Sylow定理的证明及其应用
- 格式:pdf
- 大小:186.95 KB
- 文档页数:3
sylow第一定理证明摘要:I.前言- 引入Sylow 定理及其证明的重要性II.Sylow 第一定理的描述- 定理的表述- 定理中的关键概念:Sylow 子群、Sylow 定理的p-子群III.Sylow 第一定理的证明- 证明思路与方法1.基本情况:p 是素数2.一般情况:p 是合数- 证明过程中的关键引理及其证明1.引理12.引理23.引理3IV.结论- 总结Sylow 第一定理的证明过程- 强调Sylow 第一定理在群论中的重要地位正文:I.前言Sylow 定理是群论中的一个重要定理,它为我们研究群结构提供了有力的工具。
本文将详细介绍Sylow 第一定理的证明过程,帮助读者更好地理解和掌握这一定理。
II.Sylow 第一定理的描述Sylow 第一定理描述了有限群的Sylow 子群,它指出:若G 是有限群,p 是G 的正规元素,那么G 中存在一个p-子群,这个p-子群的阶是p 的某个正整数次幂。
III.Sylow 第一定理的证明为了证明Sylow 第一定理,我们需要分两种情况讨论:p 是素数和p 是合数。
1.当p 是素数时,Sylow 第一定理的证明相对简单。
我们只需证明G 中存在一个p-子群,其阶为p 的某个正整数次幂。
假设H 是G 的一个p-子群,|H|=p^a,其中a 是正整数。
由于p 是素数,H 中任意两个元素的乘积都是p 的倍数,即H 是G 的p-子群。
另一方面,由于p^a 是|H|的因子,根据拉格朗日定理,G 中存在一个元素x,使得x^a=1。
因此,G 中的元素可以表示为x^a * h,其中h 是H 的元素。
这说明G 是H 的扩展,即G=H。
所以,当p 是素数时,Sylow 第一定理成立。
2.当p 是合数时,我们需要利用一些关键引理来完成证明。
首先,我们证明引理1:若G 的元素g 满足|g|=p^a,其中p 是合数,a 是正整数,则G 中存在一个p-子群,其阶为p 的某个正整数次幂。
【VIP专享】近世代数复习(⼀)群在集合上的作⽤群在集合上的作⽤主要掌握如何求轨道、稳定⼦、不动元.下⾯分别对这三个概念简要介绍.设群G 作⽤在集合X 上,x X ∈.(1) 称{|}x O gx g G =∈为x 在G 下的轨道.该定义的含义是:对于固定的x X ∈,x 所在的轨道是⽤x 去乘G 中的每个元素,将结果记⼊x O 内.(2) 称{|()}x S g G g x x =∈=为x 在G 中的稳定⼦.该定义的含义是:对于固定的x X ∈,将群G 中的元素ig 依次作⽤于这个x 上,若作⽤结果仍为x ,将该i g 记⼊x S 内.(3) 称{|()}g F x X g x x =∈=为x 在G 中的稳定⼦(集).该定义的含义是:对于固定的g G ∈,将g 依次作⽤于i x X ∈上,若作⽤结果仍为i x ,将该i x 记⼊g F 内.⽤⼀个例⼦来说明这三者的求法.已知{1,2,3,4,5,6}X =,{(1),(12),(356),(365),(12)(356),(12)(365)}G =.(1) 轨道.固定1x X =∈,11{1,2}i O g =?=,i g G ∈.固定3x X =∈,33{3,5,6}i O g =?=,i g G ∈.固定4x X =∈,44{4}i O g =?=,i g G ∈.由此可以看到,在某轨道出现过的值不需要再次进⾏计算,,x y X ?∈,,x y O O 或者完全相同,或者完全不同,且x x X O =,这种算法类似于陪集的算法.(2) 稳定⼦.固定1x X =∈,G 中的每个元素分别去作⽤1,结果仍为1的只有1{(1),(356),(365)}S =.固定3x X =∈,G 中的每个元素分别去作⽤3,结果仍为3 的只有3{(1),(12)}S =.