2019-2020年九年级数学期中考试试题及答案
- 格式:doc
- 大小:311.81 KB
- 文档页数:13
2019-2020年第一学期九年级期中数学考试试卷一、精心选一选(本大题有10小题,每小题4分,共40分) 1. 已知⊙O 的半径为4cm ,点P 在⊙O 上,则OP 的长为( )A .1cmB .2cmC .4cmD .8cm2.若37a b =,则b aa -等于( ) A .43 B.34 C. 37 D. 733.抛物线y =x 2-2x +3的对称轴为( )A .直线x =1B .直线x =-1C .直线x =2D .直线x =-24. 如图,在⊙O 中,点M 是︵AB 的中点,连结MO 并延长,交⊙O 于点N ,连结BN .若∠AOB =140°,则∠N 的度数为( )A .70°B .40°C .35°D .20°第4题 第6题 第8题5.在一个不透明的口袋里装有2个白球、3个黑球和3个红球,它们除了颜色外其余都相同.现随机从袋里摸出1个球,则摸出白球的概率是( ) A .12B .38C .13D .146. 如图,由六段相等的圆弧组成的三叶花,每段圆弧都是四分之一圆周,OA =OB =OC =2,则这朵三叶花的面积为( ) A .33-πB .63-πC .36-πD .66-π7. 已知点C 在线段AB 上,且点C 是线段AB 的黄金分割点(AC >BC ),则下列结论正确的是( ) A .AB 2=AC•BCB .BC 2=AC•BC C .AC=BC D .BC=AC8. 如图,AB 是半圆的直径,点C 是弧AB 的中点,点E 是弧AC 的中点,连结EB 、CA 交于点F ,则BF EF的值为( ) A.41 B.422- C.221- D.212- O N MBA9. 如图,抛物线y =x 2+b x +c 与直线y=x 交于(1,1)和(3,3)两点,以下结论:①b 2﹣4c >0;②3b+c+6=0;③当x 2+b x +c >时,x >2;④当1<x <3时,x 2+(b ﹣1)x +c <0,其中正确的序号是( ) A .①②④B .②③④C .②④D .③④10. 若平面直角坐标系内的点 M 满足横、纵坐标都为整数,则把点 M 叫做“整点”.例如:P (1,0)、Q (2,-2)都是“整点”.抛物线 y =mx 2-2mx +m -1(m >0)与 x 轴交于 A 、 B 两点,若该抛物线在 A 、B 之间的部分与线段 A B 所围成的区域(包括边界)恰有 6 个整点,则 m 的取值范围是( ) A .18≤ m ≤ 14 B .19< m ≤ 14 C .19 ≤ m < 12 D .19 < m < 14二、细心填一填(本大题有6小题,每小题5分,共30分)11.已知线段c 是线段a 、b 的比例中项,且a =4,b =9,则线段c 的长度为 . 12.小颖在二次函数y=2x 2+4x+5的图象上找到三点(-1,y 1),(21,y 2),(-321,y 3),则你认为y 1,y 2,y 3的大小关系应为___________.(用 < 号连接)13. 如图水库堤坝的横断面是梯形,BC 长为30m ,CD 长为20m ,斜坡AB 的坡比为1:3,斜坡CD 的坡比为1:2,则坝底的宽AD 为 m 。
第 1 页 共 21 页
2019-2020学年福建省福州九年级上学期期中考试数学试卷
一.选择题:共10小题,每小题4分,共40分.每小题只有一项是符合题目要求的.
1.(4分)在平面直角坐标系中,若点A 在第一象限,则点A 关于原点的中心对称点在( )
A .第一象限
B .第二象限
C .第三象限
D .第四象限
2.(4分)方程x 2=4的解是( )
A .x =2
B .x =﹣2
C .x =0
D .x =2或x =﹣2
3.(4分)抛物线y =﹣x 2+2019的对称轴是( )
A .直线x =2019
B .直线x =﹣2019
C .x =﹣1
D .y 轴
4.(4分)如图,⊙O 的弦AB =8,M 是AB 的中点,且OM =3,则⊙O 的半径等于( )
A .8
B .4
C .10
D .5
5.(4分)袋子中有2019个黑球、1个白球,他们除颜色外无其它差别.随机从袋子中摸出
一个球,则( )
A .摸到黑球、白球的可能性大小一样
B .这个球一定是黑球
C .事先能确定摸到什么颜色的球
D .这个球可能是白球
6.(4分)如图,一支反比例函数y =k x 的图象经过点A ,作AB ⊥x 轴于点B ,连接OA ,若
S △AOB =3,则k 的值为( )
A .﹣3
B .3
C .﹣6
D .6
7.(4分)国旗上大、小五角星的边长比是5:3,若大五角星的面积为50,则小五角星的
面积为( )。
2019-2020学年河北省保定十七中九年级(上)期中数学试卷一、选择题(本大题共17小题,共45.0分)1.下列方程中,是关于x的一元二次方程的是()A. 1x2+1x−2=0 B. ax2+bx+c=0C. 3x2+3x+7=3x2D. 5x2=42.如果2x=3y(x、y均不为0),那么下列各式中正确的是()A. xy =23B. xx−y=3 C. x+yy=53D. xx+y=253.将一个正方体沿正面相邻两条棱的中点连线截去一个三棱柱,得到一个如图所示的几何体,则该几何体的左视图是()A.B.C.D.4.用配方法解一元二次方程x2−6x−10=0时,下列变形正确的为()A. (x+3)2=1B. (x−3)2=1C. (x+3)2=19D. (x−3)2=195.小明和同学做“抛掷质地均匀的硬币试验”获得的数据如表:抛掷次数100200300400500正面朝上的频数5398156202244若抛掷硬币的次数为1000,则“正面朝上”的频数最接近()A. 20B. 300C. 500D. 8006.在中华经典美文阅读中,小明同学发现自己的一本书的宽与长之比为黄金比.已知这本书的长为20cm,则它的宽约为()A. 12.36cmB. 13.6cmC. 32.36cmD. 7.64cm7.一个两位数等于它的个位数的平方,且个位数字比十位数字大3,则这个两位数为()A. 25B. 36C. 25或36D. −25或−368.如图,△OAB∽△OCD,OA:OC=3:2,∠A=α,∠C=β,△OAB与△OCD的面积分别是S1和S2,△OAB与△OCD的周长分别是C1和C2,则下列等式一定成立的是()A. OBCD =32B. αβ=32C. S1S2=32D. C1C2=329.若关于x的一元二次方程mx2+6x−9=0有两个实数根,则m的取值范围是()A. m≤1B. m≥−1C. m≤1且m≠0D. m≥−1且m≠010.下列说法:①有一个锐角相等的两个直角三角形相似;②顶角相等的两个等腰三角形相似;③任意两个菱形一定相似;④位似图形一定是相似图形;其中正确的个数是()A. 1个B. 2个C. 3个D. 4个11.如图,在△ABC中,点D,E,F分别是AB,AC,BC上的点,DE//BC,EF//AB,且AD:DB=3:5,那么CF:CB等于()A. 5:8B. 3:8C. 3:5D. 2:512.有长为24米的篱笆,一边利用墙(墙的最大可用长度为a=10米),围成如图所示的花圃,则能围成的花圃的最大面积为()平方米.A. 40B. 48C. 1003D. 140313.一个等腰三角形的两条边长分别是方程x2−7x+10=0的两根,则该等腰三角形的周长是()A. 12B. 9C. 13D. 12或914.如图,在▱ABCD中,点E是边AD的中点,EC交对角线BD于点F,若S△DEF=3,则S△BCF为()A. 3B. 6C. 9D. 1215.定义:如果一元二次方程ax2+bx+c=0(a≠0)满足a+b+c=0,那么我们称这个方程为“和谐”方程;如果一元二次方程ax2+bx+c=0(a≠0)满足a−b+ c=0那么我们称这个方程为“美好”方程,如果一个一元二次方程2x2+mx+n=0既是“和谐”方程又是“美好”方程,则mn值为()A. 2B. 0C. −2D. 316.如图,矩形AEHC是由三个全等矩形拼成的,AH与BE、BF、DF、DG、CG分别交于点P、Q、K、M、N.设△BPQ,△DKM,△CNH的面积依次为S1,S2,S3.若S1+S3=20,则S2的值为()A. 6B. 8C. 10D. 1217.如图,若干个正三角形的一边在同一条直线a上,这边对的顶点也在同一条直线b上,它们的面积依次为S1,S2,S3,S4…若S1=1,S2=2,则S6等于()A. 16B. 24C. 32D. 不能确定二、填空题(本大题共3小题,共10.0分)18.已知x=1是一元二次方程x2+mx+n=0的一个根,则2−m−n的值为______.19.如图,当太阳在A处时,小明测得某树的影长为2米,当太阳在B处时又测得该树的影长为8米.若两次日照的光线互相垂直,则这棵树的高度为______ 米.20.如图,已知在Rt△ABC中,AB=AC=3√2,在△ABC内作第一个内接正方形DEFG,则第1个内接正方形的边长______;然后取GF的中点P,连接PD、PE,在△PDE内作第二个内接正方形HIKJ;再取线段KJ的中点Q,在△QHI内作第三个内接正方形…依次进行下去,则第2020个内接正方形的边长为______.三、解答题(本大题共8小题,共76.0分)21.用适当的方法解方程:(1)2x2+3x=1;(2)(x−2)(x+5)=18;(3)(x−1)2=4;(4)x(3x−6)=(x−2)2.22.定义新运算“⊕”如下:当a≥b时,a⊕b=ab−a;当a<b时,a⊕b=ab+b.);(1)计算:(−2)⊕(−12(2)若2x⊕(x+1)=8,求x的值.23.如图,已知O是坐标原点,B、C两点的坐标分别为(3,−1)、(2,1).(1)以O点为位似中心在y轴的左侧将△OBC放大到两倍(即新图与原图的相似比为2),画出图形;(2)B点的对应点B′的坐标是______;C点的对应点C′的坐标是______(3)在BC上有一点P(x,y),按(1)的方式得到的对应点P’的坐标是______.24.小明正在参加全国“数学竞赛”,只要他再答对最后两道单选题就能顺利过关,其中第一道题有3个选项,第二道题有4个选项,而这两道题小明都不会,不过小明还有一次“求助”没有使用(使用“求助”可让主持人去掉其中一题的一个错误选项).(1)如果小明第一题不使用“求助”,随机选择一个选项,那么小明答对第一道题的概率是多少?(2)如果小明将“求助”留在第二题使用,请用画树状图或列表法求小明能顺利过关的概率.(3)请你从概率的角度分析,建议小明在第几题使用“求助”,才能使他过关的概率较大.25.某青年旅社有60间客房供游客居住,在旅游旺季,当客房的定价为每天200元时,所有客房都可以住满.客房定价每提高10元,就会有1个客房空闲,对有游客入住的客房,旅社还需要对每个房间支出20元/每天的维护费用,设每间客房的定价提高了x元.(1)填表(不需化简)(2)若该青年旅社希望每天纯收入为14000元且能吸引更多的游客,则每间客房的定价应为多少元?(纯收入=总收入−维护费用)26.“分块计数法”:对有规律的图形进行计数时,有些题可以采用“分块计数”的方法.例如:图1有6个点,图2有12个点,图3有18个点,…,按此规律,求图8、图n有多少个点?我们将每个图形分成完全相同的6块,每块黑点的个数相同(如图),这样图1中黑点个数是6×1=6个;图2中黑点个数是6×2=12个;图3中黑点个数是6×3=18个;…,所以容易求出图8、图n中黑点的个数分别是______、______.请你参考以上“分块计数法”,先将下面的点阵进行分块(画在答题卡上),再完成以下问题:(1)第6个点阵中有______个圆圈;第n个点阵中有______个圆圈.(2)小圆圈的个数会等于331吗?请求出是第几个点阵.27.已知:如图,在矩形ABCD中,AB=6cm,BC=8cm,对角线AC,BD交于点O.点P从点A出发,沿方向匀速运动,速度为1cm/s;同时,点Q从点D出发,沿DC方向匀速运动,速度为1cm/s;当一个点停止运动时,另一个点也停止运动.连接PO并延长,交BC于点E,过点Q作QF//AC,交BD于点F.设运动时间为t(s)(0<t<6),解答下列问题:(1)当t为何值时,△AOP是等腰三角形?(2)设五边形OECQF的面积为S(cm2),试确定S与t的函数关系式;(3)在运动过程中,是否存在某一时刻t,使S五边形OECQF:S△ACD=9:16?若存在,求出t的值;若不存在,请说明理由.28.如图,在平面直角坐标系中,四边形ABCD是平行四边形,AD=6,若OA、OB的长是关于x的一元二次方程x2−7x+12=0的两个根,且OA>OB.(1)求OA、OB的长.(2)若点E为x轴上的点,且S△AOE=16,试判断△AOE与△AOD是否相似?并说明理3由.(3)在直线AB上是否存在点F,使以A、C、F为顶点的三角形是等腰三角形?如果存在,请直接写出点F的坐标.答案和解析1.【答案】D【解析】解:A、不是一元二次方程,故本选项不符合题意;B、当a=0时,不是一元二次方程,故本选项不符合题意;C、是一元一次方程,不是一元二次方程,故本选项不符合题意;D、是一元二次方程,故本选项符合题意;故选:D.根据一元二次方程的定义逐个判断即可.本题考查了一元二次方程的定义,能熟记一元二次方程的定义的内容是解此题的关键.2.【答案】B【解析】【分析】此题主要考查了比例的性质和应用,根据比例的性质逐项判断,判断出各式中正确的是哪个即可.【解答】解:A.∵2x=3y,∴xy =32,∴选项A不正确;B.∵2x=3y,∴xy =32,∴xx−y =33−2=3,∴选项B正确;C.∵2x=3y,∴xy =32,∴x+yy =3+22=52,∴选项C不正确;D.∵2x=3y,∴xy =32,∴xx+y =33+2=35,∴∴选项D不正确.故选B.3.【答案】C【解析】解:根据左视图的定义,从左边观察得到的图形,是选项C.故选:C.根据左视图的定义,画出左视图即可判断.本题考查三视图、熟练掌握三视图的定义,是解决问题的关键.4.【答案】D【解析】【分析】此题考查了解一元二次方程−配方法,熟练掌握完全平方公式是解本题的关键.方程移项变形后,利用完全平方公式配方得到结果,即可做出判断.【解答】解:方程移项得:x2−6x=10,配方得:x2−6x+9=19,即(x−3)2=19.故选:D.5.【答案】C【解析】【分析】本题考查了利用频率估计概率的知识,解题的关键是了解大量重复试验中频率可以估计概率,难度不大.随着实验次数的增加,正面向上的频率逐渐稳定到某个常数附近,据此求解即可.【解答】解:观察表格发现:随着实验次数的增加,正面朝上的频率逐渐稳定到0.5附近,所以抛掷硬币的次数为1000,则“正面朝上”的频数最接近1000×0.5=500次,故选:C.6.【答案】A【解析】解:方法1:设书的宽为x,则有(20+x):20=20:x,解得x=12.36cm.方法2:书的宽为20×0.618=12.36cm.故选:A.把一条线段分成两部分,使其中较长的线段为全线段与较短线段的比例中项,这样的线段分割叫做黄金分割,他们的比值(√5−12)叫做黄金比.理解黄金分割的概念,找出黄金分割中成比例的对应线段是解决问题的关键.7.【答案】C【解析】解:设这个两位数的个位数字为x,那么十位数字应该是x−3,由题意得10(x−3)+x=x2,解得x1=5,x2=6;那么这个两位数就应该是25或36.故选:C.可设这个数的个位数为x,那么十位数字应该是x−3,由一个两位数等于它的个位数的平方,列出一元二次方程求解.本题要注意两位数的表示方法,然后根据题意列出方程,判断所求的解是否符合题意,舍去不合题意的解.8.【答案】D【解析】【分析】根据相似三角形的性质判断即可.本题考查了相似三角形的性质,熟练掌握相似三角形的性质定理是解题的关键.【解答】解:∵△OAB∽△OCD,OA:OC=3:2,∠A=α,∠C=β,∴OBOD =32,A错误;∴S1S2=94,C错误;∴C 1C 2=32,D 正确; 不能得出αβ=32,B 错误;故选:D . 9.【答案】D【解析】解:∵关于x 的一元二次方程mx 2+6x −9=0有两个实数根,∴△≥0且m ≠0,∴36+36m ≥0且m ≠0,∴m ≥−1且m ≠0,故选:D .根据一元二次方程的定义以及根的判别式的意义可得△=36+36m ≥0且m ≠0,求出m 的取值范围即可.本题考查了一元二次方程ax 2+bx +c =0(a ≠0,a,b,c 为常数)根的判别式△=b 2−4ac.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了一元二次方程的定义.10.【答案】C【解析】【分析】本题考查了相似三角形及相似多边形的判定,以及位似图形的概念;解题关键是熟练掌握相似三角形及相似多边形的性质及判定.解题时,根据相似三角形和相似多边形的判定方法进行判定即可.注意:对于菱形,矩形等多边形,即使角度对应相等,但边长的比例不确定,不能判断其相似.【解答】解:①中两个角对应相等,为相似三角形,故①正确;②顶角相等且为等腰三角形,即底角也相等,是相似三角形,故②正确;③菱形的角不确定,所以不一定相似,故③错误;④如果两个图形是位似图形,那么这两个图形必是相似图形,但是相似的两个图形不一定是位似图形,题中所述正确,故④正确;所以①②④正确,故选C.11.【答案】A【解析】【分析】先由AD:DB=3:5,求得BD:AB的比,再由DE//BC,根据平行线分线段成比例定理,可得CE:AC=BD:AB,然后由EF//AB,根据平行线分线段成比例定理,可得CF:CB=CE:AC,则可求得答案.此题考查了平行线分线段成比例定理.此题比较简单,注意掌握比例线段的对应关系是解此题的关键.【解答】解:∵AD:DB=3:5,∴BD:AB=5:8,∵DE//BC,∴CE:AC=BD:AB=5:8,∵EF//AB,∴CF:CB=CE:AC=5:8.故选:A.12.【答案】D【解析】解:由题可知,花圃的宽AB为x米,则BC为(24−3x)米.24−3x≤10,x≥143,这时面积S=x(24−3x)=−3x2+24x=−3(x−4)2+48(143≤x<8),当x=143时,S有最大值是1403,∴能围成的花圃的最大面积为1403平方米,故选:D.可先用篱笆的长表示出BC的长,然后根据矩形的面积=长×宽,得出S与x的函数关系式,求出最大值即可.本题考查了二次函数的综合应用,根据已知条件列出二次函数式是解题的关键.13.【答案】A【解析】【分析】本题考查了等腰三角形性质、解一元二次方程、三角形三边关系定理的应用等知识,关键是求出三角形的三边长.求出方程的解,即可得出三角形的边长,再求出即可.【解答】解:x2−7x+10=0,(x−2)(x−5)=0,x−2=0,x−5=0,x1=2,x2=5,①等腰三角形的三边是2,2,5∵2+2<5,∴不符合三角形三边关系定理,此时不符合题意;②等腰三角形的三边是2,5,5,此时符合三角形三边关系定理,三角形的周长是2+5+ 5=12;即等腰三角形的周长是12.故选A.14.【答案】D【解析】【解析】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形,灵活运用相似三角形的性质表示线段之间的关系;也考查了平行四边形的性质.