月份增加1001 (“希望杯”邀请赛试题)
19.如图是一个33 的幻方,当空格中填上适当的数后,每行、没列以及对角线上的数的和都是相同的,求k 的值。
20.一条公交线路从起点到终点有8个站,一辆公交车从起点站出发,前6站上车100人,前7站下车80人,问从前6站上车而在终点下车的乘客有多少人?(“希望杯”邀请赛试题)
综合创新
21.将61~1这16个整数填入44 的正方形表格中,使得每行、
每列、每条对角线上四个数之和都相等,如右图所示,恰有8个
小方格中填的数被一个淘气的小朋友擦掉了,请你将擦掉的这8
个数设法恢复出来。
22.有四个互不相同的正整数, 从中任取两个数组成一组,并在同一组中用较大的数减去较小的数,再将各组所得的差相加,其和恰好等于18。
若这四个数的乘积是23100求这四个数。
(天津市竞赛题)。