固定4x X =∈,G 中的每个元素分别去作⽤4,结果仍为4 的有4S G =.由此可以看到,同⼀轨道元素在G 中的稳定⼦相同,所以x 的取法和计算轨道时x 选取相同.(3) 不动元素.固定(1)G ∈,⽤(1)去与X 中每个元素作⽤,作⽤后元素值不变的是(1)F X =.固定(356)G ∈,⽤(356)去与X 中每个元素作⽤,作⽤后元素值不变的是(356){1,2,4}F =.固定(12)G ∈,⽤(12)去与X 中每个元素作⽤,作⽤后元素值不变的是(12){3,4,5,6}F =.固定(12)(356)G ∈,⽤(1 2)(3 5 6)去与X 中每个元素作⽤,作⽤后元素值不变的是(12)(356){4}F =.(⼆) Burnside 引理的应⽤(以P103的例12为例)例:今有红(r)、黄(y)、蓝(b)三种颜⾊的⼩珠⼦各2颗.问:⽤他们可以串成多少种不同的⼿链?【解答】(1) ⾸先要认识到,对于这样的问题,共有2264C C 种排列⽅法(在6个位置中先选取2个位置放⼀种颜⾊,再从剩下的4个位置中选取2个放另外⼀种颜⾊).所以集合X 的元素个数为90.(2) 我们需要知道群G 中有哪些变换.第⼀类:i τ为绕中⼼按逆时针⽅向旋转3i π.第⼆类:i η为沿着对边中线的反射,如右图.第三类:i σ为沿着对⾓线的反射,如右图.综上,{(1),(1,2,3,4,5),(1,2,3),(1,2,3)}i i i G i i i τησ====.(3) 下⾯来求不动元素数.因为当对⾓颜⾊相同时,旋转180?情况不变,其余旋转均会改变颜⾊的分布情况.另外,当对称两个⽅向的颜⾊相同时,翻折并不会使颜⾊分布发⽣变化.可得数P103表2.5.1.(4) 从⽽由Burnside 引理11||(90020266363)11||12g g G n F G ∈==+?+?++?+?=∑ 可以算得有11种不同的⼿链.(三)西罗定理(Sylow Theorem)的应⽤例1:证明:56阶群G 不是单群.【证明】(不失⼀般性)由西罗第三定理,35627=?.设P 为G 的Sylow 7⼦群,则||7P =.设7r 为G 的Sylow 7⼦群的个数,则7|[:]8r G P =,71(mod7)r ≡.则有71r =或8.(1) 若71r =,则P 为G 的正规⼦群,与G 是单群⽭盾.(2) 78r =,则G 有8个Sylow 7⼦群18,,P P ,它们互相共轭,由于j P 是素数阶的循环群,{}i j P P e =,因此G 中有8648?=个7阶元,1个单位元.设Q 为G 的Sylow 2⼦群,则Q 中有8个元素(其中⼀个是单位).但G 不能⾃由⼀个Sylow 2⼦群,不然Q 为G 的正规⼦群,与G 是单群⽭盾.所以G 不是单群.例2:证明:85阶的群G 是循环群.【证明】(不失⼀般性)对85进⾏素因数分解,85517=?.由西罗第⼀定理,G 有Sylow 5⼦群和Sylow 17⼦群.由西罗第三定理,Sylow 5⼦群的个数5|17n 且51(mod5)n ≡,则有551|17k n +=. Sylow 17⼦群的个数17|5n 且171(mod17)n ≡,则有17171|5t n +=.从上式可以解到:51n =,171n =,说明只有1个Sylow 5⼦群和1个Sylow 17⼦群.由性质:若群||G pq =,其中p q 、为素数,若G 中只有唯⼀p 阶⼦群和q 阶⼦群,则G 为循环群.由此,证毕.例3:试求:4A 的Sylow 2⼦群.【解答】(不失⼀般性)先求:44||4!||1222S A ===,2123432=?=?,所以由西罗第三定理,4A 有唯⼀的Sylow 2⼦群.4A 的Sylow 2⼦群即为4A 的4阶⼦群(同理,4S 的Sylow 2⼦群即为4S 的8阶⼦群).则4A 的Sylow 2⼦群为{(1),(12)(34),(13)(24),(14)(23)}K =,K 也是4A 的正规⼦群.