利用平行四边形的性质得到AD//BC,AD=BC,则DE=1BC,再证明△DEF∽△BCF,然后根据相似三角形的性质计算S△BCF的值.2【答案】解:∵四边形ABCD为平行四边形,∴AD//BC,AD=BC,∵点E是边AD的中点,∴DE=1BC,2∵DE//BC,∴△DEF∽△BCF,∴S△DEFS△BCF =(DEBC)2=14,∴S△BCF=4×3=12.故选:D.15.【答案】B【解析】解:根据题意得“和谐”方程的一个根为1,“美好”方程的一个根为−1,所以一元二次方程2x2+mx+n=0的根为1和−1,所以2+m+n=0,2−m+n=0,解得m=0,n=−2,所以mn=0.故选:B.根据一元二次方程的定义,可判定“和谐”方程的一个根为1,“美好”方程的一个根为−1,则2+m+n=0,2−m+n=0,然后求出m、n的值后计算mn的值.本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.16.【答案】B【解析】【分析】本题主要考查相似三角形的判定和性质,掌握相似三角形的判定方法及相似三角形的面积比等于相似比的平方是解题的关键.由条件可证明△BPQ∽△DKM∽△CNH,且能求得其相似比,再根据相似三角形的面积比等于相似比的平方,结合条件可求得S2.【解答】解:∵矩形AEHC是由三个全等矩形拼成的,∴AB=BD=CD,AE//BF//DG//CH,∴四边形BEFD,四边形DFGC是平行四边形,∠BQP=∠DMK=∠CHN,∴BE//DF//CG∴∠BPQ=∠DKM=∠CNH,∵△ABQ∽△ADM,△ABQ∽△ACH,∴ABAD =BQMD=12,BQCH=ABAC=13,∴△BPQ∽△DKM∽△CNH,∴QBMD =12,∴S1S2=14,S1S3=19,∴S2=4S1,S3=9S1,∵S1+S3=20,∴S1=2,∴S2=8.故选:B.17.【答案】C【解析】解:∵△AEF、△BFG、△CGH 都是等边三角形,∴∠AFE=∠BGF=60°,∠BFG=∠CGH=60°,∴AF//BG,BF//CG,∴∠BAF=∠CBG,∠ABF=∠BCG,∴△ABF∽△BCG,∴AFBG =BFCG.∵△AEF、△BFG、△CGH都是等边三角形,∴△AEF∽△BFG∽△CGH,∴S△AEFS△BFG =(AFBG)2,S△BFGS△CGH=(BFCG)2,∴S△AEFS△BFG =S△BFGS△CGH,∴S1S2=S2S3,∴S22=S1⋅S3.∵S1=1,S2=2,∴S3=4.同理S32=S2⋅S4,则有S4=8;S42=S3⋅S5,则有S5=16;S52=S4⋅S6,则有S6=32.故选:C.易证△ABF∽△BCG,则有AFBG =BFCG.易得△AEF∽△BFG∽△CGH,则有S△AEFS△BFG=(AFBG)2,S△BFG S△CGH =(BFCG)2,从而可得S22=S1⋅S3,同理S32=S2⋅S4,S42=S3⋅S5,S52=S4⋅S6,就可求出S6,从而解决问题.本题主要考查了等边三角形的性质、相似三角形的判定与性质、三角形的面积等知识,运用相似三角形的面积比等于相似比的平方是解决本题的关键.18.【答案】3【解析】【分析】本题考查了一元二次方程的解.正确理解方程的解的含义是解答此类题目的关键.根据一元二次方程的解的定义,将x=1代入一元二次方程x2+mx+n=0,求得m+n 的值,即可得出答案.【解答】解:∵x=1是一元二次方程x2+mx+n=0的一个根,∴x=1满足一元二次方程x2+mx+n=0,∴1+m+n=0,∴m+n=−1,∴2−m−n=2−(m+n)=2+1=3.故答案是:3.19.【答案】4【解析】解:如图,∵两次日照的光线互相垂直,∴∠E+∠F=90°,∠E+∠ECD=90°,∴∠ECD=∠F,又∵∠CDE=∠FDC=90°,∴△CDE∽△FDC,∴CDDF =DECD,由题意得,DE=2,DF=8,∴CD8=2CD,解得CD=4,即这颗树的高度为4米.故答案为:4.在图形标注字母,然后求出△CDE和△FDC相似,根据相似三角形对应边成比例可得CD DF =DECD,然后代入数据进行计算即可得解.本题考查了相似三角形的应用,平行投影,确定出相似三角形是解题的关键,标注字母更便于叙述.20.【答案】2122018【解析】解:∵在Rt△ABC中,AB=AC=3√2,∴∠B=∠C=45°,BC=6,∵在△ABC内作第一个内接正方形DEFG;∴EF=EC=DG=BD,∴DE=13BC,∴DE=2,即第1个内接正方形的边长为2.∵取GF的中点P,连接PD、PE,在△PDE内作第二个内接正方形HIKJ;再取线段KJ的中点Q,在△QHI内作第三个内接正方形…依次进行下去,∴EIKI =PFEF=12,∴EI=12KI=12HI,∵DH=EI,∴HI=12DE=(12)2−1×2,第n个内接正方形的边长为:2×(12)n−1,则第n个内接正方形的面积为14n−2.∴第2020个内接正方形的边长为122018.故答案为:2;122018.首先根据勾股定理得出BC 的长,进而利用等腰直角三角形的性质得出DE 的长,再利用锐角三角函数的关系得出EI KI =PF EF =12,即可得出正方形边长之间的变化规律,得出答案即可.此题主要考查了正方形的性质以及数字变化规律和勾股定理等知识,根据已知得出正方形边长的变化规律是解题关键.21.【答案】解:(1)2x 2+3x −1=0,∵a =2,b =3,c =−1,∴Δ=b 2−4ac =32−4×2×(−1)=17>0,∴x =−b±√b 2−4ac 2a=−3±√174, ∴x 1=−3+√174,x 2=−3−√174;(2)(x −2)(x +5)=18;∵x 2+3x −28=0,∴(x +7)(x −4)=0,即x +7=0或x −4=0,∴x 1=−7,x 2=4;(3)∵x −1=±2,∴x −1=2或x −1=−2,∴x 1=3,x 2=−1;(4)x(3x −6)=(x −2)2,∵3x 2−6x =x 2−4x +4,∴x 2−x −2=0,∴(x −2)(x +1)=0,即x −2=0或x +1=0,∴x 1=2,x 2=−1.【解析】(1)先化为一般式2x 2+3x −1=0,可得a =2,b =3,c =−1,即可算出根的判别式△的值,根据求根公式计算即可得出答案;(2)先应用多项式乘法法则进行计算,再化为一般式,再应用十字相乘法进行分解即可得出答案;(3)应用直接开平方法进行求解即可得出答案;(4)先化为一般式,再应用十字相乘法进行求解即可得出答案.本题主要考查了解一元二次方程,熟练应用解一元二次方程的方法进行求解是解决本题的关键.22.【答案】解:(1)(−2)⊕(−12)=(−2)×(−12)+(−12)=1+(−12)=12;(2)当2x ≥x +1时,即:x ≥1时,2x(x +1)−2x =8,解得:x =±2,∵x ≥1,∴x =2;当2x <x +1时,即:x <1时,2x(x +1)+x +1=8,2x 2+3x −7=0解得:x 1=−3+√654,x 2=−3−√654, ∵x <1,∴x =−3−√654.【解析】(1)首先根据a ⊕b =ab −a ,认真分析找出规律,即可求出(−2)⊕(−12)的值;(2)首先分两种情况进行讨论,当2x ≥x +1和2x <x +1时,分别解出x 的取值范围,即可得出x 的值.此题考查了解一元二次方程−公式法,本题属于新定义题型,是近几年的考试热点之一.新定义题型需要依据给出的运算法则进行计算,这和解答实数或有理数的混合运算相同,其关键仍然是正确的理解与运用运算的法则.23.【答案】(1)如图,△OB′C′为所作;(2)(−6,2)(−4,−2)(3)(−2x,−2y)【解析】解:(1)见答案(2)B点的对应点B′的坐标是(−6,2);C点的对应点C′的坐标是(−4,−2);故答案为:(−6,2),(−4,−2)(3)在BC上有一点P(x,y),按(1)的方式得到的对应点P’的坐标为(−2x,−2y).故答案为:(−2x,−2y).(1)(2)把B、C点的横纵坐标都乘以−2得到B′、C′点的坐标,然后描点即可;(3)把P点的横纵坐标都乘以−2得到P′点的坐标.本题考查了作图−位似变换:利用关于原点为位似中心的对应点的坐标之间的关系先写出对应的坐标,然后描点画图.24.【答案】解:(1)∵第一道单选题有3个选项,∴如果小明第一题不使用“求助”,那么小明答对第一道题的概率是:1;3;故答案为:13(2)分别用A,B,C表示第一道单选题的3个选项,a,b,c表示剩下的第二道单选题的3个选项,画树状图得:∵共有9种等可能的结果,小明顺利通关的只有1种情况,∴小明顺利通关的概率为:19;(3)∵如果在第一题使用“求助”小明顺利通关的概率为:18;如果在第二题使用“求助”小明顺利通关的概率为:19;∴建议小明在第一题使用“求助”.【解析】(1)由第一道单选题有3个选项,直接利用概率公式求解即可求得答案;(2)首先分别用A ,B ,C 表示第一道单选题的3个选项,a ,b ,c 表示剩下的第二道单选题的3个选项,然后画出树状图,再由树状图求得所有等可能的结果与小明顺利通关的情况,继而利用概率公式即可求得答案;(3)由如果在第一题使用“求助”小明顺利通关的概率为:18;如果在第二题使用“求助”小明顺利通关的概率为:19;即可求得答案.此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.25.【答案】(1)60−x 10;200+x ;(60−x 10)×20;(2)依题意得:(200+x)(60−x 10)−(60−x 10)×20=14000,整理,得x 2−420x +32000=0,解得x 1=320,x 2=100.当x =320时,有游客居住的客房数量是:60−x 10=28(间).当x =100时,有游客居住的客房数量是:60−x 10=50(间).所以当x =100时,能吸引更多的游客,则每个房间的定价为200+100=300(元). 答:每间客房的定价应为300元.【解析】解:(1)∵增加10元,就有一个房间空闲,增加20元就有两个房间空闲,以此类推,空闲的房间为x 10,∴入住的房间数量=60−x 10,房间价格是(200+x)元,总维护费用是(60−x 10)×20.故答案为:60−x 10;200+x ;(60−x 10)×20;(2)见答案.(1)住满为60间,x 表示每个房间每天的定价增加量;定价每增加10元时,就会有一个房间空闲,房间空闲个数为x 10,入住量=60−房间空闲个数,列出代数式;(2)用每天的房间纯收入=每间房实际定价×入住量−总维护费用,每间房实际定价=200+x ,列出方程.本题考查了一元二次方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.26.【答案】48 6n 91 [n ×3(n −1)+1=3n 2−3n +1]【解析】解:图1中黑点个数是6×1=6个;图2中黑点个数是6×2=12个;图3中黑点个数是6×3=18个;…,所以图8、图n 中黑点的个数分别是48,6n ;故答案为:48,6n ;(1)观察点阵可知:第1个点阵中有1个圆圈;第2个点阵中有7个圆圈;7=2×3×1+1;第3个点阵中有19个圆圈;19=3×3×2+1;第4个点阵中有37个圆圈;37=4×3×3+1;第6个点阵中有圆圈个数为:6×3×5+1=91(个);发现规律:第n 个点阵中有圆圈个数为:n ×3(n −1)+1=3n 2−3n +1.故答案为:91;n ×3(n −1)+1=3n 2−3n +1.(2)会;第11个点阵.3n 2−3n +1=331整理得,n 2−n −110=0解得n 1=11,n 2=−10(负值舍去),答:小圆圈的个数会等于331,是第11个点阵.观察图形可得,图1中黑点个数是6×1=6个;图2中黑点个数是6×2=12个;图3中黑点个数是6×3=18个;…,所以容易求出图8、图n中黑点的个数;(1)观察点阵可得,第1个点阵中有1个圆圈;第2个点阵中有7个圆圈;7=2×3×1+1;第3个点阵中有19个圆圈;19=3×3×2+1;第4个点阵中有37个圆圈;37=4×3×3+1;第6个点阵中有圆圈个数为:6×3×5+1=91(个);进而发现规律:即可得第n个点阵中有圆圈个数;(2)3n2−3n+1=331,整理得,n2−n−110=0,解得n1=11,n2=−10(负值舍去),进而得结论.本题考查了规律型−图形的变化类,解决本题的关键是观察图形的变化,寻找规律,总结规律,运用规律.27.【答案】解:(1)∵在矩形ABCD中,AB=6cm,BC=8cm,∴AC=10,①当AP=PO=t,如图1,过P作PM⊥AO于点M,∴AM=12AO=52,∵∠PMA=∠ADC=90°,∠PAM=∠CAD,∴△APM∽△ACD,∴APAC =AMAD,∴AP=t=258,②当AP=AO=t=5,∴当t为258或5时,△AOP是等腰三角形;(2)如图2,过点O作OH⊥BC交BC于点H,则OH=12CD=12AB=3cm,由矩形的性质可知∠PDO=∠EBO,DO=BO,又得∠DOP=∠BOE,∴△DOP≌BOE(ASA),∴BE=PD=8−t,则S△BOE=12BE⋅OH=12×3(8−t)=12−32t.∵FQ//AC,∴△DFQ∽△DOC,相似比为DQDC =t6,∴S△DFQS△DOC =t236,∵S△DOC=14S矩形ABCD=14×6×8=12cm2,∴S△DFQ=12×t236=t23,∴S五边形OECQF =S△DBC−S△BOE−S△DFQ=12×6×8−(12−32t)−t23=−13t2+32t+12;∴S与t的函数关系式为S=−13t2+32t+12;(3)存在,∵S△ACD=12×6×8=24,∴S五边形OECQF :S△ACD=(−13t2+32t+12):24=9:16,解得t=3,或t=32,∴t=3或32时,S五边形OECQF:S△ACD=9:16.【解析】(1)根据矩形的性质和勾股定理得到AC=10,①当AP=PO=t,如图1,过P作PM⊥AO,根据相似三角形的性质得到AP=t=258,②当AP=AO=t=5,于是得到结论;(2)过点O作OH⊥BC交BC于点H,已知BE=PD,则可求△BOE的面积;可证得△DFQ∽△DOC,由相似三角形的面积比可求得△DFQ的面积,从而可求五边形OECQF的面积.(3)根据题意列方程得到t=3或t=32,可求解.本题是四边形综合题,考查了矩形的性质,角平分线的性质,相似三角形的判定和性质,图形面积的计算,全等三角形的判定和性质,正确的识别图形是解题的关键.28.【答案】解:(1)x2−7x+12=0,因式分解得,(x−3)(x−4)=0,由此得,x−3=0,x−4=0,所以,x1=3,x2=4,∵OA>OB,∴OA=4,OB=3;(2)S△AOE=12×4⋅OE=163,解得OE=83,∵OEOA =834=23,OAOD=46=23,∴OEOA =OAOD,又∵∠AEO=∠OAD=90°,∴△AOE∽△AOD;(3)∵四边形ABCD是平行四边形,AD=6,∴BC=AD=6,∵OB=3,∴OC=6−3=3,由勾股定理得,AC=√OA2+OC2=√42+32=5,易求直线AB的解析式为y=43x+4,设点F的坐标为(a,43a+4),则AF2=a2+(43a+4−4)2=259a2,CF2=(a−3)2+(43a+4)2=259a2+143a+25,①若AF=AC,则259a2=25,解得a=±3,a=3时,43a+4=43×3+4=8,a=−3时,43a+4=43×(−3)+4=0,所以,点F的坐标为(3,8)或(−3,0);②若CF=AC,则259a2+143a+25=25,整理得,25a2+42a=0,解得a=0(舍去),a=−4225,4 3a+4=43×(−4225)+4=4425,所以,点F的坐标为(−4225,4425),③若AF=CF,则259a2=259a2+143a+25,解得a=−7514,4 3a+4=43×(−7514)+4=−4414,所以,点F的坐标为(−7514,−227),综上所述,点F的坐标为(3,8)或(−3,0)或(−4225,4425)或(−7514,−227)时,以A、C、F为顶点的三角形是等腰三角形.【解析】(1)利用因式分解法解一元二次方程即可;(2)利用三角形的面积求出OE,然后求出两个三角形夹直角的两边的比,再根据相似三角形的判定方法判定即可;(3)根据平行四边形的对边相等求出BC,再求出OC,然后利用勾股定理列式求出AC的长,再求出直线AB的解析式为y=43x+4,设出点F的坐标,然利用勾股定理列式求出AF2、CF2,再分三种情况列出方程求解即可.本题是四边形综合题型,主要利用了解一元二次方程,三角形的面积,相似三角形的判定与性质,等腰三角形的性质,难点在于(3)分情况讨论,利用勾股定理表示出△ACF的三条边求解更简便.。
2019-2020学年九年级(上)期中数学试卷一、选择题(共10小题每小题3分,共30分)下列各题中均有四还个备选答案,其中有且只有一个正确请在答题卡上将正确答案的字母代号涂黑.1.下列图案既是轴对称图形又是中心对称图形的是()A.B.C.D.2.用配方法解方程x2+8x+9=0,变形后的结果正确的是()A.(x+4)2=﹣9 B.(x+4)2=﹣7 C.(x+4)2=25 D.(x+4)2=7 3.点P(1,2)绕着原点O逆时针方向旋转90°后的对应点的坐标是()A.(﹣2,1)B.(2,1)C.(2,﹣1)D.(1,﹣2)4.不解方程,判定方程2x2+2x=﹣1的根的情况是()A.无实数根B.有两个不相等的实数根C.有两个相等实数根D.只有一个实数根5.对于抛物线y=3(x+2)2﹣1,下列判断不正确的是()A.抛物线的开口向上B.抛物线的顶点坐标为(﹣2,﹣1)C.对称轴为直线x=﹣2D.若y随x的增大而增大,则x>26.如图是一个长18cm,宽15cm的矩形图案,其中有两条宽度相等,互相垂直的彩条,彩条所占面积是图案面积的三分之一.设彩条的宽度为xcm,则下列方程正确的是()A.18x+15x﹣x2=×15×18B.(18﹣x)(15﹣x)=×15×18C.18x+15x=×15×18D.18x+15x+x2=×15×187.如图,CD为⊙O的直径,弦AB⊥CD于E,CE=1,AB=10,那么直径CD的长为()A.12.5 B.13 C.25 D.268.如图,在△ABC中,AB=BC,将△ABC绕点B顺时针旋转a°,得到△A1BC1,A1B交AC 于点E,A1C1分别交AC、BC于点D、F,下列结论不一定正确的是()A.∠CDF=a B.BE=BF C.DF=FC D.A1F=CE9.二次函数y=ax2+bx+c(a,b,c是常数,a≠0)的自变量x与函数值y的部分对应值如下表:x…﹣2 ﹣1 0 1 2 …y=…t m﹣2 ﹣2 n…ax2+bx+c且当x =﹣时,与其对应的函数值y>0.有下列结论:①abc>0;②﹣2和3是关于x的方程ax2+bx+c=t的两个根;③0<m+n <.其中,正确结论的个数是()A.0 B.1 C.2 D.310.如图,在正方形ABCD中,点M、N为边BC和CD上的动点(不含端点),∠MAN=45°下列三个结论:①当MN =MC时,则∠BAM=22.5°;②2∠AMN﹣∠MNC=90°;③△MNC的周长不变.其中正确结论的个数是()A.0 B.1 C.2 D.3二、填空题(共6小題,每小题3分,共18分)11.点A(1,﹣2)关于原点对称的点A′的坐标为.12.将抛物线y=x2先向右平移1个单位长度,再向上平移2个单位长度,得到的抛物线的解析式.13.如图,在边长为1的正方形网格中,A(1,7),B(5,5),C(7,5),D(5,1).线段AB与线段CD存在一种特殊关系,即其中一条线段绕着某点旋转一个角度可以得到另一条线段,则这个旋转中心的坐标为.14.某宾馆有40个房间供游客居住,当每个房间每天的定价为160元时,房间会全部住满;当每个房间每天的定价每增加10元时,就会有一个房间空闲.如果游客居住房间,宾馆需对每个房间每天支出20元的各种费用.设每间每天房价定为x元,宾馆每天利润为y 元,则y与x的函数关系式为.15.从地面竖直向上抛出一小球,小球的高度h(米)与小球的运动时间t(秒)之间的关系式是h=30t﹣5t2(0≤t≤6),若抛出小球1秒钟后再抛出同样的第二个小球.则第二个小球抛出秒时,两个小球在空中的高度相同.16.如图,一副含30°和45°角的三角板ABC和EDF拼合在一个平面上,边AC与EF重合,BC=4cm.当点E从点A出发沿AC方向滑动时,点F同时从点C出发沿射线BC方向滑动,当点E从点A滑动到点C时,点D运动的路径长为cm.三、解答题(共8小题,共72分)17.解方程:x2﹣2x﹣1=0.18.如图,在⊙O中,相等的弦AB,AC互相垂直,E是AC的中点,OD⊥AB于点D.求证:四边形AEOD是正方形.19.列方程解应用题:参加一次商品交易会的每两家公司之间都签订一份合同,所有公司共签订了45份合同,共有多少家公司参加商品交易会?20.在小正方形构成的网格中,每个小正方形的顶点叫做格点.(1)△ABC的三个顶点都在格点上.①在图1中,画出一个与△ABC成中心对称的格点三角形;②在图2中,画出一个与△ABC成轴对称且与△ABC有公共边的格点三角形;③在图3中,画出△ABC绕着点C按顺时针方向旋转90°后的三角形.(2)如图4是由5个边长为1的小正方形拼成的图形,请选择适当的格点,用无刻度的直尺画经过点P的一条直线,使它平分该图形的面积,保留连线的痕迹,不要求说明理由.21.某地准备围建一个矩形苗圃园,其中一边靠墙,另外三边用周长为30米的篱笆围成.已知墙长为a米,设苗圃园垂直于墙的一边长为x米,苗圃园的面积为y平方米.(1)直接写出y与x的函数关系式;(2)若a=18,求x的取值范围;(3)当a=12时,求y的最大值.22.如图1,抛物线C:y=x2﹣2x﹣3交x轴于点A(﹣1,0),B(3,0),交y轴于点(0,﹣3).(1)直接写出当y>0时,x的取值范围是.(2)点P(4,m)在抛物线C上,求△PCB的面积;(3)如图2,将抛物线C平移使其顶点为原点O,得到抛物线C1,直线y=4与抛物线C1交于S、T两点,点N是线段ST上一动点(不与S、T重合),试探究抛物线C1上是否存在点R,点R关于点N的中心对称点K也在抛物线C1上.23.已知正方形ABCD,点P是其内部一点(1)如图1,点P在边AD的垂直平分线l上,将△DAP绕点D逆时针旋转,得到△DA1P1点P1落在DC上时恰好点A1落在直线l上,求∠ADP的度数;(2)如图2,点P在对角线AC上,连接PB,若将线段BP绕点P逆时针旋转90°后得到线段B1P,试问点B1是否在直线CD上,请给出结论,并说明理由(3)如图3,若∠APB=135°,设PA=a,PB=b,PC=c,请写出a、b、c这三条线段长之间满足的数量关系是.24.抛物线y=ax2+c经过点(0,﹣1),交x轴于A(﹣1,0),B两点,点P是第一象限内抛物线上一动点.(1)直接写出抛物线的解析式;(2)如图1已知直线l的解析式为y=x﹣2,过点P作直线l的垂线,垂足为H,当PH =时,求点P的坐标;(3)如图2,当∠APB=45°时,求点P的坐标.参考答案与试题解析一.选择题(共10小题)1.下列图案既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形不是中心对称图形,不合题意;B、是中心对称图形不是轴对称图形,不合题意;C、不是轴对称图形也不是中心对称图形,不合题意;D、既是轴对称图形又是中心对称图形,符合题意,故选:D.2.用配方法解方程x2+8x+9=0,变形后的结果正确的是()A.(x+4)2=﹣9 B.(x+4)2=﹣7 C.(x+4)2=25 D.(x+4)2=7 【分析】方程移项后,利用完全平方公式配方即可得到结果.【解答】解:方程x2+8x+9=0,整理得:x2+8x=﹣9,配方得:x2+8x+16=7,即(x+4)2=7,故选:D.3.点P(1,2)绕着原点O逆时针方向旋转90°后的对应点的坐标是()A.(﹣2,1)B.(2,1)C.(2,﹣1)D.(1,﹣2)【分析】建立平面直角坐标系,然后确定出点P与P′的位置,再写出坐标即可.【解答】解:如图点P的对应点坐标为(﹣2,1).故选:A.4.不解方程,判定方程2x2+2x=﹣1的根的情况是()A.无实数根B.有两个不相等的实数根C.有两个相等实数根D.只有一个实数根【分析】先把方程化为一般式,然后进行判别式的值,再根据判别式的意义判断方程根的情况即可.【解答】解:2x2+2x+1=0,△=22﹣4×2×1=﹣4<0,所以方程无实数根.、故选:A.5.对于抛物线y=3(x+2)2﹣1,下列判断不正确的是()A.抛物线的开口向上B.抛物线的顶点坐标为(﹣2,﹣1)C.对称轴为直线x=﹣2D.若y随x的增大而增大,则x>2【分析】根据抛物线的解析式,由a的值可得到开口方向,由顶点式可以得到顶点坐标和对称轴,根据抛物线所处的位置即可确定与x轴的交点情况.【解答】解:∵抛物线y=3(x+2)2﹣1,∴a=3>0,抛物线的开口向上,故选项A正确,不符合题意;顶点坐标是(﹣2,﹣1),则对称轴为直线x=﹣2,故选项B、C正确,不符合题意;∵对称轴为x=﹣2,开口向上,∴若y随着x的增大而增大,则x>﹣2,故选项D正确,符合题意;故选:D.6.如图是一个长18cm,宽15cm的矩形图案,其中有两条宽度相等,互相垂直的彩条,彩条所占面积是图案面积的三分之一.设彩条的宽度为xcm,则下列方程正确的是()A.18x+15x﹣x2=×15×18B.(18﹣x)(15﹣x)=×15×18C.18x+15x=×15×18D.18x+15x+x2=×15×18【分析】设彩条的宽度为xcm,表示出两条彩条的面积,根据彩条所占面积是图案面积的三分之一列出方程即可.【解答】解:设彩条的宽度为xcm,根据题意列方程得,18x+15x﹣x2=×15×18,故选:A.7.如图,CD为⊙O的直径,弦AB⊥CD于E,CE=1,AB=10,那么直径CD的长为()A.12.5 B.13 C.25 D.26【分析】连接OA,设OA=r,则OE=r﹣1,再根据AB=10,AB⊥CD得出AE=5,在Rt △AOE中根据勾股定理可得出r的值,进而得出CD的长.【解答】解:连接OA,设OA=r,则OE=r﹣1,∵弦AB⊥CD于E,AB=10,∴AE=5,在Rt△AOE中,∵OA=r,AE=5,OE=r﹣1,∴52+(r﹣1)2=r2,解得r=13,∴CD=2r=26.故选:D.8.如图,在△ABC中,AB=BC,将△ABC绕点B顺时针旋转a°,得到△A1BC1,A1B交AC 于点E,A1C1分别交AC、BC于点D、F,下列结论不一定正确的是()A.∠CDF=a B.BE=BF C.DF=FC D.A1F=CE【分析】由旋转的性质和等腰三角形的性质可得∠ABA1=∠CBC1=α,AB=A1B=BC=BC1,∠A=∠C=∠A1=∠C1,可证△ABE≌△C1BF,△A1BF≌△CBE,可得BE=BF,A1F=CE,由外角性质可得∠CDF=∠CBC1=α.【解答】解:∵AB=BC,∴∠A=∠C,∵将△ABC绕点B顺时针旋转a°,得到△A1BC1,∴∠ABA1=∠CBC1=α,AB=A1B=BC=BC1,∠A=∠C=∠A1=∠C1,∴△ABE≌△C1BF(ASA)∴BE=BF,故B选项不符合题意;∵∠C=∠C1,∠DFC=∠BFC1,∴∠CDF=∠CBC1=α,故A选项不符合题意;∵A1B=BC,∠C=∠A1,∠A1BC=∠A1BC,∴△A1BF≌△CBE(ASA)∴A1F=CE,故D选项不符合题意;由∠C不一定等于∠CDF,∴DF不一定等于FC,故C选项符合题意;故选:C.9.二次函数y=ax2+bx+c(a,b,c是常数,a≠0)的自变量x与函数值y的部分对应值如下表:x…﹣2 ﹣1 0 1 2 …y=…t m﹣2 ﹣2 n…ax2+bx+c且当x =﹣时,与其对应的函数值y>0.有下列结论:①abc>0;②﹣2和3是关于x的方程ax2+bx+c=t的两个根;③0<m+n <.其中,正确结论的个数是()A.0 B.1 C.2 D.3【分析】①当x=0时,c=﹣2,当x=1时,a+b=0,abc>0,①正确;②x =是对称轴,x=﹣2时y=t,则x=3时,y=t,②正确;③m+n=4a﹣4;当x =﹣时,y>0,a >,m+n <,③错误;【解答】解:当x=0时,c=﹣2,当x=1时,a+b﹣2=﹣2,∴a+b=0,∴y=ax2﹣ax﹣2,∴abc>0,①正确;x =是对称轴,x=﹣2时y=t,则x=3时,y=t,∴﹣2和3是关于x的方程ax2+bx+c=t的两个根;②正确;m=a+a﹣2,n=4a﹣2a﹣2,∴m=n=2a﹣2,∴m+n=4a﹣4,∵当x =﹣时,y>0,∴a>,∴m+n>,③错误;故选:C.10.如图,在正方形ABCD中,点M、N为边BC和CD上的动点(不含端点),∠MAN=45°下列三个结论:①当MN=MC时,则∠BAM=22.5°;②2∠AMN﹣∠MNC=90°;③△MNC的周长不变.其中正确结论的个数是()A.0 B.1 C.2 D.3【分析】①先用勾股定理求得MC=NC,则易得△ABM≌△ADN(SAS),再结合∠MAN=45°,可得答案;②将△ABM绕点A顺时针旋转90°得△ADE,证明△EAN≌△MAN(SAS),再利用四边形内角和及邻补角关系,可证得结论;③由△EAN≌△MAN,可得MN=BM+DN,从而将△MNC的三边相加即可得答案.【解答】解:①:∵正方形ABCD中,∠C=90°∴MN=∴MN2=MC2+NC2当MN=MC时,MN2=2MC2∴MC2=NC2∴MC=NC∴BM=DN易证△ABM≌△ADN(SAS)∴∠BAM=∠DAN∵∠MAN=45°∴∠BAM=22.5°,故①正确;②:如图,将△ABM绕点A顺时针旋转90°得△ADE,则∠EAN=∠EAM﹣∠MAN=90°﹣45°=45°则在△EAN和△MAN中∴△EAN≌△MAN(SAS)∴∠AMN=∠AED∴∠AED+∠EAM+∠ENM+∠AMN=360°∴2∠AMN+90°+(180°﹣∠MNC)=360°∴2∠AMN﹣∠MNC=90°故②正确;③:∵△EAN≌△MAN∴MN=EN=DE+DN=BM+DN∴△MNC的周长为:MC+NC+MN=(MC+BM)+(NC+DN)=DC+BC∵DC和BC均为正方形ABCD的边长,故△MNC的周长不变.综上①②③都正确.故选:D.二.填空题(共6小题)11.点A(1,﹣2)关于原点对称的点A′的坐标为(﹣1,2).【分析】直接利用关于原点对称点的性质进而得出答案.【解答】解:点A(1,﹣2)关于原点对称的点A′的坐标为:(﹣1,2).故答案为:(﹣1,2).12.将抛物线y=x2先向右平移1个单位长度,再向上平移2个单位长度,得到的抛物线的解析式y=(x﹣1)2+2 .【分析】先确定抛物线y=x2的顶点坐标为(0,0),再利用点平移的规律得到点(0,0)平移所得对应点的坐标为(1,2),然后根据顶点式写出新抛物线解析式.【解答】解:抛物线y=x2的顶点坐标为(0,0),点(0,0)先向右平移1个单位长度,再向上平移2个单位长度所得对应点的坐标为(1,2),所以新抛物线的解析式为y=(x﹣1)2+2故答案为y=(x﹣1)2+2.13.如图,在边长为1的正方形网格中,A(1,7),B(5,5),C(7,5),D(5,1).线段AB与线段CD存在一种特殊关系,即其中一条线段绕着某点旋转一个角度可以得到另一条线段,则这个旋转中心的坐标为(3,3)或(6,6).【分析】连接两对对应点,分别作出连线的垂直平分线,其交点即为所求.【解答】解:如图所示,旋转中心P的坐标为(3,3)或(6,6).故答案为(3,3)或(6,6).14.某宾馆有40个房间供游客居住,当每个房间每天的定价为160元时,房间会全部住满;当每个房间每天的定价每增加10元时,就会有一个房间空闲.如果游客居住房间,宾馆需对每个房间每天支出20元的各种费用.设每间每天房价定为x元,宾馆每天利润为y 元,则y与x的函数关系式为y=﹣+58x﹣1120 .【分析】根据题意表示出每间房间的利润以及住满的房间数,进而得出答案.【解答】解:设每间每天房价定为x元,宾馆每天利润为y元,则y与x的函数关系式为:y=(x﹣20)(40﹣)=﹣+58x﹣1120.故答案为:y=﹣+58x﹣1120.15.从地面竖直向上抛出一小球,小球的高度h(米)与小球的运动时间t(秒)之间的关系式是h=30t﹣5t2(0≤t≤6),若抛出小球1秒钟后再抛出同样的第二个小球.则第二个小球抛出 2.5 秒时,两个小球在空中的高度相同.【分析】根据题意和二次函数的性质,可以得到第二个小球抛出多少秒时,两个小球在空中的高度相同.【解答】解:∵h=30t﹣5t2=﹣5(t﹣3)2+45,∴该函数的对称轴是直线t=3,∵抛出小球1秒钟后再抛出同样的第二个小球,两个小球在空中的高度相同,∴第二个小球抛出3﹣0.5=2.5秒时,两个小球在空中的高度相同,故答案为:2.5.16.如图,一副含30°和45°角的三角板ABC和EDF拼合在一个平面上,边AC与EF重合,BC=4cm.当点E从点A出发沿AC方向滑动时,点F同时从点C出发沿射线BC方向滑动,当点E从点A滑动到点C时,点D运动的路径长为(24﹣12)cm.【分析】过点D'作D'N⊥AC于点N,作D'M⊥BC于点M,由直角三角形的性质可得AC=12cm,AB=8cm,ED=DF=6cm,由“AAS”可证△D'NE'≌△D'MF',可得D'N=D'M,即点D'在射线CD上移动,且当E'D'⊥AC时,DD'值最大,则可求点D运动的路径长.【解答】解:∵BC=4cm,∠A=30°,∠DEF=45°,∴AC=BC=12cm,AB=2BC=8cm,ED=DF=AC=6cm,当点E沿AC方向下滑时,得△E'D'F',过点D'作D'N⊥AC于点N,作D'M⊥BC于点M,如图所示:∴∠MD'N=90°,且∠E'D'F'=90°,∴∠E'D'N=∠F'D'M,在△D'NE'和△D'MF'中,,∴△D'NE'≌△D'MF'(AAS),∴D'N=D'M,且D'N⊥AC,D'M⊥CM,∴CD'平分∠ACM,即点E沿AC方向下滑时,点D'在射线CD上移动,∴当E'D'⊥AC时,DD'值最大,最大值=ED﹣CD=(12﹣6)cm,∴当点E从点A滑动到点C时,点D运动的路径长=2×(12﹣6)=(24﹣12)cm;故答案为:(24﹣12).三.解答题(共8小题)17.解方程:x2﹣2x﹣1=0.【分析】先整理成一元二次方程的一般形式再利用求根公式求解,或者利用配方法求解皆可.【解答】解:解法一:∵a=1,b=﹣2,c=﹣1∴b2﹣4ac=4﹣4×1×(﹣1)=8>0∴∴,;解法二:(x﹣1)2=2∴∴,.18.如图,在⊙O中,相等的弦AB,AC互相垂直,E是AC的中点,OD⊥AB于点D.求证:四边形AEOD是正方形.【分析】先根据垂径定理,由OD⊥AB,得到AD=AB,由E是AC的中点,得到OE⊥AC,即可得到∠ADO=∠AEO=90°,加上∠DAE=90°,则可判断四边形ADOE是矩形,由于AB=AC,所以AD=AE,于是可判断四边形ADOE是正方形.【解答】证明:∵OD⊥AB于D,∴AD=AB,∵AE是AC的中点,∴OE⊥AC,∴∠ADO=∠AEO=90°,∵AB⊥AC,∴∠DAE=90°,∴四边形ADOE是矩形,∵AB=AC,∴AD=AE,∴四边形ADOE是正方形.19.列方程解应用题:参加一次商品交易会的每两家公司之间都签订一份合同,所有公司共签订了45份合同,共有多少家公司参加商品交易会?【分析】设共有x家公司参加商品交易会,就可以得出有份合同,根据总共有45份合同建立方程组,求出其解即可.【解答】解:设共有x家公司参加商品交易会,由题意,得=45,解得:x1=10,x2=﹣9(舍去).答:共有10家公司参加商品交易会.20.在小正方形构成的网格中,每个小正方形的顶点叫做格点.(1)△ABC的三个顶点都在格点上.①在图1中,画出一个与△ABC成中心对称的格点三角形;②在图2中,画出一个与△ABC成轴对称且与△ABC有公共边的格点三角形;③在图3中,画出△ABC绕着点C按顺时针方向旋转90°后的三角形.(2)如图4是由5个边长为1的小正方形拼成的图形,请选择适当的格点,用无刻度的直尺画经过点P的一条直线,使它平分该图形的面积,保留连线的痕迹,不要求说明理由.【分析】(1)①构造平行四边形即可解决问题.②以AC为对称轴,画出对称的三角形即可.③利用旋转变换的性质解决问题即可.(2)取左下角小正方形的对称中心T,作直线PT即可.【解答】解:(1)①如图1中,△ABD即为所求.②如图2中,△ACD即为所求.③如图3中,△CEF即为所求.(2)如图4中,直线PT即为所求.21.某地准备围建一个矩形苗圃园,其中一边靠墙,另外三边用周长为30米的篱笆围成.已知墙长为a米,设苗圃园垂直于墙的一边长为x米,苗圃园的面积为y平方米.(1)直接写出y与x的函数关系式;(2)若a=18,求x的取值范围;(3)当a=12时,求y的最大值.【分析】(1)根据题意可以写出y与x的函数关系式;(2)根据题意和a的值,可以求得x的取值范围;(3)根据题意和a的值,可以求得x的取值范围,然后根据(1)中的函数关系式即可解答本题.【解答】解:(1)由题意可得,y=x(30﹣2x)=﹣2x2+30x,即y与x的函数关系式是y=﹣2x2+30x;(2)∵a=18,∴0<30﹣2x≤18,解得,6≤x<15,即x的取值范围是6≤x<15;(3))∵a=12,∴0<30﹣2x≤12,解得,9≤x<15,∵y=﹣2x2+30x=﹣2(x﹣)2+,∴当x=9时,y取得最大值,此时y=108,即当a=12时,y的最大值是108.22.如图1,抛物线C:y=x2﹣2x﹣3交x轴于点A(﹣1,0),B(3,0),交y轴于点(0,﹣3).(1)直接写出当y>0时,x的取值范围是x>3或x<﹣1 .(2)点P(4,m)在抛物线C上,求△PCB的面积;(3)如图2,将抛物线C平移使其顶点为原点O,得到抛物线C1,直线y=4与抛物线C1交于S、T两点,点N是线段ST上一动点(不与S、T重合),试探究抛物线C1上是否存在点R,点R关于点N的中心对称点K也在抛物线C1上.【分析】(1)由抛物线与坐标轴的交点坐标,依据函数图象即可写出y>0时x的取值范围;(2)求出P点坐标为(4,5),可求出直线PC的解析式,求出直线PC与x轴的交点坐标D(),由S△PCB=S△BDC+S△BDP可求出答案;(3)由题意得抛物线C1的解析式为y=x2,设N(a,4),且﹣2<a<2,设R(m,m2),由中心对称的性质可表示K点的坐标,则得到关于m的方程,由此可判断结论.【解答】解:(1)∵抛物线与y轴交于(0,﹣3),与x轴交于B(3,0),A(﹣1,0),∴当y>0时,x的取值范围为x>3或x<﹣1.