例4:设G 是⼀个21阶的⾮循环群,求G 中Sylow 3⼦群的个数.【解答】(不失⼀般性)21的标准素因数分解为2137=?,则331n k =+|7,则有31n =或7,由条件G 是⾮循环群,则37n =,即G 中有7个Sylow 3⼦群.例5:设G 是⼀个36阶的群,求G 中Sylow 3⼦群的个数.【解答】(不失⼀般性)36的标准素因数分解为223623=?,则2331|2n k =+,则有31n =或4(1) 若G 是循环群,则31n =,即G 中有1个Sylow 3⼦群,G 为正规⼦群.(2) 若G 是不循环群,则34n =,即G 中有4个Sylow 3⼦群.(四)关于求⾼斯整环的理想的显然形式及其商环的⼀般解法:1.⾼斯整环的显然形式分两种情况:(a) 理想形如i I a =<+>⾸先,(i)(i)(i)N a a a I +=+-∈,所以对任意的z ∈Z ,(i)N a z I +?∈.对于i 前系数为1的情况,i x y +以y 优先凑y 的表达式i ()(i)x y x ay a y +=-++.因为(i)a I +∈,所以只要x ay I -∈,则i x y I +∈.则可以得到其显然表达式为i {i |mod((i))}a x y x ay N a <+>=+≡+.若mod((i))x ay N a ≡+/,则i x y I +?,若不然,1I ∈,则有[i]I =Z ,⽭盾.(b) 理想形如1i I b =<+>同样,(1i)(1i)(1i)N b b b I +=+-∈,所以对任意的z ∈Z ,(1i)N b z I +?∈.对于i 前系数为b 的情况,i x y +以x 优先凑x 的表达式i (1i)()i x y b x y bx +=++-.因为(1i)b I +∈,所以只要y bx I -∈,则i x y I +∈.则可以得到其显然表达式为1i {i |mod((1i))}b x y y bx N b <+>=+≡+.若mod((1i))y bx N b ≡+/,则i x y I +?,若不然,1I ∈,则有[i]I =Z ,⽭盾.2.⾼斯整环的商环当理想的⽣成元的范围为素数时,即若(i)N a b +为素数,(i)[i]/i N a b a b +<+>?Z Z .(a) 理想形如i I a =<+>的显然表达式为i {i |mod((i))}a x y x ay N a <+>=+≡+.当mod((i))x ay N a ≡+时,i x y a +∈+,i 0x y +=;当mod((i))x ay N a ≡+时,i i x y m a +∈+<+>,其中(i)N a m +∈Z ,则i 1,2,,(i)1x y N a +=+-.由此得[i]/i {0,1,2,,(i)1}a N a <+>=+-Z ,并且当(i)N a +为素数时,这是⼀个极⼤理想,当然也是⼀个素理想.(b) 理想形如1i I b =<+>的显然表达式为1i {i |mod((1i))}b x y y bx N b <+>=+≡+.当mod((1i))y bx N b ≡+时,i 1i x y b +∈<+>,i 0x y +=;当mod((1i))y bx N b ≡+时,i 1i x y m b +∈+<+>,其中(1i)N b m+∈Z ,则i 1,2,,(1i)1x y N b +=+-.由此得[i]/1i {0,1,2,,(1i)1}b N b <+>=+-Z ,并且当(1i)N b +为素数时,这是⼀个极⼤理想,当然也是⼀个素理想.(五)素理想、极⼤理想之间的关系在素理想、极⼤理想这⼀块我们主要研究四类环:Z 、[i]Z 、p Z 、2()M R .⾸先来观察前三类,它们是性质⾮常好的两类环,体现在:Z 是欧⼏⾥得整环、主理想整环、也是唯⼀分解整环(4.4).