故答案为:x>3或x<﹣1.(2)∵点P(4,m)在抛物线C上,∴16﹣8﹣3=m,∴m=5,∴P点坐标为(4,5),设直线PC的解析式为y=kx+b,∴,解得,∴直线PC的解析式为y=2x﹣3,当y=0时,x=,∴直线PC与x轴的交点坐标D(),∴S△PCB=S△BDC+S△BDP==6;(3)由题意得抛物线C1的解析式为y=x2,设N(a,4),R(m,m2),∵点R关于点N的中心对称点为K,∴K(2a﹣m,8﹣m2),∵点K在抛物线y=x2上,∴(2a﹣m)2=8﹣m2,整理得:(m﹣a)2=4﹣a2,∵点N是线段ST上一动点(不与S、T重合),∴﹣2<a<2,∴4﹣a2>0,∴关于m的方程有解,即存在点R,使点R关于点N的中心对称点K也在抛物线C1上.23.已知正方形ABCD,点P是其内部一点(1)如图1,点P在边AD的垂直平分线l上,将△DAP绕点D逆时针旋转,得到△DA1P1点P1落在DC上时恰好点A1落在直线l上,求∠ADP的度数;(2)如图2,点P在对角线AC上,连接PB,若将线段BP绕点P逆时针旋转90°后得到线段B1P,试问点B1是否在直线CD上,请给出结论,并说明理由(3)如图3,若∠APB=135°,设PA=a,PB=b,PC=c,请写出a、b、c这三条线段长之间满足的数量关系是c2=2b2+a2.【分析】(1)如图1中,设AD的垂直平分线交AD于R.证明DA1=2DR即可解决问题.(2)如图2中,结论点B′在直线CD上.作PE⊥CD于E,PF⊥BC于F.设PB′交CD于B″.证明PB″=PB,利用同一法证明即可.(3)如图3中,结论:c2=2b2+a2.将△BAP绕点B顺时针旋转90°得到△BCK,连接PK.证明∠PKC=90°,△PBK是等腰直角三角形即可解决问题.【解答】解:(1)如图1中,设AD的垂直平分线交AD于R.∵AR=DR,DA1=DA,∴DA1=2DR,∵∠DRA1=90°,∴∠DA1R=30°,∵CD∥PR,∴∠A1DC=∠DA1R=30°,∴∠ADP=∠A1DC=30°.(2)如图2中,结论点B′在直线CD上.作PE⊥CD于E,PF⊥BC于F.设PB′交CD 于B″.∵四边形ABCD是正方形,∴∠PCE=∠PCF=45°,∵PE⊥CD于E,PF⊥BC于F,∴PE=PF,∴∠PEC=∠PFC=90°,∴△PFC,△PEC都是等腰直角三角形,∴四边形PECF是正方形,∴∠EPF=∠BPB′=90°,∴∠BPF=∠B″PE,∵∠PFB=∠PEB,PE=PE,∴△PFB≌△PEB(ASA),∴PB=PB″,∵PB=PB′,∴B′与B″重合,∴点B′在直线CD上.(3)如图3中,结论:c2=2b2+a2.理由:将△BAP绕点B顺时针旋转90°得到△BCK,连接PK.由旋转的性质可知:∠BKC=∠APB=135°,BP=BK,∠PBK=90°,PA=CK,∴∠BKP=45°,PK=PB,∴∠PKC=135°﹣45°=90°,∴PC2=PK2+CK2,∴c2=2b2+a2.故答案为c2=2b2+a2.24.抛物线y=ax2+c经过点(0,﹣1),交x轴于A(﹣1,0),B两点,点P是第一象限内抛物线上一动点.(1)直接写出抛物线的解析式;(2)如图1已知直线l的解析式为y=x﹣2,过点P作直线l的垂线,垂足为H,当PH=时,求点P的坐标;(3)如图2,当∠APB=45°时,求点P的坐标.【分析】(1)将(0,﹣1)和(﹣1,0)代入抛物线解析式y=ax2+c,求出a,c即可;(2)过点P作y轴的平行线交直线l于点M,求出PM=7,设P(a,a2﹣1),则M(a,a﹣2),可得关于a的方程,解方程即可;(3)在y轴上取点D(1,0),则△ABD为等腰直角三角形,以点D为圆心、AD长为半径画圆,则点P在优弧AB上时总有∠APB=45°,设P点坐标为(m,m2﹣1),以PD的长等于半径为等量关系列方程,即求得m的值进而得点P坐标.【解答】解:(1)∵抛物线y=ax2+c经过点(0,﹣1),A(﹣1,0),∴,∴,∴抛物线的解析式的解析式为y=x2﹣1;(2)过点P作y轴的平行线交直线l于点M,∵直线l的解析式为y=x﹣2,∴直线与y轴的夹角为45°,∴∠PMH=45°,∵PH⊥MH,PH=,∴PM=7,设P(a,a2﹣1),则M(a,a﹣2),∴PM=a2﹣1﹣a+2=7,∴a1=3,a2=﹣2(舍去),∴P(3,8);(3)如图2,在y轴上取点D(0,1),则△ABD为等腰直角三角形,∵AO=BO=1,∠ADB=90°,∴=,以点D为圆心、AD长为半径画圆,则点P在优弧AB上时总有∠APB=45°,连结PD,设P点坐标为(m,m2﹣1),∴PD==,∴m2+(m2﹣2)2=2,解得:,(舍去),m3=1(舍去),m4=﹣1(舍去),∴P(,1).。
2019-2020学年九年级(上)期中数学试卷一、你一定能选对!(本大题共有10小题,每小题3分,共30分)下列各题均有四个备选答案,其中有且只有一个是正确的,请将正确答案的代号在答题卡上将对应的答案标号涂黑.1.一元二次方程3x2+1=6x的一次项系数为()A.﹣6 B.3 C.1 D.62.近几年我国国产汽车行业蓬勃发展,下列汽车标识中,是中心对称图形的是()A.B.C.D.3.已知点A(﹣1,y1),点B(2,y2)在抛物线y=﹣3x2+2上,则y1,y2的大小关系是()A.y1>y2B.y1<y2C.y1=y2D.无法判断4.用配方法解一元二次方程x2﹣4x+1=0时,下列变形正确的是()A.(x﹣2)2=1 B.(x﹣2)2=5 C.(x+2)2=3 D.(x﹣2)2=3 5.抛物线y=2x2向上平移3个单位,再向右平移2个单位,得到的抛物线是()A.y=2(x+2)2﹣3 B.y=2(x+2)2+3C.y=2(x﹣2)2﹣3 D.y=2(x﹣2)2+36.如图,若AB是⊙O的直径,CD是⊙O的弦,∠ABD=50°,则∠C的度数为()A.60°B.50°C.40°D.30°7.如图,在方格纸上△DEF是由△ABC绕定点P顺时针旋转得到的.如果用(2,1)表示方格纸上A点的位置,(1,2)表示B点的位置,那么点P的位置为()A.(5,2)B.(2,5)C.(2,1)D.(1,2)8.某超市一月份的营业额为200万元,一月、二月、三月的营业额共1000万元,如果平均每月增长率为x,则根据题意列方程为()A.200(1+x)2=1000B.200+200(1+x)2=1000C.200(1+x)3=1000D.200+200(1+x)+200(1+x)2=10009.如图,四边形ABCD内接于半径为5的⊙O,且AB=6,BC=7,CD=8,则AD的长度是()A.B.C.D.10.如图,二次函数y=ax2+bx+c(a≠0)的图象过点(﹣2,0),对称轴为直线x=1.有以下结论:①abc>0;②7a+c<0;③a+b≤m(am+b)(m为任意实数)④若A(x1,m),B(x2,m)是抛物线上的两点,当x=x1+x2时,y=c;⑤若方程a(x+2)(4﹣x)=﹣1的两根为x1,x2,且x1<x2,则﹣2≤x1<x2<4.其中正确结论的个数有()A.2个B.3个C.4个D.5个二、填空题(本大题共有6小题,每小题3分,共18分)下列各题不需要写出解答过程,请将结论直接填写在答题卷的指定位置11.已知一元二次方程x2﹣4x+3=0的两根为x1、x2,则x1•x2=.12.若点A(a,4)与点B(﹣3,b)关于原点成中心对称,则a+b=.13.如图,四边形ABCD内接于⊙O,E为CD延长线上一点,若∠B=100°,则∠ADE=.14.如图,一名男生推铅球,铅球行进高度y(单位:m)与水平距离x(单位:m)之间的关系是y=﹣x2+x+.则他将铅球推出的距离是m.15.如图,在四边形ABCD中,∠ABC=∠ADC=45°,AB=AC,BD=,CD=3,则AD =.16.如图,在△ABC中,∠BAC=120°,AB=AC=6,D为边AB上一动点(不与B点重合),连接CD,将线段CD绕着点D逆时针旋转90°得到DE,连接BE,则S△BDE的最大值为.三、解下列各题(本大题共8小题,共72分)下列各题需要在答题卷的指定位置写出文字说明、证明过程、演算步骤或画出图形.17.解方程:(1)x2+2x=0.(2)x2﹣4x﹣7=0.18.已知抛物线的顶点为(﹣1,﹣4),且过点(0,﹣3)(1)求抛物线的解析式;(2)求抛物线与x轴交点的坐标.19.改善小区环境,争创文明家园.如图所示,某社区决定在一块长(AD)16m,宽(AB)9m的矩形场地ABCD上修建三条同样宽的小路,其中两条与AB平行,另一条与AD平行,其余部分种草.要使草坪部分的总面积为112m2,则小路的宽应为多少?20.如图,在△ABC中,∠B=90°,点D为边AC的中点,请按下列要求作图,并解决问题:(1)作点D关于BC的对称点O;(2)在(1)的条件下,将△ABC绕点O顺时针旋转90°,①画出旋转后的△EFG(其中A、B、C三点旋转后的对应点分别是点E、F、G);②若∠C=a,则∠BGC=.(用含a的式子表示)21.已知,△ABC内接于⊙O,AC为⊙O的直径,点D为优弧BC的中点(1)如图1,连接OD,求证:AB∥OD;(2)如图2,过点D作DE⊥AC,垂足为E.若AE=3,BC=8,求⊙O的半径.22.某网店销售一种儿童玩具,每件进价20元,规定单件销售利润不低于10元,且不高于18元.试销售期间发现,当销售单价定为35元时,每天可售出250件,销售单价每上涨1元,每天销售量减少10件,该网店决定提价销售.设每天销售量为y件,销售单价为x元.(1)请直接写出y与x之间的函数关系式和自变量x的取值范围;(2)当销售单价是多少元时,网店每天获利3840元?(3)网店决定每销售1件玩具,就捐赠a元(0<a≤6)给希望工程,每天扣除捐赠后可获得最大利润为3300元,求a的值.23.已知,在△ABC中,∠ABC=90°,AB=BC=4,点O是边AC的中点,连接OB,将△AOB 绕点A顺时针旋转α°至△ANM,连接CM,点P是线段CM的中点,连接PB,PN.(1)如图1,当α=180时,请直接写出线段PN和PB之间满足的位置和数量关系;(2)如图2,当0<α<180时,请探索线段PN和PB之间满足何位置和数量关系?证明你的结论(3)当△AOB旋转至C,M,N三点共线时,线段BP的长为.24.如图,直线l:y=3x﹣3分别与x轴,y轴交于点A,点B,抛物线y=ax2﹣2ax+a﹣4过点B.(1)求抛物线的解析式;(2)点C是第四象限抛物线上一动点,连接AC,BC.①当△ABC的面积最大时,求点C的坐标及△ABC面积的最大值;②在①的条件下,将直线l绕着点A逆时针方向旋转到直线l',l'与线段BC交于点D,设点B,点C到l'的距离分别为d1和d2,当d1+d2最大时,求直线l旋转的角度.参考答案与试题解析一.选择题(共10小题)1.一元二次方程3x2+1=6x的一次项系数为()A.﹣6 B.3 C.1 D.6【分析】将所给方程化为3x2﹣6x+1=0的形式即可求解.【解答】解:3x2+1=6x化为3x2﹣6x+1=0,∴一次项系数为﹣6,故选:A.2.近几年我国国产汽车行业蓬勃发展,下列汽车标识中,是中心对称图形的是()A.B.C.D.【分析】把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.根据中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形,故此选项错误;B、是轴对称图形,不是中心对称图形,故此选项错误;C、不是轴对称图形,不是中心对称图形,故此选项错误;D、不是轴对称图形,是中心对称图形,故此选项符合题意.故选:D.3.已知点A(﹣1,y1),点B(2,y2)在抛物线y=﹣3x2+2上,则y1,y2的大小关系是()A.y1>y2B.y1<y2C.y1=y2D.无法判断【分析】将点A(﹣1,y1),点B(2,y2)分别代入y=﹣3x2+2,求出相应的y1、y2,即可比较大小.【解答】解:∵点A(﹣1,y1),点B(2,y2)在抛物线y=﹣3x2+2上,∴当x=﹣1时,y1=﹣1,当x=2时,y2=﹣10,∴y1>y2,故选:A.4.用配方法解一元二次方程x2﹣4x+1=0时,下列变形正确的是()A.(x﹣2)2=1 B.(x﹣2)2=5 C.(x+2)2=3 D.(x﹣2)2=3 【分析】移项,配方,即可得出选项.【解答】解:x2﹣4x+1=0,x2﹣4x=﹣1,x2﹣4x+4=﹣1+4,(x﹣2)2=3,故选:D.5.抛物线y=2x2向上平移3个单位,再向右平移2个单位,得到的抛物线是()A.y=2(x+2)2﹣3 B.y=2(x+2)2+3C.y=2(x﹣2)2﹣3 D.y=2(x﹣2)2+3【分析】根据“左加右减、上加下减”的原则进行解答即可.【解答】解:抛物线y=2x2向上平移3个单位,再向右平移2个单位,得到的抛物线是y=2(x﹣2)2+3,故选:D.6.如图,若AB是⊙O的直径,CD是⊙O的弦,∠ABD=50°,则∠C的度数为()A.60°B.50°C.40°D.30°【分析】由AB是⊙O的直径,推出∠ADB=90°,再由∠ABD=50°,求出∠A=40°,根据圆周角定理推出∠C=40°.【解答】解:∵AB是⊙O的直径,∴∠ADB=90°,∵∠ABD=50°,∴∠A=40°,∴∠C=40°.故选:C.7.如图,在方格纸上△DEF是由△ABC绕定点P顺时针旋转得到的.如果用(2,1)表示方格纸上A点的位置,(1,2)表示B点的位置,那么点P的位置为()A.(5,2)B.(2,5)C.(2,1)D.(1,2)【分析】如图,分别连接AD、CF,然后作它们的垂直平分线即可得到它们的旋转中心P,然后利用已知坐标即可求出P的坐标.【解答】解:如图,分别连接AD、CF,然后作它们的垂直平分线,它们交于P点,则它们旋转中心为P,根据图形知道△ABC绕P点顺时针旋转90°得到△DEF,∴P的坐标为(5,2).故选:A.8.某超市一月份的营业额为200万元,一月、二月、三月的营业额共1000万元,如果平均每月增长率为x,则根据题意列方程为()A.200(1+x)2=1000B.200+200(1+x)2=1000C.200(1+x)3=1000D.200+200(1+x)+200(1+x)2=1000【分析】可先表示出二月份的营业额,那么二月份的营业额×(1+增长率)=三月份的营业额,等量关系为:一月份的营业额+二月份的营业额+三月份的营业额=1000,把相应数值代入即可求解.【解答】解:二月份的营业额为200×(1+x),三月份的营业额在二月份营业额的基础上增加x,为200×(1+x)×(1+x),则列出的方程是200+200(1+x)+200(1+x)2=1000.故选:D.9.如图,四边形ABCD内接于半径为5的⊙O,且AB=6,BC=7,CD=8,则AD的长度是()A.B.C.D.【分析】作直径AE,连接EB,DE.利用勾股定理求出BE,推出CD=BE,推出=,再利用勾股定理求出AD即可.【解答】解:作直径AE,连接EB,DE.∵AE是直径,∴∠ABE=∠ADE=90°,∴BE===8,∵CD=BE=8,∴=,∴=,∴DE=BC=7,∴AD===,故选:A.10.如图,二次函数y=ax2+bx+c(a≠0)的图象过点(﹣2,0),对称轴为直线x=1.有以下结论:①abc>0;②7a+c<0;③a+b≤m(am+b)(m为任意实数)④若A(x1,m),B(x2,m)是抛物线上的两点,当x=x1+x2时,y=c;⑤若方程a(x+2)(4﹣x)=﹣1的两根为x1,x2,且x1<x2,则﹣2≤x1<x2<4.其中正确结论的个数有()A.2个B.3个C.4个D.5个【分析】根据二次函数的图象与性质即可求出答案.【解答】解:①由图象可知:a>0,c<0,﹣>0,∴abc>0,故①正确;②∵抛物线的对称轴为直线x=1,抛物线的对称轴为直线x=1,∴﹣=1,∴b=﹣2a,当x=﹣2时,y=4a﹣2b+c=0,∴4a+4a+c=0,∴8a+c=0,∴7a+c=﹣a,∵a>0,∴﹣a<0,∴7a+c<0,故②正确;③由图象可知,当x=1时,函数有最小值,∴a+b+c≤am2+bm+c(m为任意实数),∴a+b≤m(am+b),故③正确;④∵A(x1,m),B(x2,m)是抛物线上的两点,由抛物线的对称性可知:x1+x2=1×2=2,∴当x=2时,y=4a+2b+c=4a﹣4a+c=c,故④正确;⑤∵图象过点(﹣2,0),对称轴为直线x=1.抛物线与x轴的另外一个交点坐标为(4,0),∴y=ax2+bx+c=a(x+2)(x﹣4)若方程a(x+2)(4﹣x)=﹣1,即方程a(x+2)(x﹣4)=1的两根为x1,x2,则x1、x2为抛物线与直线y=1的两个交点的横坐标,∵x1<x2,∴x1<﹣2<4<x2,故⑤错误;故选:C.二.填空题(共6小题)11.已知一元二次方程x2﹣4x+3=0的两根为x1、x2,则x1•x2= 3 .【分析】直接根据一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系求解即可.【解答】解:∵一元二次方程x2﹣4x+3=0的两根为x1、x2,∴x1•x2==3.故答案为3.12.若点A(a,4)与点B(﹣3,b)关于原点成中心对称,则a+b=﹣1 .【分析】直接利用关于原点对称点的性质得出a,b的值,进而得出答案.【解答】解:∵点A(a,4)与点B(﹣3,b)关于原点成中心对称,∴a=3,b=﹣4,∴a+b=﹣3+(﹣4)=﹣1.故答案为:﹣1.13.如图,四边形ABCD内接于⊙O,E为CD延长线上一点,若∠B=100°,则∠ADE=100°.【分析】根据圆内接四边形的任意一个外角等于它的内对角(就是和它相邻的内角的对角)可得答案.【解答】解:∵∠B=100°,∴∠ADE=100°.故答案为:100°.14.如图,一名男生推铅球,铅球行进高度y(单位:m)与水平距离x(单位:m)之间的关系是y=﹣x2+x+.则他将铅球推出的距离是10 m.【分析】成绩就是当高度y=0时x的值,所以解方程可求解.【解答】解:当y=0时,﹣x2+x+=0,解之得x1=10,x2=﹣2(不合题意,舍去),所以推铅球的距离是10米.15.如图,在四边形ABCD中,∠ABC=∠ADC=45°,AB=AC,BD=,CD=3,则AD=4 .【分析】过A作AE⊥AD,使AE=AD,连接DE,根据全等三角形的性质得到CE=BD=,求得∠EDC=90°,根据勾股定理得到DE===4,根据等腰直角三角形的性质得到AD=DE=4.【解答】解:过A作AE⊥AD,使AE=AD,连接DE,∵∠EAD=∠CAB=90°,∴∠DAB=∠EAC,在△ACE与△ABD中,,∴CE=BD=,∵∠ADE=∠ADC=45°,∴∠EDC=90°,∵CD=3,∴DE===4,∴AD=DE=4,故答案为:4.16.如图,在△ABC中,∠BAC=120°,AB=AC=6,D为边AB上一动点(不与B点重合),连接CD,将线段CD绕着点D逆时针旋转90°得到DE,连接BE,则S△BDE的最大值为.【分析】作CM⊥AB于M,EN⊥AB于N,根据AAS证得△EDN≌△DCM,得出EN=DM,然后解直角三角形求得AM=3,得到BM=9,设BD=x,则EN=DM=9﹣x,根据三角形面积公式得到S△BDE==(9﹣x)=﹣(x﹣4.5)2+,根据二次函数的性质即可求得.【解答】解:作CM⊥AB于M,EN⊥AB于N,∴∠EDN+∠DEN=90°,∵∠EDC=90°,∴∠EDN+∠CDM=90°,∴∠DEN=∠CDM,在△EDN和△DCM中∴△EDN≌△DCM(AAS),∴EN=DM,∵∠BAC=120°,∴∠MAC=60°,∴∠ACM=30°,∴AM=AC=6=3,∴BM=AB+AM=6+3=9,设BD=x,则EN=DM=9﹣x,∴S△BDE==(9﹣x)=﹣(x﹣4.5)2+,∴当BD=4,5时,S△BDE有最大值为,故答案为.三.解答题(共8小题)17.解方程:(1)x2+2x=0.(2)x2﹣4x﹣7=0.【分析】(1)根据因式分解法即可求出答案.(2)根据配方法即可求出答案.【解答】解:(1)∵x2+2x=0,∴x(x+2)=0,∴x=0或x=﹣2;(2)∵x2﹣4x﹣7=0,∴x2﹣4x=7,∴x2﹣4x+4=11,∴(x﹣2)2=11,∴x=2±;18.已知抛物线的顶点为(﹣1,﹣4),且过点(0,﹣3)(1)求抛物线的解析式;(2)求抛物线与x轴交点的坐标.【分析】(1)根据抛物线的顶点为(﹣1,﹣4),且过点(0,﹣3),可以设出该抛物线的顶点式,再将点(0,﹣3)代入题目中的解析式,即可求得该抛物线的解析式;(2)令(1)中求得的函数解析式中y=0,即可求得相应的x值,从而可以写出该抛物线与x轴的交点坐标.【解答】解:(1)设抛物线解析式为y=a(x+1)2﹣4,∵该抛物线过点(0,﹣3),∴﹣3=a(0+1)2﹣4,解得,a=1,∴该抛物线的解析式为y=(x+1)2﹣4;(2)当y=0时,0=(x+1)2﹣4,解得,x1=1,x2=﹣3,即抛物线与x轴交点的坐标是(1,0),(3,0).19.改善小区环境,争创文明家园.如图所示,某社区决定在一块长(AD)16m,宽(AB)9m的矩形场地ABCD上修建三条同样宽的小路,其中两条与AB平行,另一条与AD平行,其余部分种草.要使草坪部分的总面积为112m2,则小路的宽应为多少?【分析】设小路的宽应为xm,那么草坪的总长度和总宽度应该为(16﹣2x),(9﹣x);那么根据题意得出方程,解方程即可.【解答】解:设小路的宽应为xm,根据题意得:(16﹣2x)(9﹣x)=112,解得:x1=1,x2=16.∵16>9,∴x=16不符合题意,舍去,∴x=1.答:小路的宽应为1m.20.如图,在△ABC中,∠B=90°,点D为边AC的中点,请按下列要求作图,并解决问题:(1)作点D关于BC的对称点O;(2)在(1)的条件下,将△ABC绕点O顺时针旋转90°,①画出旋转后的△EFG(其中A、B、C三点旋转后的对应点分别是点E、F、G);②若∠C=a,则∠BGC=90°﹣α.(用含a的式子表示)【分析】(1)利用网格特点和轴对称的性质画出O点;(2)①利用网格特点和旋转的性质分别画出A、B、C三点对应点点E、F、G即可;②先确定∠OCB=∠DCB=α,再利用OB=OC和三角形内角和得到∠BOC=180°﹣2α,根据旋转的性质得到∠COG=90°,则∠BOG=270°﹣2α,于是可计算出∠OGB=α﹣45°,然后计算∠OGC﹣∠OGB即可.【解答】解:(1)如图,点O为所作;(2)①如图,△EFG为所作;②∵点O与点D关于BC对称,∴∠OCB=∠DCB=α,∵OB=OC,∴∠OBC=∠OCB=α,∴∠BOC=180°﹣2α,∵∠COG=90°,∴∠BOG=180°﹣2α+90°=270°﹣2α,∵OB=OG,∴∠OGB=[180°﹣(270°﹣2α)]=α﹣45°,∴∠BGC=∠OGC﹣∠OGB=45°﹣(α﹣45°)=90°﹣α.故答案为90°﹣α.21.已知,△ABC内接于⊙O,AC为⊙O的直径,点D为优弧BC的中点(1)如图1,连接OD,求证:AB∥OD;(2)如图2,过点D作DE⊥AC,垂足为E.若AE=3,BC=8,求⊙O的半径.【分析】(1)如图1,延长DO交BC于F,根据垂径定理得到DF⊥BC,根据圆周角定理得到AB⊥BC根据平行线的判定定理即可得到AB∥OD;(2)连接DO并延长交BC于F,由垂径定理得到DF⊥CB,求得CF=BC=4,根据全等三角形的性质得到OF=OE=OA﹣3,根据勾股定理即可得到结论.【解答】解:(1)如图1,延长DO交BC于F,∵点D为优弧BC的中点,∴=,∴DF⊥BC,∵AC为⊙O的直径,∴AB⊥BC,∴AB∥OD;(2)连接DO并延长交BC于F,∵点D为优弧BC的中点,∴=,∴DF⊥CB,∴CF=BC=4,∵DE⊥AC,∴∠DEO=∠OFC=90°,∵∠DOE=∠COF,OC=OD,∴△DOE≌△COF(AAS),∴OF=OE=OA﹣3,∵OC2=OF2+CF2,∴OC2=(OC﹣3)2+42,∴OC=,∴⊙O的半径为.22.某网店销售一种儿童玩具,每件进价20元,规定单件销售利润不低于10元,且不高于18元.试销售期间发现,当销售单价定为35元时,每天可售出250件,销售单价每上涨1元,每天销售量减少10件,该网店决定提价销售.设每天销售量为y件,销售单价为x元.(1)请直接写出y与x之间的函数关系式和自变量x的取值范围;(2)当销售单价是多少元时,网店每天获利3840元?(3)网店决定每销售1件玩具,就捐赠a元(0<a≤6)给希望工程,每天扣除捐赠后可获得最大利润为3300元,求a的值.【分析】(1)根据原销售件数减去减少的件数即为所求;(2)根据销售利润等于单件利润乘以销售量即可求解;(3)根据单件利润减去捐赠数为最后单件利润,再根据销售利润等于单件利润乘以销售量即可求解.【解答】解:(1)由题意得,y=250﹣10(x﹣35)=﹣10x+600;即y与x之间的函数关系式为:y=﹣10x+600(30≤x≤38);(2)根据题意得,(﹣10x+600)(x﹣20)=3840,解得:x1=36,x2=44,∵30≤x≤38,∴x=36,答:当销售单价是36元时,网店每天获利3840元;(3)设每天扣除捐赠后可获得利润为W,根据题意得,W=(﹣10x+600)(x﹣20﹣a)=﹣10x2+(800+10a)x﹣600(20+a),∵对称轴x=40+a,∵30≤x≤38,∵0<a≤6∴40<a+40≤43∴x=40+a时,每天扣除捐赠后可获得最大利润为3300元,(﹣10(40+a)+600)(40+a﹣20﹣a)=3300(200﹣5a)(20﹣a)=3300整理得a2﹣80a+280=0解得a1=40﹣2≈3.6,a2=40+2(舍去).答:a的值为3.6.23.已知,在△ABC中,∠ABC=90°,AB=BC=4,点O是边AC的中点,连接OB,将△AOB 绕点A顺时针旋转α°至△ANM,连接CM,点P是线段CM的中点,连接PB,PN.(1)如图1,当α=180时,请直接写出线段PN和PB之间满足的位置和数量关系;(2)如图2,当0<α<180时,请探索线段PN和PB之间满足何位置和数量关系?证明你的结论(3)当△AOB旋转至C,M,N三点共线时,线段BP的长为±.【分析】(1)如图1中,结论:PB=PN,PB⊥PN.利用直角三角形斜边的中线的性质以及圆周角定理解决问题即可.(2)如图2中,结论:PB=PN,PB⊥PN.延长BP到G,使得PG=PB,连接GM,GN,BN.想办法证明△BNG是等腰直角三角形即可.(3)分两种情形:①如图3﹣1中,连接BM.证明△ABM是等边三角形,BP⊥CM即可解决问题.②如图3﹣2中,当C,N,M共线时,方法类似①.【解答】解:(1)如图1中,结论:PB=PN,PB⊥PN.理由:当α=180°时,C,A,N共线,B,A,M共线,∵∠CNM=∠CBM=90°,PC=PM,∴PB=PC=PM=PN,∴C,B,N,M四点共圆,∴∠BPN=2∠BMN,∵∠AMN=45°,∴∠BPN=90°,∴PB=PN,PB⊥PN.(2)如图2中,结论:PB=PN,PB⊥PN.理由:延长BP到G,使得PG=PB,连接GM,GN,BN.∵PC=PM,∠CPB=∠MPG,PB=PG,∴△CPB≌△MPG(SAS),∴BC=GM=AB,∠BCP=∠GMP=∠1+45°,∴∠GMN=360°﹣∠GMN﹣∠2﹣∠AMN=360°﹣∠1﹣45°﹣∠2﹣45°=270°﹣∠1﹣∠2,∵∠BAN=45°+∠CAM+45°=90°+(180°﹣∠1﹣∠2)=270°﹣∠1﹣∠2,∴∠NMG=∠BAN,∴AB=MG,AN=NM,∴△BAN≌△GMN(SAS),∴BN=GN,∠BNA=∠GNM,∴∠BNG=∠ANM=90°,∵PB=PG,∴PN=PB=PG,PN⊥BG,即PB=PN,PN⊥PB.(3)①如图3﹣1中,连接BM.当C,M,N共线时,∵∠CNA=90°,AC=2AN,∴∠ACN=30°,∵∠NMA=∠MCA+∠MAC=45°,∴∠CAM=15°,∵∠MAB=∠VAM+∠OAB=60°,∵AB=AM,∴△ABM是等边三角形,∴BA=BM=BC,∵PC=PM,∴BP⊥CM,∵AB=BC=4,∴AC=4,∴AN=OA=2,CN=AN=2,∴CM=CN﹣MN=2﹣2,∴PC=﹣,∴PB===+.②如图3﹣2中,当C,N,M共线时,同法可证∠ACN=30°,∠BAN=15°,∠BAM=60°,∴△ABM是等边三角形,∴BM=BA=BC,∵PC=PM,∴BP⊥CM,∴PB===﹣,综上所述,满足条件的BP的值为±.故答案为±.24.如图,直线l:y=3x﹣3分别与x轴,y轴交于点A,点B,抛物线y=ax2﹣2ax+a﹣4过点B.(1)求抛物线的解析式;(2)点C是第四象限抛物线上一动点,连接AC,BC.①当△ABC的面积最大时,求点C的坐标及△ABC面积的最大值;②在①的条件下,将直线l绕着点A逆时针方向旋转到直线l',l'与线段BC交于点D,设点B,点C到l'的距离分别为d1和d2,当d1+d2最大时,求直线l旋转的角度.【分析】(1)利用直线l的解析式求出B点坐标,再把B点坐标代入二次函数解析式即可求出a的值,则抛物线的解析式的解析式可求出;(2)①设C的坐标为(m,m2﹣2m﹣3),然后根据面积关系S△ABC=S四边形OACB﹣S△AOB可求出△ABC的面积,由二次函数的性质可求出△ABC面积的最大值及此时点C的坐标;②如图2,过点B作BN垂直于l′于N点,过点C作CM垂直于l′于M点,则BN=d1,CM=d2,可将求d1+d2最大值转化为求AD的最小值.【解答】解:(1)令x=0代入y=3x﹣3,∴y=﹣3,∴B(0,﹣3),把B(0,﹣3)代入y=ax2﹣2ax+a﹣4,∴﹣3=a﹣4,∴a=1,∴二次函数解析式为:y=x2﹣2x﹣3;(2)如图1,连结OC,令y=0代入y=3x﹣3,∴0=3x﹣3,∴x=1,∴A的坐标为(1,0),由题意知:C的坐标为(m,m2﹣2m﹣3),S△ABC=S四边形OACB﹣S△AOB=S△OBC+S△OAC﹣S△AOB=﹣==,∴当m=时,S取得最大值,当m=时,m2﹣2m﹣3=,∴点C的坐标为(,﹣),△ABC面积的最大值为;(3)如图2,过点B作BN垂直于l′于N点,过点C作CM垂直于l′于M点,直线l'交BC于点D,则BN=d1,CM=d2,∵S△ABC=×AD×(d1+d2)当d1+d2取得最大值时,AD应该取得最小值,当AD⊥BC时取得最小值.根据B(0,﹣3)和C(,﹣)可得BC==,∵S△ABC=×AD×BC=,∴AD=,当AD⊥BC时,cos∠BAD=,∴∠BAD=45°.即直线l旋转的角度是45°.。
2019—2020学年度第二学期期中考试初三数学试题(考试时间:120分钟 试卷分值:150分) 命题、校对:一、选择题(每题只有一个是正确的,每题3分,共18分) 1、-12 的相反数是( )A 、12B 、-2C 、-12D 、22、在一条东西向的跑道上,小亮先向东走了8米,记作“+8米”,又向西走了10米,此时他的位置可记作( )A 、+2米B 、-2米C 、+18米D 、-18米 3、在下列四个几何体中,主视图与俯视图都是圆的为( )4、一组数据3,4,x ,6,8的平均数是5,则这组数据的中位数是( )A 、4B 、5C 、6D 、7 5、如图,AB 、AC 是⊙O 的两条切线,B 、C 是切点,若∠A =70°, 则∠BOC 的度数为( )A 、130°B 、120°C 、110°D 、100°6.如图,在钝角△ABC 中,分别以AB 和AC 为斜边向△ABC 的外侧作等腰直角三角形ABE 和等腰直角三角形ACF ,EM 平分∠AEB 交AB 于点M ,取BC 中点D ,AC 中点N ,连接DN 、DE 、DF .下列结论: ①EM=DN ; ②S △CDN =31S 四边形ABDN ; ③DE=DF ; ④DE ⊥DF .其中正确的结论的个数是( )7、实数16的算术平方根是__________.8、在函数y = 1x -2中,自变量x 的取值范围是__________.9、今年一季度东台财政收入列江苏沿海各县市区财政收入前茅达3 230 000 000元,将这个数用科学计数法表示为________________________10、分解因式:2ax ax -= .11、抛物线y =x 2-bx +3的对称轴是直线x =1,则b 的值为__________. 12、已知圆锥的底面半径为3,高为4,则这个圆锥的侧面积为 . 13、如图,在2×2的网格中,每个小正方形的边长都是1,图中的阴影部分图案是由一个点为圆心,半径分别为1和2的圆弧围成,则阴影部分的面积为 .14、在平面直角坐标系中,已知线段MN 的两个端点的坐标分别是M (-4,-1)、N (0,1), 将线段MN 平移后得到线段M ′N ′(点M 、N 分别平移到点M ′、N ′的位置),若点M ′的 坐标为(-2,2),则点N ′的坐标为 .15、质地均匀的正方体骰子,其六个面上分别刻有1,2,3,4,5,6六个数字,投掷这个骰子 一次,则向上一面的数字是偶数的概率为 . 16、如图,在平面直角坐标系中,△P 1OA 1,△P 2A 1A 2, △P 3A 2A 3,…都是等腰直角三角形,其直角顶点P 1(3,3),P 2,P 3,…均在直线y =﹣x +4上.设△P 1OA 1,△P 2A 1A 2,△P 3A 2A 3,…的面积分别为S 1,S 2,S 3,…,依据图形所反映的规律,S 2019=. 三、解答题(共11大题,合计102分) 17、(8分)计算: 203(4)(π3)2|5|-+----18、(8分)解不等式组⎩⎨⎧-≥+>+14201x x x19、(8分) 化简)31(96922a a a a -÷++-,并选一个你喜欢的a 的值代入求值。
2019-2020年九年级下期中考试数学试题含解析一、选择题(本大题共有6小题,每小题3分,共18分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项的字母代号填写在题后括号内) 1、下面哪个数的倒数是15-( ) .A 15 B.-5 C.15- D.52.下列运算正确的是()A .()b a b a +=+--B .a a a =-2333C .01=+-aa D . 933)(a a =--3.下面的图形中,既是轴对称图形又是中心对称图形的是( )A.B .C .D.4. 下列数据是2017年4月10日6点公布的中国六大城市的空气污染指数情况:城市 北京 合肥 南京 哈尔滨 成都 南昌 污染指数34216316545227163A .164和163B .105和163C .105和164D .163和1645. 将如图的Rt △ABC 绕直角边AC 旋转一周,所得几何体的主视图是( )6. 如图,学校大门出口处有一自动感应栏杆,点A 是栏杆转动的支点,当车辆经过时,栏杆AE 会自动升起,某天早上,栏杆发生故障,在某个位置突然卡住,这时测得栏杆升起的角度∠BAE=127°,已知AB ⊥BC ,支架AB 高1.2米,大门打开的宽度BC 为2米,以下哪辆车可以通过?( )(栏杆宽度,汽车反光镜忽略不计) (参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75.车辆尺寸:长×宽×高)A .宝马Z4(4200mm×1800mm×1360mm )B .奔驰smart (4000mm×1600mm×1520mm )DCBAACBC .大众朗逸(4600mm×1700mm×1400mm )D .奥迪A6L (4700mm×1800mm×1400mm ) 二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请将答案直接写在题中横线上)7. 分解因式:822-x =________ 8. 在函数62-=x y 中使得函数值为0的自变量x 的值是________9. 江苏卫视《最强大脑》第三季正在热播,据不完全统计该节目又创收视新高,全国约有85600000人在收看,全国观看《最强大脑》第三季的人数用科学计数法表示为________人. 10. 已知点M(1-a ,2)在第二象限,则a 的取值范围是________11. 如图,矩形OABC 的边OA 长为2 ,边AB 长为1,OA 在数轴上,以原点O 为圆心,对角线OB 的长为半径画弧,交正半轴于一点,则这个点表示的实数是第11题 第12题 第13题 第16题12. 如图,在菱形ABCD 中,DE ⊥AB ,3cos 5A =,BE=2,则tan ∠DBE 的值是 13.如图,直线AB 与半径为2的⊙O 相切于点C D ,是⊙O 上点,且30EDC ∠=,弦E F A B ∥,则EF 的长度为14.已知正整数a 满足不等式组 ⎩⎨⎧-≤+≥232a x a x (x 为未知数)无解,则函数41)3(2---=x x a y 图象与x 轴的坐标为15.一机器人以0.3m/s 的速度在平地上按下图中的步骤行走,那么该机器人从开始到停止所需时间为 s .16. 如图,直线y =3x +43与x 轴、y 轴分别交于A 、B 两点, ∠ABC =60°,BC 与x 轴交于点C .动点P 从A 点出发沿AC 向点C 运动(不与A 、C 重合),同时动点Q 从C 点出发沿C -B -A 向点A 运动(不与C 、A 重合) ,动点P 的运动速度是每秒1个单位长度,动点Q 的运动速度是每秒2个单位长度.若当△APQ 的面积最大时,y 轴上有一点M ,第二象限内存在一点N ,使以A 、Q 、M 、N 为顶点的四边形为菱形, 则点N 的坐标为三、解答题(本大题共有11小题,共102分.解答时应写出文字说明、推理过程或演算步骤) 17. (本题满分6分)计算:12)12(40-++-18. (本题满分6分)先化简,再求值:23111x x x x -⎛⎫÷+- ⎪--⎝⎭,其中x =3-1. 19. (本题满分8分)如图,在△ABC 中,(1)在图中作出△ABC 的内角平分线AD.(要求:尺规作图,保留作图痕迹,不写证明过程)(2)若∠BAC = 2∠C ,在已作出的图形中,△ ∽△(3)画出△ABC 的高AE (使用三角板画出即可),若∠B=α,∠C=β,那么∠DAE= (请用含α、β的代数式表示)20. (本题满分8分)盐城是一让人打开心扉的城市,吸引了很多的国内外游客,春风旅行社对3月份本社接待的外地游客来盐城旅游的首选景点作了一次抽样调查. 调查结果如下图表:(1)此次共调查了多少人?BAC景点 频数频率 丹顶鹤 8729%麋鹿75盐渎公园 6321% 息心寺4715.7% 后羿公园 28 9.3%_ 0_ 80 _ 20 _ 100 _ 10_ 30 _ 70 _ 60 _ 40 _ 90 _ 50(2)请将以上图表补充完整.(3)该旅行社预计4月份接待外地来杭的游客2500人,请你估计首选去丹顶鹤的人数约有多少人.21.(本题满分8分)如图,在方格纸中,△ABC 的三个顶点及D ,E ,F ,G ,H 五个点分别位于小正方形的顶点上.(1)现以D ,E ,F ,G ,H 中的三个点为顶点画三角形,在所画的三角形中与△ABC 不全等...但面积相等的三角形是 (只需要填一个三角形);(2)先从D ,E 两个点中任意取一个点,再从F ,G ,H 三个点中任意取两个不同的点,以所取的这三个点为顶点画三角形,求所画三角形与△ABC 面积相等的概率(用画树状图或列表格求解).22.(本题满分10分)如图,点A (1,a )在反比例函数(x >0)的图象上,AB垂直于x 轴,垂足为点B ,将△ABO 沿x 轴向右平移2个单位长度,得到Rt △DEF ,点D 落在反比例函数(x >0)的图象上.(1)求点A 的坐标; (2)求k 值.23.(本题满分10分)如图,在东西方向的海岸线上有一个码头M ,在码头M 的正西方向有一观察站O .某时刻测得一艘匀速直线航行的轮船位于O 的北偏西30°方向,且与O 相距360千米的A 处;经过3小时,又测得该轮船位于O 的正北方向,且与O 相距60千米的B 处.(1)求该轮船航行的速度;(2)当该轮船到达B 处时,一艘海监船从O 点出发以每小时16千米的速度向正东方向行驶,请通过计算说明哪艘船先到达码头M .(参考数据:41.12,73.13≈≈)24.(本题满分10分)如图,AC 是⊙O 的直径,BC 是⊙O 的弦,点P 是⊙O 外一点,连接PB 、AB ,∠PBA=∠C .(1)求证:PB 是⊙O 的切线;(2)连接OP ,若OP ∥BC ,且OP=8,⊙O 的半径为2,求BC 的长.25.(本题满分10分)五一期间,某电器商城推出了两种促销方式,且每次购买电器时只能使用其中第21题一种方式:第一种是打折优惠,凡是在该商城购买家用电器的客户均可享受八折优惠;第二种方式是:赠送优惠券,凡在商城三天内购买家用电器的金额满400元且少于600元的,赠优惠券100元(优惠券在购买该物品时就可使用);不少于600元的,所赠优惠劵是购买电器金额的14,另再送50元现金.(1)以上两种促销方式中第二种方式,可用如下形式表达:设购买电器的金额为x (x≥400)元,优惠券金额为y 元,则:①当x =500时,y = ;②当x≥600时,y = ;(2)如果小张想一次性购买原价为x (400≤x <600)元的电器,可以使用优惠劵,在上面的两种促销方式中,试通过计算帮他确定一种比较合算的方式?(3)如果小张在促销期间内在此商城先后两次购买电器时都得到了优惠券(两次购买均未使用优惠券),第一次购买金额在600元以内,第二次购买金额超过600元,所得优惠券金额累计达800元,设他购买电器的金额为W 元,W 至少..应为多少?(W =支付金额-所送现金金额) 26.(本题满分12分)阅读材料并解答问题:关于勾股定理的研究有一个很重要的内容是勾股数组,在数学课本中我们已经了解到,“能够成为直角三角形三条边的三个正整数称为勾股数”,以下是毕达哥拉斯等学派研究出的确定勾股数组的两种方法:方法1:若m 为奇数(m≥3),则a=m ,b=(m 2﹣1)和c=(m 2+1)是勾股数. 方法2:若任取两个正整数m 和n (m >n ),则a=m 2﹣n 2,b=2mn ,c=m 2+n 2是勾股数. (1)在以上两种方法中任选一种,证明以a ,b ,c 为边长的△ABC 是直角三角形;(2)某园林管理处要在一块绿地上植树,使之构成如下图所示的图案景观,该图案由四个全等的直角三角形组成,要求每个三角形顶点处都植一棵树,各边上相邻两棵树之间的距离均为1米,如果每个三角形最短边上都植6棵树,且每个三角形的各边长之比为5:12:13,那么这四个直角三角形的边长共需植树 棵.(3)某家俱市场现有大批如图所示的梯形边角余料(单位:cm),实验初中数学兴趣小组决定将其加工成等腰三角形,且方案如下:①三角形中至少有一边长为10 cm ;②三角形中至少有一边上的高为8 cm ,请设计出三种面积不同的方案并在图上画出分割线,求出相应图形面积.27.(本题满分14分)如图,抛物线b ax x y ++-=2与直线121+=x y 交于A 、B 两点,其中A 在y 轴上,点B 的横坐标为4,P 为抛物线上一动点,过点P 作PC 垂直于AB ,垂足为C. (1)求抛物线的解析式;(2)若点P 在直线AB 上方的抛物线上,设P 的横坐标为m ,用m 的代数式表示线段PC 的长,并求出线段PC 的最大值及此时点P 的坐标. (3)若点P 是抛物线上任意一点,且满足0°<∠PAB ≤45°。
2019-2020学年河南省洛阳市九年级(上)期中数学试卷一、选择题(每小题3分,共30分) 1.比22-小1的数是( ) A .3-B .3C .5D .5-2.为改善城市交通,洛阳市地铁1号线开工建设,工程自谷水西至文化街,线路长约23公里,设站19座,投资171亿元,把“171亿”用科学记数法表示为( ) A .21.7110⨯B .101.7110⨯C .91.7110⨯D .817110⨯3.如图,//AB CD ,2B D ∠=∠,22E ∠=︒,则D ∠的度数为( )A .22︒B .44︒C .68︒D .30︒4.如图,矩形ABCD 的对角线AC 与BD 相交于点O ,//CE BD ,//DE AC ,AD =,2DE =,则四边形OCED 的面积为( )A .B .4C .D .85.在平面直角坐标系中,点A 的坐标是(1,3)-,将原点O 绕点A 顺时针旋转90︒得到点O ',则点O '的坐标是( ) A .(3,1)B .(3,1)--C .(4,2)-D .(2,4)6.一元二次方程(1)1x x x +-=的根是( ) A .121x x ==-B .121x x ==C .11x =,21x =-D .120x x ==7.某市为扶持绿色农业发展,今年4月投入的扶持基金为3600万元,按计划第二季度的总投入要达到12000万元,设该市5、6两月投入的月平均增长率为x ,根据题意列方程,则下列方程正确的是( )A .3600(1)12000x +=B .23600(1)12000x +=C .23600(1)3600(1)12000x x +++=D .236003600(1)3600(1)12000x x ++++=8.已知抛物线2y x bx c =++的部分图象如图所示,若12x -<<,则y 的取值范围是( )A .30y -<B .43x -<-C .40y -<<D .40y -<9.若点(,)m n 在坐标系中的第四象限,则一次函数(2)4y m x n =++-的图象一定不经过() A .第一象限B .第二象限C .第三象限D .第四象限10.如图,等边三角形ABC 的边长是2,M 是高CH 所在直线上的一个动点,连接MB ,将线段BM 绕点B 逆时针旋转60︒得到BN ,连接MN ,则在点M 运动过程中,线段MN 长度的最小值是( )A .12B .1CD 二、填空题(每小题3分,共15分)11.计算23--= .12.不等式组1274xx ⎧-⎪⎨⎪-+>⎩的解集是 .13.二次函数224y x x =-+的顶点坐标是 .14.已知抛物线2y ax bx c =++在坐标系中的位置如图所示,它与x ,y 轴的交点分别为A ,B ,P 是其对称轴1x =上的动点,根据图中提供的信息给出以下结论:①20a b +=;②3x =是20ax bx c ++=的一个根;③若PA PB =,PA PB ⊥,则4a b c ++=.其中正确的有 个.15.如图,在矩形ABCD 中,1AB =,BC a =,将点B 绕点A 逆时针旋转,点B 的对应点为B ',BAB ∠'的平分线交BC 于E ,且35BE a =.若点B '落在矩形ABCD 的边上,则a 的值为 .三、解答题(本大题共8个小题,满分75分)16.先化简再求值:2234(1)121x x x x x ---÷+++,其中x 是方程:220x x -=的一个根. 17.某学校为了解学生对新闻、体育、动画、娱乐、戏曲五类电视节目最喜爱的情况,随机调查了若干名学生,根据调查数据进行整理,绘制了如下的不完整统计图.请你根据以上的信息,回答下列问题:(1)本次共调查了 名学生,其中最喜爱戏曲的有 人;在扇形统计图中,最喜爱体育的对应扇形的圆心角大小是 .(2)根据以上统计分析,估计该校2000名学生中最喜爱新闻的人数.18.如图,直线y =+A 、B 两点. (1)求ABO ∠的度数;(2)过A 的直线l 交x 轴正半轴于C ,AB AC =,求直线l 的函数解析式.19.已知关于x 的一元二次方程2(1)220k x kx k +-+-=有两个不相等的实数根. (1)求实数k 的取值范围;(2)写出满足条件的k 的最小整数值,并求此时方程的根. 20.如图,ABC ∆三个顶点的坐标分别为(1,1)A ,(4,2)B ,(3,4)C (1)请画出将ABC ∆向左平移4个单位长度后得到的图形△111A B C ; (2)请画出ABC ∆关于点(1,0)成中心对称的图形△222A B C ;(3)若△111A B C 绕点M 旋转可以得到△222A B C ,请直接写出点M 的坐标; (4)在x 轴上找一点P ,使PA PB +的值最小,请直接写出点P 的坐标;21.坚持农业农村优先发展,按照产业兴旺、生态宜居的总要求,统筹推进农村经济建设洛宁县某村出售特色水果(苹果).规定如下:如果购买新红星40箱,红富士60箱,需付款4300元;如果购买新红星100箱,红富士35箱,需付款4950元(1)每箱新红星、红富士的单价各多少元?(2)某单位需要购置这两种苹果120箱,其中红富土的数量不少于新红星的一半,并且不超过60箱,如何购买付款最少?请说明理由;22.如图,将ABC ∆绕点A 逆时针旋转90︒得到ADE ∆. (1)观察猜想小明发现,将DAC ∆绕点A 逆时针旋转90︒,如图1,他发现ACD ∆的面积1S 与BAE ∆的面积2S 之间有一定的数量关系,请直接写出这个关系: . (2)类比探究如图2,M 是CD 的中点,请写出AM 与BE 之间的数量关系和位置关系,并说明理由; (3)解决问题如图3,AB AD =,AB AD ⊥,AC AE =,AC AE ⊥,C 在线段BD 上,AH BE ⊥交CD 于H ,若2BC =,3CD =,请直接写出AH 的长.23.如图,抛物线2y x bx c=-++交x轴于A,B两点,交y轴于点C直线122y x=-+经过点B,C.(1)求抛物线的解析式;(2)点P是直线BC上方抛物线上一动点,设点P的横坐标为m.①求PBC∆面积最大值和此时m的值;②Q是直线BC上一动点,是否存在点P,使以A、B、P、Q为顶点的四边形是平行四边形,若存在,直接写出点P的坐标.2019-2020学年河南省洛阳市九年级(上)期中数学试卷参考答案与试题解析一、选择题(每小题3分,共30分) 1.比22-小1的数是( ) A .3-B .3C .5D .5-【解答】解:224-=-, 则比22-小1的数是5-, 故选:D .2.为改善城市交通,洛阳市地铁1号线开工建设,工程自谷水西至文化街,线路长约23公里,设站19座,投资171亿元,把“171亿”用科学记数法表示为( ) A .21.7110⨯B .101.7110⨯C .91.7110⨯D .817110⨯【解答】解:171亿17= 100 000 10000 1.7110=⨯. 故选:B .3.如图,//AB CD ,2B D ∠=∠,22E ∠=︒,则D ∠的度数为( )A .22︒B .44︒C .68︒D .30︒【解答】解://AB CD ,B EFC ∴∠=∠,2E EFC D B D D D D ∴∠=∠-∠=∠-∠=∠-∠=∠,22E ∠=︒, 22D ∴∠=︒,故选:A .4.如图,矩形ABCD 的对角线AC 与BD 相交于点O ,//CE BD ,//DE AC ,AD =,2DE =,则四边形OCED 的面积为( )A .B .4C .D .8【解答】解:连接OE ,与DC 交于点F , 四边形ABCD 为矩形,OA OC ∴=,OB OD =,且AC BD =,即OA OB OC OD ===, //OD CE ,//OC DE , ∴四边形ODEC 为平行四边形,OD OC =,∴四边形ODEC 为菱形,DF CF ∴=,OF EF =,DC OE ⊥, //DE OA ,且DE OA =, ∴四边形ADEO 为平行四边形,2AD =,2DE =,OE ∴=,即OF EF ==在Rt DEF ∆中,根据勾股定理得:1DF ==,即2DC =,则11222ODEC S OE DC =⋅=⨯=菱形.故选:A .5.在平面直角坐标系中,点A 的坐标是(1,3)-,将原点O 绕点A 顺时针旋转90︒得到点O ',则点O '的坐标是( ) A .(3,1)B .(3,1)--C .(4,2)-D .(2,4)【解答】解:观察图象可知(4,2)O '-,故选:C .6.一元二次方程(1)1x x x +-=的根是( ) A .121x x ==- B .121x x ==C .11x =,21x =-D .120x x ==【解答】解:(1)10x x x +--=,(1)(1)0x x x ∴+-+=,则(1)(1)0x x +-=, 10x ∴+=或10x -=,解得11x =-,21x =, 故选:C .7.某市为扶持绿色农业发展,今年4月投入的扶持基金为3600万元,按计划第二季度的总投入要达到12000万元,设该市5、6两月投入的月平均增长率为x ,根据题意列方程,则下列方程正确的是( ) A .3600(1)12000x += B .23600(1)12000x +=C .23600(1)3600(1)12000x x +++=D .236003600(1)3600(1)12000x x ++++=【解答】解:根据题意列出方程,得236003600(1)3600(1)12000x x ++++=. 故选:D .8.已知抛物线2y x bx c =++的部分图象如图所示,若12x -<<,则y 的取值范围是( )A .30y -<B .43x -<-C .40y -<<D .40y -<【解答】解:抛物线的对称轴为直线1x =,抛物线与x 轴的一个交点坐标为(1,0)-, ∴抛物线与x 轴的另一个交点坐标为(3,0), ∴抛物线的解析式可设为(1)(3)y a x x =+-,把(0,3)-代入得31(3)a -=-,解得3a =,∴抛物线的解析式为(1)(3)y x x =+-,即223y x x =--,2(1)4y x =--,1x ∴=时,y 有最小值4-, 2x =时,2233y x x =--=-,∴当12x -<<,y 的取值范围是40y -<.故选:D .9.若点(,)m n 在坐标系中的第四象限,则一次函数(2)4y m x n =++-的图象一定不经过( )A .第一象限B .第二象限C .第三象限D .第四象限【解答】解:点(,)m n 在坐标系中的第四象限, 0m ∴>,0n <, 20m ∴+>,40n -<,∴一次函数(2)4y m x n =++-的图象经过第一、三、四象限.故选:B .10.如图,等边三角形ABC 的边长是2,M 是高CH 所在直线上的一个动点,连接MB ,将线段BM 绕点B 逆时针旋转60︒得到BN ,连接MN ,则在点M 运动过程中,线段MN 长度的最小值是( )A .12B .1 CD【解答】解:由旋转的特性可知,BM BN =, 又60MBN ∠=︒, BMN ∴∆为等边三角形. MN BM ∴=,点M 是高CH 所在直线上的一个动点,∴当BM CH ⊥时,MN 最短(到直线的所有线段中,垂线段最短). 又ABC ∆为等边三角形,且2AB BC CA ===,∴当点M 和点H 重合时,MN 最短,且有112MN BM BH AB ====. 故选:B .二、填空题(每小题3分,共15分) 11.计算23--= 12- . 【解答】解:原式93=-- 12=-.故答案为:12-.12.不等式组1274xx ⎧-⎪⎨⎪-+>⎩的解集是 2x - .【解答】解:解不等式12x-,得:2x -,解不等式74x -+>,得:3x <, 则不等式组的解集为2x -, 故答案为:2x -.13.二次函数224y x x =-+的顶点坐标是 (1,3) .【解答】解:224y x x =-+,∴12ba-= 244144344ac b a -⨯⨯-==, 即顶点坐标为(1,3), 故答案为:(1,3).14.已知抛物线2y ax bx c =++在坐标系中的位置如图所示,它与x ,y 轴的交点分别为A ,B ,P 是其对称轴1x =上的动点,根据图中提供的信息给出以下结论:①20a b +=;②3x =是20ax bx c ++=的一个根;③若PA PB =,PA PB ⊥,则4a b c ++=.其中正确的有 3 个.【解答】解:①因为抛物线的对称轴1x =, 所以12ba-=,即20b a +=, 所以①正确;②因为(1,0)A -,对称轴1x =,所以设抛物线与x 轴的另一个交点为E , 所以(3,0)E ,所以3x =时,0y =,即3x =是20ax bx c ++=的一个根. 所以②正确; ③如图:过点B 作BD ⊥对称轴于点D ,设对称轴交x 轴于点C , AP BP ⊥, 90APB ∴∠=︒, 90APC BPD ∴∠+∠=︒, 90BPD PBD ∠+∠=︒, PBD APC ∴∠=∠,AP BP =,Rt APC Rt PBD(AAS)∴∆≅∆ 1PC BD ∴==,2DP AC ==, 3DC ∴=, 3OB ∴=,(0,3)B ∴.又(3,0)E ,(1,0)A -.设抛物线解析式为(1)(3)y a x x =+-, 把(0,3)B 代入,解得1a =-, ∴抛物线解析式为223x x -++,当1x =时,4y =, 即4a b c ++=. 所以③正确. 故答案为3.15.如图,在矩形ABCD 中,1AB =,BC a =,将点B 绕点A 逆时针旋转,点B 的对应点为B ',BAB ∠'的平分线交BC 于E ,且35BE a =.若点B '落在矩形ABCD 的边上,则a 的【解答】解:分两种情况: ①当点B '落在AD 边上时,如图1. 四边形ABCD 是矩形, 90BAD B ∴∠=∠=︒,将ABE ∆沿AE 折叠,点B 的对应点B '落在AD 边上, 1452BAE B AE BAD ∴∠=∠'=∠=︒,AB BE ∴=, ∴315a =, 53a ∴=; ②当点B '落在CD 边上时,如图2. 四边形ABCD 是矩形,90BAD B C D ∴∠=∠=∠=∠=︒,AD BC a ==.将ABE ∆沿AE 折叠,点B 的对应点B '落在CD 边上, 90B AB E ∴∠=∠'=︒,1AB AB ='=,35EB EB a ='=,DB ∴'==,3255EC BC BE a a a =-=-=.90B AD EB C AB D ∠'=∠'=︒-∠', 90D C ∠=∠=︒,ADB ∴∆'∽△B CE ',∴DB AB CE B E ''='12355a =,解得1a =2a =. 综上,所求a 的值为53或故答案为53三、解答题(本大题共8个小题,满分75分)16.先化简再求值:2234(1)121x x x x x ---÷+++,其中x 是方程:220x x -=的一个根. 【解答】解:解方程220x x -=得:0x =或2,2234(1)121x x x x x ---÷+++2(2)(2)(1)1(2)(2)x x x x x x +-+=++- 1x =+,当2x =时,原式没有意义,舍去; 当0x =时,原式1=.17.某学校为了解学生对新闻、体育、动画、娱乐、戏曲五类电视节目最喜爱的情况,随机调查了若干名学生,根据调查数据进行整理,绘制了如下的不完整统计图.请你根据以上的信息,回答下列问题:(1)本次共调查了 50 名学生,其中最喜爱戏曲的有 人;在扇形统计图中,最喜爱体育的对应扇形的圆心角大小是 .(2)根据以上统计分析,估计该校2000名学生中最喜爱新闻的人数.【解答】解:(1)本次共调查学生:48%50÷=(人),最喜爱戏曲的人数为:506%3⨯=(人);“娱乐”类人数占被调查人数的百分比为:18100%36%50⨯=, ∴ “体育”类人数占被调查人数的百分比为:18%30%36%6%20%----=, ∴在扇形统计图中,最喜爱体育的对应扇形的圆心角大小是36020%72︒⨯=︒;故答案为:50,3,72︒.(2)20008%160⨯=(人),答:估计该校2000名学生中最喜爱新闻的人数约有160人.18.如图,直线y =+A 、B 两点. (1)求ABO ∠的度数;(2)过A 的直线l 交x 轴正半轴于C ,AB AC =,求直线l 的函数解析式.【解答】解:(1)对于直线y =+,令0x =,则y = 令0y =,则1x =-,故点A 的坐标为,点B 的坐标为(1,0)-,则AO =1BO =, 在Rt ABO ∆中,tan AOABO BO∠==,60ABO ∴∠=︒;(2)在ABC ∆中, AB AC =,AO BC ⊥, AO ∴为BC 的中垂线,即BO CO =,则C 点的坐标为(1,0),设直线l 的解析式为:(y kx b k =+,b 为常数),则0b k b ==+⎪⎩,解得:k b ⎧=⎪⎨=⎪⎩即函数解析式为:y =+.19.已知关于x 的一元二次方程2(1)220k x kx k +-+-=有两个不相等的实数根. (1)求实数k 的取值范围;(2)写出满足条件的k 的最小整数值,并求此时方程的根.【解答】解:(1)关于x 的一元二次方程2(1)220k x kx k +-+-=有两个不相等的实数根, ∴210(2)4(1)(2)0k k k k +≠⎧⎨=--+->⎩, 解得:2k >-且1k ≠-,∴实数k 的取值范围为2k >-且1k ≠-.(2)2k >-且1k ≠-,∴满足条件的k 的最小整数值为0,此时原方程为220x -=,解得:1x =,2x =.20.如图,ABC ∆三个顶点的坐标分别为(1,1)A ,(4,2)B ,(3,4)C (1)请画出将ABC ∆向左平移4个单位长度后得到的图形△111A B C ; (2)请画出ABC ∆关于点(1,0)成中心对称的图形△222A B C ;(3)若△111A B C 绕点M 旋转可以得到△222A B C ,请直接写出点M 的坐标;(4)在x轴上找一点P,使PA PB+的值最小,请直接写出点P的坐标;【解答】解:(1)如图,△A B C即为所求.111(2)如图,△A B C即为所求.222(3)如图,点M即为所求,点M的坐标(1,0)-.(4)如图,点P即为所求,点P的坐标(2,0).21.坚持农业农村优先发展,按照产业兴旺、生态宜居的总要求,统筹推进农村经济建设洛宁县某村出售特色水果(苹果).规定如下:如果购买新红星40箱,红富士60箱,需付款4300元;如果购买新红星100箱,红富士35箱,需付款4950元(1)每箱新红星、红富士的单价各多少元?(2)某单位需要购置这两种苹果120箱,其中红富土的数量不少于新红星的一半,并且不超过60箱,如何购买付款最少?请说明理由;【解答】解:(1)设每箱新红星a 元,每箱红富士b 元,由题意可得: 40600.943001000.9354950a b a b +⨯=⎧⎨⨯+=⎩, 解得4050a b =⎧⎨=⎩,答:每箱新红星40元,每箱红富士50元;(2)设购置新红星x 箱,则购置红富士(120)x -箱,所需的总费用为y 元, 由题意可得:1(120)2x x -, 解得:40x , 又60x ,所以新红星箱数x 的取值范围:4060x , 当4050x <时, 40500.8(120)y x x =+⨯- 804800x =+,所以40x =时,y 有最小值80000元,当5060x 时,0.840500.8(120)724800y x x x =⨯+⨯-=+, 所以50x =时,y 有最小值8400元, 80008400<,∴购买新红星40箱,红富士80块,费用最少,最少费用为8000元.22.如图,将ABC ∆绕点A 逆时针旋转90︒得到ADE ∆. (1)观察猜想小明发现,将DAC ∆绕点A 逆时针旋转90︒,如图1,他发现ACD ∆的面积1S 与BAE ∆的面积2S 之间有一定的数量关系,请直接写出这个关系: 12S S = . (2)类比探究如图2,M 是CD 的中点,请写出AM 与BE 之间的数量关系和位置关系,并说明理由; (3)解决问题如图3,AB AD =,AB AD ⊥,AC AE =,AC AE ⊥,C 在线段BD 上,AH BE ⊥交CD 于H ,若2BC =,3CD =,请直接写出AH 的长.【解答】解:(1)结论:12S S =.理由:如图1中,作EH BA ⊥交BA 的延长线于H ,CM AD ⊥于M .由题意CA AE =,AD AB =,90CAE DAF ∠=∠=︒, EAH CAM ∴∠=∠, sin sin CAM EAH ∴∠=∠,111sin 22S AD CM AD AC CAM ==∠,211sin 22S AB EH AB AE EAH ==∠, 12S S ∴=.故答案为12S S =.(2)结论:2BE AM =.理由:如图2中,延长AM 到T ,使得MT AM =,连接CT ,DT .CM DM =,AM MT =,∴四边形ADTC 是平行四边形,//AC DT ∴,AC DT =,180CAD ADT ∴∠+∠=︒,90CAE BAD ∠=∠=︒,180BAE CAD ∴∠+∠=︒,BAE ADT ∴∠=∠,AE AC DT ==,BA AD =,()BAE ADT SAS ∴∆≅∆,BE AT ∴=,AM MT =,2BE AM ∴=.(3)作//DT AC 交AH 的延长线于T .连接DE .=,AC AEAB AD∠=∠=︒,=,90BAD CAE∴∠=∠=︒,BAC DAE∠=∠,ABD ADB45∴∆≅∆,BAC DAE SAS()BC DE==,∴∠=∠=︒,2ADE ABC45∴∠=∠+∠=︒,BDE BDA ADE90BE∴===,∠=∠=︒,BAD CAE90∴∠+∠=︒,180CAD BAEAC DT,//∴∠+∠=︒,CAD ADT180∴∠=∠,BAE ADTAH BE⊥,∠+∠=︒,ABE BAT90DAT BAT∴∠+∠=︒,90∴∠=∠,DAT ABE=,AB AD∴∆≅∆,()ABE DAT ASA=,∴=,AE DTBE AT=,AC AE∴=,AC DT∠=∠,∠=∠,AHC DHTCAH T∴∆≅∆,()AHC THD AAS∴=,AH HT12AH BE ∴==. 23.如图,抛物线2y x bx c =-++交x 轴于A ,B 两点,交y 轴于点C 直线122y x =-+经过点B ,C .(1)求抛物线的解析式;(2)点P 是直线BC 上方抛物线上一动点,设点P 的横坐标为m . ①求PBC ∆面积最大值和此时m 的值; ②Q 是直线BC 上一动点,是否存在点P ,使以A 、B 、P 、Q 为顶点的四边形是平行四边形,若存在,直接写出点P 的坐标.【解答】解:(1)直线122y x =-+经过点B ,C ,则点B 、C 的坐标分别为:(4,0)、(0,2), 将点B 、C 的坐标代入抛物线表达式并解得:72b =,2c =, 故抛物线的表达式为:2722y x x =-++; (2)①过点P 作y 轴的平行线交直线BC 于点H ,则点27(,2)2P m m m -++,点1(,2)2H m m -+, PBC ∆面积2211714(22)282222PH OB m m m m m =⨯⨯=⨯⨯-+++-=-+, 20-<,∴面积存在最大值为8,此时,2m =;②设27(,2)2P m m m -++,点1(,2)2Q n n -+,当AB 是平行四边形的边时, 点A 向右平移92个单位得到B ,同样点()P Q 向右平移92个单位得到()Q P , 则92m n ±=,2712222m m n -++=-+,解得:m =,n =当AB 是平行四边形的对角线时, 由中点公式得:4m n +=,27122222m m n -++-+=,解得:0m =或4(舍去4);综上点P 的坐标为,或,或,或或(0,2).。
2019-2020年九年级数学期中考试题及答案一、选择题(本大题共15小题,每小题3分,共45分,在每道小题的四个选项中,只有一个选项正确,请把你认为正确的选项填在相应的答题卡上)1.已知一元二次方程x2-5x+3=0的两根为x1,x2,则x1x2=()A.5 B.-5 C.3 D.-32.如图,在Rt△ABC中,CD是斜边AB上的中线,若AB=8,则CD的长是( ) A.6 B.5 C.4 D.33.已知2是关于x的方程x2-3x+a=0的一个解,则a的值是()A.5 B.4 C.3 D.24.如图,在菱形ABCD中,AC与BD相交于点O,AO=4,BO=3,则菱形的边长AB等于()A.10 B.7 C.6 D.55.如图,若要使平行四边形ABCD成为菱形,则可添加的条件是() A.AB=CD B.AD=BC C.AB=BC D.AC=BD 6.关于x的一元二次方程kx2+2x-1=0有两个不相等实数根,则k的取值范围是()A.k>-1 B.k≥-1 C.k≠0 D.k>-1且k≠07.已知ab=cd=ef=4,且a+c+e=8,则b+d+f等于()A.4 B.8 C.32 D.28.下列对正方形的描述错误的是()A.正方形的四个角都是直角B.正方形的对角线互相垂直C.邻边相等的矩形是正方形D.对角线相等的平行四边形是正方形9.小颖将一枚质地均匀的硬币连续掷了三次,你认为三次都是正面朝上的概率是()A.12 B.13 C.14 D.1810.班上数学兴趣小组的同学在元旦时,互赠新年贺卡,每两个同学都相互赠送一张,小明统计出全组共互送了90张贺年卡,那么数学兴趣小组的人数是多少?设数学兴趣小组人数为x人,则可列方程为()A.x(x-1)=90 B.x(x-1)=2×90 C.x(x-1)=90÷2 D.x(x+1)=90第2题图第4题图第5题图11x 3.23 3.24 3.253.26ax2+bx+c -0.06 -0.02 0.03 0.09判断方程( ) A.3<x<3.23 B.3.23<x<3.24 C.3.24<x<3.25 D.3.25<x <3.2612.如图,AB∥CD∥EF,AD=4,BC=DF=3,则BE的长为()A.94 B.214C.4 D.613.在配紫色游戏中,转盘被平均分成“红”、“黄”、“蓝”、“白”四部分,转动转盘两次,配成紫色的概率为()A.13 B.14 C.15 D.1814.如图,点C是线段AB的黄金分割点,则下列各式正确的是()A.ACBC=ABAC B.BCAB=ACBC C.ACAB=ABBC D.BCAB=ACAB15.如图,在矩形ABCD中,O为AC中点,EF过O点,且EF⊥AC分别交DC于F,交AB于E,点G是AE中点,且∠AOG=30°,则下列结论正确的个数为()①DC=3OG;②OG=12BC;③△OGE是等边三角形;④S△AOE=16S矩形ABCD. A.1 B.2 C.3 D.4二、填空题(本大题共5小题,每小题5分,共25分,请把答案填在答题卡相应题号后的横线上)16.将方程3x(x-1)=5化为ax2+bx+c=0的形式为____________.17.依次连接矩形各边中点所得到的四边形是。
山西省太原市2019-2020学年九年级上学期期中数学试卷一、选择题(本大题共10小题,共30.0分)1.一元二次方程x2−3x=−2的解是()A. x1=1,x2=2B. x1=−1,x2=2C. x1=−1,x2=−2D. 方程无实数解2.如图,在△ABC中,点D在边AB上,BD=2AD,DE//BC交AC于点E,若线段DE=5,则线段BC的长为()A. 7.5B. 10C. 15D. 203.一枚质地均匀的正方体骰子的六个面分别刻有1到6的点数,将这枚骰子掷两次,其点数之和是7的概率为()A. 14B. 15C. 16D. 174.如图,在菱形ABCD中,对角线AC、BD交于点O.若∠ABC=60°,OA=1,则CD的长为()A. 1B. √3C. 2D. 2√35.如图,有一块直角三角形余料ABC,∠BAC=90°,D是AC的中点,现从中切出一条矩形纸条DEFG,其中E,F在BC上,点G在AB上.若BF=4.5cm,CE=2cm,则纸条GD的长为()A. 3cmB. 2√13cmC. 132cm D. 133cm6.关于x的一元二次方程x2+4x+k=0有两个相等的实数根,则()A. k=−4B. k=4C. k≥−4D. k≥47.如图,在矩形ABCD中,∠BOC=120°,AB=5,则BD的长为()A. 5B. 10C. 12D. 138.温州某服装店十月份的营业额为8000元,第四季度的营业额共40000元.如果平均每月的增长率为x,则由题意可列方程为()A. 8000(1+x)2=40000B. 8000+8000(1+x)2=40000C. 8000+8000×2x=40000D. 8000[1+(1+x)+(1+x)2]=400009.从1、2、3、4中任取两个不同的数,其和大于6的概率是()A. 23B. 12C. 13D. 1610.如图,在菱形ABCD中,∠B=60∘,AB=4,则以AC为边的正方形的周长为()A. 14B. 15C. 16D. 17二、填空题(本大题共5小题,共10.0分)11.(1)已知a6=b5=c4,且a+b−2c=6,则a的值为;(2)如图,ADBD =AEEC,AD=10,AB=30,AC=24,则AE的长为.12.2018年5月12日是第107个国际护士节,从数串“2018512”中随机抽取一个数字,抽到数字2的概率是______.13.用配方法解x2−4x+1=0时,配方后所得到的方程是.14.如图,在边长为3的正方形ABCD中,点E是BC边上的点,EC=2,∠AEP=90°,且EP交正方形外角的平分线CP于点P,则PC的长为______.15.如图,将菱形纸片ABCD折叠,使点B落在AD边的点F处,折痕为CE,若∠D=70°,则∠ECF的度数是_________.三、解答题(本大题共7小题,共50.0分)16.解方程:(1)2(x−2)=3x(2−x)(2)x2−x−1=017.有三张正面分别标有数字−1、1、2的卡片,它们除数字不同外其余均相同现将它们背面朝上洗匀后,从中抽出一张记下数字,放回后,再从中随机抽出一张记下数字.(1)将第一次抽到的数字记为x,第二次抽到的数字记为y,令M=x y,请借助画树状图或列表的方法,写出所有可能的M值;(2)求M是负数的概率.18.如图,已知菱形ABCD,AB=AC,E,F分别是BC,AD的中点,连接AE,CF.求证:四边形AECF是矩形.19.如图,在所给的方格纸中,每个小正方形边长都是1,△ABC是格点三角形(顶点在方格顶点处).(1)在图中画格点△A1B1C1,使△A1B1C1与△ABC相似,相似比为2:1.(2)在图中画格点△A2B2C2,使△A2B2C2与△ABC相似,面积比为2:1.20.为丰富学生的学习生活,某校八年级某班组织学生参加素质拓展活动,所联系的旅行社收费标准如下:如果人数超过25人,每增加1人,人均活动费用降低2元,但人均活动费用不得低于75元.如果人数不超过25人,人均活动费用为100元.活动结束后,该班共支付给该旅行社活动费用2800元,请问该班共有多少人参加这次素质拓展活动?21.如图,已知△ABC.(1)按如下步骤尺规作图(保留作图痕迹):①作AD平分∠BAC,交BC于D;②作AD的垂直平分线MN分别交AB、AC于点E、F;(2)连接DE、DF.若BD=12,AF=8,CD=6,求BE的长.22.如图,在矩形ABCD中,AB=8,BC=4,过对角线BD的中点O的直线分别交AB、CD于点E、F,连接DE,BF.(1)求证:四边形BEDF是平行四边形;(2)当四边形BEDF是菱形时,求EF的长.-------- 答案与解析 --------1.答案:A解析:解:x2−3x=−2,x2−3x+2=0,∵(x−1)(x−2)=0,∴x−1=0,x−2=0,即:x1=1,x2=2.故选:A.先把方程化为一般式x2−3x+2=0,左边因式分解得到(x−1)(x−2)=0,这样一元二次方程转化为两个一元一方程x−1=0或x−2=0,然后解一元一次方程即可.本题考查了解一元二次方程−因式分解法:先把方程化为一般式,再把方程左边因式分解,然后把一元二次方程转化为两个一元一方程,再解一元一次方程即可得到原方程的解.2.答案:C解析:本题考查了平行线分线段成比例定理,理解定理内容是关键.根据平行线分线段成比例定理即可直接求解.解:∵DE//BC,∴ADAB =DEBC=AEAC,∵BD=2AD,DE=5,∴ADAD+2AD =5BC,解得BC=15.故选C.3.答案:C解析:解:画树状图为:共有36种等可能的结果数,其点数之和是7的结果数为6,所以其点数之和是7的概率=636=16.故选C.画树状图展示所有36种等可能的结果数,再找出点数之和是7的结果数,然后根据概率公式求解.本题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.4.答案:C解析:解:∵四边形ABCD是菱形,∴AD=DC,OD⊥AC,OA=OC=1,∴AC=2OA=2,∵∠ABC=∠ADC=60°,∴△ADC是等边三角形,∴CD=AC=2,故选:C.首先求出AC的长,只要证明△ADC是等边三角形即可解决问题.本题主要考查了菱形的性质和等边三角形的判定以及性质等知识,解题的关键是熟练掌握菱形的性质和等边三角形的判定以及性质.5.答案:C解析:本题主要考查了相似三角形的应用和矩形的性质.利用数学知识解决实际问题是中学数学的重要内容.解决此问题的关键在于正确理解题意的基础上建立数学模型,把实际问题转化为数学问题.根据题意推知△AGD∽△ABC,由该相似三角形的对应边成比例求得GD的长度即可.解:∵矩形EFGD,∴GD//BC,∴△AGD∽△ABC,∴GDBC =ADAC,即GD4.5+GD+2=12,解得GD=132(cm).故选C.6.答案:B解析:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2−4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.根据判别式的意义得到△=42−4k=0,然后解一次方程即可得到结果.解:∵一元二次方程x2+4x+k=0有两个相等的实根,∴△=42−4k=0,解得k=4.故选B.7.答案:B解析:解:∵四边形ABCD是矩形,∴AC=2AO,BD=2BO,AC=BD.∴OA=OB.∵∠BOC=120°,∴∠AOB=60°.∴△AOB是等边三角形.∴OB=AB=5.∴BD=2BO=10.故选:B.根据矩形性质求出BD=2BO,OA=OB,求出∠AOB=60°,得出等边三角形AOB,求出BO=AB,即可求出答案.本题考查了等边三角形的性质和判定,矩形性质的应用,证得△AOB是等边三角形是解题的关键.8.答案:D解析:【分析】本题主要考查从实际问题中抽象出一元二次方程,掌握公式:“a(1+x)n=b”,理解公式是解决本题的关键.本题为增长率问题,一般用增长后的量=增长前的量×(1+增长率),如果平均每月的增长率为x,根据题意即可列出方程.解:由题意得十一月份的营业额为8000(1+x)元,十二月份的营业额为8000(1+x)2元,由此列出方程:8000[1+(1+x)+(1+x)2]=40000.故选D.9.答案:D解析:本题考查的是用列表法或画树状图法求概率,列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.首先根据题意画出树状图,然后由树状图求得所有等可能的结果与其和大于6的情况,再利用概率公式即可求得答案.解:画树状图得:,∴所以机会均等的结果有12种,其中和大于6有2种,∴P(和大于6)=212=16,故选D.10.答案:C解析:本题主要考查菱形性质,正方形性质,等边三角形的性质和判定的应用,关键是求出AC的长.根据菱形的性质可得AB=BC,得出△ABC是等边三角形,求出AC的长,根据正方形的性质得出AF= EF=EC=AC=4,求出正方形ACEF的周长即可.解:∵四边形ABCD是菱形,∴AB=BC,∵∠B=60°,∴△ABC是等边三角形,∴AC=AB=4,∴正方形ACEF的周长是AC+CE+EF+AF=4×4=16.故选C.11.答案:(1)12;(2)8解析:(1)本题考查比例的性质,掌握比例的性质是解题关键.首先设a6=b5=c4=k,得出a=6k,b=5k,c=4k,然后代入a+b−2c=6求出k的值,再求a的值即可.解:设a6=b5=c4=k,∴a=6k,b=5k,c=4k,代入a+b−2c=6,可得6k+5k−8k=6,解得k=2,∴a=12.故答案为12;(2)本题考查了比例线段,根据已知线段的比,将已知数值代入到等式中即可求出AE的长.解:∵ADBD =AEEC,且AD=10,AB=30,AC=24,∴1030−10=AE24−AE,解得AE=8.故答案为8.12.答案:27解析:解:由题意可得,从数串“2018512”中随机抽取一个数字,抽到数字2的概率是:27;故答案为:27.直接利用2的个数除以总数字的个数即可得出抽到数字2的概率.本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.13.答案:(x−2)2=3解析:【分析】本题考查解一元二次方程−配方法,先把常数项移到等号的右边,再在等式的两边同时加上一次项系数的一半,配成完全平方的形式,即可得出答案.【解答】解:∵x2−4x+1=0,∴x2−4x=−1,x2−4x+4=−1+4,∴(x−2)2=3.14.答案:√2解析:本题考查正方形的性质、全等三角形的判定和性质、勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.在AB上取BN=BE,连接EN,根据已知及正方形的性质利用ASA判定△ANE≌△ECP,从而得到AE=EP,再证明△ABE≌△EMP(AAS),推出BE=PM=1,EM=AB=3,即可解决问题;解:在AB上取BN=BE,连接EN,作PM⊥BC于M.∵四边形ABCD是正方形,∴AB=BC,∠B=∠DCB=∠DCM=90°,∵BE=BN,∠B=90°,∴∠BNE=45°,∠ANE=135°,∵PC平分∠DCM,∴∠PCM=45°,∠ECP=135°,∵AB=BC,BN=BE,∴AN=EC,∵∠AEP=90°,∴∠AEB+∠PEC=90°,∵∠AEB+∠NAE=90°,∴∠NAE=∠PEC,∴△ANE≌△ECP(ASA),∴AE=PE,∵∠B=∠PME=90°,∠BAE=∠PEM,∴△ABE≌△EMP(AAS),∴BE=PM=1,EM=AB=3,∴CM=1,∴PC=√2,故答案为√215.答案:35°解析:【分析】本题考查了翻折变换,菱形的性质,熟练运用折叠的性质是本题的关键.由折叠的性质可得∠BCE=∠FCE,BC=CF,由菱形的性质可得BC//AD,BC=CD,可求∠BCF=∠CFD=70°,即可求解.【解答】解:∵将菱形纸片ABCD折叠,使点B落在AD边的点F处,∴∠BCE=∠ECF,BC=CF,∵四边形ABCD是菱形∴BC//AD,BC=CD∴CF=CD∴∠CFD=∠D=70°∵BC//AD∴∠BCF=∠CFD=70°∴∠ECF=12∠BCF=35°故答案为:35°16.答案:解:(1)∵2(x−2)=3x(2−x),∴2(x−2)+3x(x−2)=0,∴(x−2)(3x+2)=0,∴x=2或x=−23(2)∵x2−x−1=0,∴a=1,b=−1,c=−1,∴△=1+4=5,∴x=1±√52;解析:(1)根据因式分解法即可求出答案;(2)根据公式法即可求出答案.本题考查一元二次方程,解题的关键是熟练运用一元二次方程的解法,本题属于基础题型.17.答案:解:(1)画树状图为:共有9种等可能的结果数,所有可能的M的值为−1,1,12,2,4;(2)共有9种等可能的结果数,M是负数的结果数为2,所以M是负数的概率=29解析:(1)画树状图展示所有9种等可能的结果数,根据乘方的意义和负整数指数幂计算出所有可能的M的值;(2)根据概率公式求解.本题考查了列表法与树状图法:利用列表法或树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式计算事件A或事件B的概率.18.答案:证明:∵四边形ABCD是菱形,∴AB=BC,又∵AB=AC,∴△ABC是等边三角形,∵E是BC的中点,∴AE⊥BC(等腰三角形三线合一),∴∠AEC=90°,∵E、F分别是BC、AD的中点,∴AF=12AD,EC=12BC,∵四边形ABCD是菱形,∴AD//BC且AD=BC,∴AF//EC且AF=EC,∴四边形AECF是平行四边形(一组对边平行且相等的四边形是平行四边形),又∵∠AEC=90°,∴四边形AECF是矩形(有一个角是直角的平行四边形是矩形).解析:根据菱形的四条边都相等可得AB=BC,然后判断出△ABC是等边三角形,然后根据等腰三角形三线合一的性质可得AE⊥BC,∠AEC=90°,再根据菱形的对边平行且相等以及中点的定义求出AF与EC平行且相等,从而判定出四边形AECF是平行四边形,再根据有一个角是直角的平行四边形是矩形即可得证.本题考查了矩形的判定,菱形的性质,平行四边形的判定的应用,等边三角形的判定与性质,证明得到四边形AECF是平行四边形是解题的关键,也是突破口.19.答案:解:(1)如图所示:△A1B1C1即为所求:(2)如图所示:△A2B2C2即为所求:解析:本题主要考查了相似变换,根据题意得出对应边的长是解题关键.(1)根据相似比进而得出各边扩大2倍得出答案;(2)根据相似比进而得出各边扩大√2倍得出答案.20.答案:解:∵25人的费用为2500元<2800元,∴参加这次春游活动的人数超过25人,设该班参加这次春游活动的人数为x名,由题意得[100−2(x−25)]x=2800,整理,得x2−75x+1400=0,解得x1=40,x2=35,当x1=40时,100−2(x−25)=70<75,不合题意,舍去;当x2=35时,100−2(x−25)=80>75,答:该班共有35人参加这次春游活动.解析:此题考查了一元二次方程的应用,找出题中的等量关系是解本题的关键.判断得到这次春游活动的人数超过25人,设人数为x名,根据题意列出方程,求出方程的解即可得到结果.21.答案:解:(1)①∠BAC的平分线AD如图所示.②线段AD的垂直平分线MN,分别交AB、AC于点E、F,如图所示.(2)∵EA=ED,FA=FD,∴∠EAD=∠EDA,∠FAD=∠FDA,∵∠EAD=∠FAD,∴∠EDA=∠FAD,∠EAD=∠FDA,∴DE//AF,AE//DF,∴四边形AEDF是平行四边形,∵EA=ED,∴四边形AEDF是菱形,∴EA=ED=AF=DF=4,∵DE//AC,∴BEEA =BDDC,∴BE4=123,∴BE=16.解析:本题考查复杂作图、线段的垂直平分线的性质、菱形的判定和性质、平行线分线段成比例定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.(1)①∠BAC的平分线AD如图所示.②线段AD的垂直平分线MN,分别交AB、AC于点E、F,如图所示.(2)首先证明四边形AEDF是菱形,推出AE=DE=AF=DF=4,由DE//AC,推出BEEA =BDDC,由此即可解决问题.22.答案:(1)证明:∵四边形ABCD是矩形,O是BD的中点,∴∠A=90°,AD=BC=4,AB//DC,OB=OD,∴∠OBE=∠ODF.在△BOE和△DOF中,{∠OBE=∠ODF OB=OD∠BOE=∠DOF,∴△BOE≌△DOF(ASA),∴EO=FO,∴四边形BEDF是平行四边形.(2)解:当四边形BEDF是菱形时,BD⊥EF,设BE=x,则DE=x,AE=8−x.在Rt△ADE中,DE2=AD2+AE2,∴x2=42+(8−x)2,解得x=5,即BE=5.∵BD=√AD2+AB2=√82+42=4√5,∴OB=12BD=2√5.∵BD⊥EF,∴EO=√BE2−OB2=√52−(2√5)2=√5,∴EF=2EO=2√5.解析:(1)根据平行四边形ABCD的性质,判定△BOE≌△DOF(ASA),得出四边形BEDF的对角线互相平分,进而得出结论;(2)在Rt△ADE中,由勾股定理得出方程,解方程求出BE,由勾股定理求出BD,得出OB,再由勾股定理求出EO,即可得出EF的长.本题主要考查了矩形的性质,菱形的性质、勾股定理、全等三角形的判定与性质,熟练掌握矩形的性质和勾股定理,证明三角形全等是解决问的关键.。
2012-2013 学年度第一学期期中质量监测 2019-2020年九年级数学期中考试试题及答案 九年级数学试题 2012.11.注意事项】本试卷共8页,全卷共三大题28小题,满分150分,考试时间120分钟.A.21B.4C. 3D. 8 2.计算28-的结果是( )A. 6B.6C. 2D.23.数学老师对小明在参加中考前的5次数学模拟考试进行统计分析,判断小明的数学成绩是否稳定,于是老师需要知道小明这5次数学成绩的( ) A .平均数 B .方差 C .频率 D .众数4.方程0582=+-x x 的左边配成完全平方式后所得的方程是( )A.11)6(2=-xB.11)4(2=-xC.21)4(2=-x D.以上答案都不对5.如图,菱形ABCD 中,AB = 5,∠BCD = 120°,则对角线AC 的长是( ) A .20 B .15 C .10 D .56.如图,在△ABC 中,∠C=090,∠B=028,以C 为圆心,CA 为半径的圆交AB 于点D ,交BC 于点E ,则弧AD 的度数为( ) A. 028 B. 034 C. 056 D. 0627.已知一元二次方程01582=+-x x 的两个解恰好分别是等腰△ABC 的底边长和腰长,则△ABC 的周长为( ) A.13B.11或13C.11D.128.如图,⊙O 的直径为10,弦AB 的长为8,点P 是弦AB 上的一个动点,使线段OP 的长度为整数的点P 有( )A .3 个B .4个C .5个D .6个 二、细心填一填:(每题3分,共30分) 9.化简:aa 1--= . 10.使5-x 有意义的x 的取值范围是 .11.已知一元二次方程032=+-mx x 的一个根为1,则m 的值为BACD第5题图BA第6题图第8题图_________.12.一元二次方程0)3)(2(=--a x a x 的根为 . 13.等腰直角三角形的一个底角的度数是 . 14.如图,□ABCD ,∠A =120°,则∠D = °.15.如图,l m ∥,矩形ABCD 的顶点B 在直线m 上,则α∠= 度.、 16.如图,菱形ABCD 的对角线相交于点O ,请你添加一个条件: ,使得该菱形为正方形.17.若x y ,为实数,且20x +=,则2012⎥⎦⎤⎢⎣⎡y x 的值为 .18.关于x 的一元二次方程054)1(2=---x x k 有两个不相等实数根, 则k 的取值范围是 . 三、耐心做一做:(共96分) 19.(本题满分8分)解下列方程:(1)0812=-x (2)0322=--x x 20.(本题满分10分)用配方法解下列方程: mx 2+nx+p=0(m ≠0)第15题图第14题图A BCDD C BAOODABCm l α65°BD 第16题图21.(本题满分8分)某家用电器原价为每台800元,经过两次降价,现售价为每台512元,求平均每次降价的百分率.22.(本题满分8分)甲、乙两名同学进行射击训练,在相同条件下各射靶5次,成绩统计如下:●命中环数●7 ●8 ●9 ●10● 2 ● 2 ●0 ● 1 ●甲命中相应环数的次数●乙命中相应环数的次● 1 ● 3 ● 1 ●0数若从甲、乙两人射击成绩方差的角度评价两人的射击水平,则谁的射击成绩更稳定些?DCBAOE23.(本题满分10分)如图,半圆O 的直径AB=8,半径OC ⊥AB ,D 为弧AC 上一点,DE ⊥OC ,DF ⊥OA ,垂足分别为E 、F ,求EF 的长.24.(本题满分10分)如图,O 为矩形ABCD 对角线的交点,DE∥AC,CE∥BD. (1)试判断四边形OCED 的形状,并说明理由; (2)若AB=6,BC=8,求四边形OCED 的面积.C25.(本题满分8分)阅读下列材料:我们在学习二次根式时,式子x 有意义,则0≥x ;式子x -有意义,则0≤x ;若式子x x -+有意义,求x 的取值范围;这个问题可以转化为不等式组来解决,即求关于x 的不等式组⎩⎨⎧≤-≥00x x 的解集,解这个不等式组得0=x .请你运用上述的数学方法解决下列问题:(1)式子2211x x -+-有意义,求x 的取值范围; (2)已知:322--+-=x x y ,求y x 的值.26.(本题满分10分)某超市进一批运动服,每件成本50元,如果按每件60元出售,可销售800件;如果每件提价5元,其销售量就将减少100件.如果超市销售这批运动服要获利12000元,那么这批运动服售价应定为多少元?该超市应进这种运动服多少件?27.(本题满分12分)如图,在△ABC 中,中线BD 、CE 相交于点O ,F 、G 分别是OB 、OC 的中点.(1)求证:四边形DEFG 是平行四边形; (2)当AB=AC 时,判断四边形DEFG 的形状;(3)连结OA ,当OA=BC 时,判断四边形DEFG 的形状,并证明你的结论.ABC ED F GO28.(本题满分12分)如图1,正方形ABCD ,△AMN 是等腰Rt △,∠AMN=90°,当Rt △AMN 绕点A 旋转时,边AM 、AN 分别与BC (或延长线图3)、CD (或延长线图3)相交于点E 、F ,连结EF ,小明与小红在研究图1时,发现有这么一个结论:EF=DF+BE ;为了解决这个问题,小明与小红,经过讨论,采取了以下方案:延长CB 到G ,使BG=DF ,连结AG ,得到图2,请你根据小明、小红的思路,结合图2,解决下列问题:(1)证明:① △ADF ≌△ABG ; ② EF=DF+BE ;(2)根据图(3),①结论EF=DF+BE 是否成立,如不成立,写出三线段EF 、DF 、BE 的数量关系并证明.②若M N 图1 图2图3M NG九年级数学期中试卷参考答案一、选择题1.C 2.D 3.B 4.B 5.D 6.C 7.B 8.C 二、填空题 9.a - 10.5≥x 11.4 12.a x a x 3,221== 13.45°14.60°15.25° 16.∠BAD=90°或AC=BD 等 17.1 18.1,51≠>k k 且 三、解答题19. (1)9,921-=x x ………………4分 (2)3,121=-=x x ………………4分20. 2()n m x x p m+=-……………2分2224()24n n mp x m m-+= ……………6分240n mp x -≥=当时,方程有实数根 240n mp -<当时,方程无实数根。
……………10分21.解:设平均每次降价的百分率为x ,则根据题意得: 512)1(8002=-x ………………4分解这个方程得:8.1,2.021==x x (舍去)………………7分 答:平均每次降价的百分率为20%。
………………8分22. 解:甲、乙两人射击成绩的平均成绩分别为:第14题图DCBAOE1X =72+82+101=85⨯⨯⨯甲(),………………2分1X =71+83+91=85⨯⨯⨯乙()………………3分()()()22221=278288108=1.25s ⎡⎤-+-+-⎣⎦甲………………5分()()()22221=7838898=0.45s ⎡⎤-+-+-⎣⎦乙………………6分∵2s 乙<2s 甲,∴乙同学的射击成绩比较稳定。
………………8分 23. 解:连结OD ∵OC ⊥AB DE ⊥OC ,DF ⊥OA∴∠AOC=∠DEO=∠DFO=90°………………4分 ∴四边形DEOF 是矩形………………6分 ∴EF=OD ………………8分 ∵OD=OA∴EF=OA=4………………10分24.解:(1)四边形OCED 的形状是菱形.………………1分 ∵DE∥AC,CE∥BD∴四边形OCED 是平行四边形………………4分 ∵四边形ABCD 是矩形 ∴OC=OD ………………5分∴四边形DEOF 是菱形………………6分 (2) 24………………10分25. 解:(1)±=x 1………………3分 (2)81,3.2=-==yx y x ………………8分26. 解:设这批运动服定价为每件x 元,根据题意得12000)100560800)(50(=⨯---x x ………………4分 解这个方程得 80,7021==x x ………………8分 当701=x 时,该商店应进这种服装600件; 当802=x 时,该商店应进这种服装400件;答:这批服装定价为每件70元,该商店应进这种服装600件,这批服装定价为每件80元,该商店应进这种服装400件.………………10分 27. 证明:(1)∵D 、E 分别为AC 、AB 的中点∴ED ∥BC ,BC ED 21=………………2分 同理FG ∥BC ,BC FG 21=………………3分∴ED ∥FG ,ED=FG ………………4分∴四边形DEFG 是 平行四边形………………5分 (2)矩形………………7分(3)当OA=BC 时,四边形DEFG 是平行四边形………………8分 ∵D 、G 分别是AC 、OC 的中点 ∴AO DG 21=………………9分 ∵OA=BC∴DG=FG ………………11分 ∵四边形DEFG 是平行四边形∴四边形DEFG 是菱形………………12分 28..ABCEDFGO(1)①2分②2分(2)①EF= BE - DF 4分② 6 4分。