[i]Z 是欧⼏⾥得整环、主理想整环、也是唯⼀分解整环(4.4).1. 书本在3.5节给出两个等价命题:n 为Z 的素理想?n 为素数; m 为Z 的极⼤理想?m 为素数;这个命题同样可以类⽐到p Z 中,证明⽅式相同,即:n 为p Z 的素理想?n 为素数且|n p ;m 为p Z 的极⼤理想?m 为素数且|m p .⼀般地,在p Z 中,p a ?∈Z ,1212S l l l s a q q q =为标准素因数分解,则12s q q q 、、、均为素理想,且它们是全部的极⼤理想.2. 证明⼀个理想I 是素理想的⼀般⽅法:法⼀:先证明I 是⼀个极⼤理想,则在有单位元的交换环中,I 是素理想.法⼆:从定义出发,证明任取,a b I ∈,由ab I ∈可以推得a I ∈或b I ∈.法三:在满⾜条件的情况下,证明/R I 是⼀个整环.3. 证明⼀个理想I 是极⼤理想的⼀般⽅法:法⼀:从定义出发,选取⼀个理想J ,使得I J R ??,选取元素a J ∈,a I ?,推出1J ∈由1J ∈⽴得J R =,证毕.注:(1) 这个“1”是凑出来的,且在矩阵中,1应该对应变为为1001?? ???,在不同的环中,1代表不同的含义,应该把1理解为单位元.(2) 要得到1,不仅可以⽤加减法得到,也可以由乘法得到(在矩阵中).法⼆:在满⾜条件的情况下,证明/R I 是⼀个域.结合书P153例10、书P154习题10、习题11,可以直接写出这个商环的元素再证明它是⼀个域(其中元素可逆).4. 关于p q ⊕Z Z 的极⼤理想:特别注意:p Z 的极⼤理想和q Z 的极⼤理想的直和不是p q ⊕Z Z 的极⼤理想.(六)关于判断p 在[i]Z 、Z (整环)中是否为素元和不可约元的⼀般解法:1. 先判断p 是否为素元(1) 若p ∈Z 且3(mod 4)p ≡,则p 为素元,这在[i]Z 、Z 中均成⽴.(2) *若p ∈Z 且1(mod 4)p ≡,则存在a b ∈Z 、,使得22p a b =+,且i a b ±都是[i]Z 的素元.(3) 若p 不是整数且()N p 为素数,则p 必为素元:(法⼀):⽤书本P174的⽅法验证.注:在[i]Z 中,若题⽬中的i 前系数不为1,则要设⼀个i a b +,使得其乘积中i 前系数为1,这个由待定系数法很容易做到,则此时|p αβ应变为(i)|(i)(i)p a b a b a b αβ?++?+.(法⼆):以[i]Z 为例,Z 同理.设i,i [i]a b x y αβ+=+∈Z =,且有|p αβ.取范数得()|()()N p N N αβ,因为()N p 为素数,则由数论知识,()|()N p N α或()|()N p N β,则有|p α或|p β,则p 为素元.(4) 若p 不是整数且()N p 为合数 (以[i]Z 为例,Z 同理) :取i [i]a b α+∈Z =,求⽅程:22()()N a b N p α=+=的整数解.若⽅程⽆整数解,则p 只能写成1p ?的形式,显然p 是素元.若⽅程有整数解,则令i a b α=+,i a b β=-,此时|()p N p αβ=,但|p α/,|p β/,则p 不是素元.2. 再判断p 是否为不可约元(1) 若()N p 为素数(或p 为素元),则p 为不可约元;(2) 若()N p 为合数,则令p αβ=,其中[i](αβ∈Z Z 、,取范数()()()N p N N αβ=.下以[i]Z 为例,Z 同理:取i,i [i]a b x y αβ+=+∈Z =,设()N p 可以分解为12q q ?(12q q 、均不为单位),那么分别验证是否存在a b x y ∈Z 、、、,使得12(),()N p N p αβ==.若存在,则说明存在不为单位的αβ、分解p ,则p 不是不可约元;若不存在,则说明()()N N αβ、中必有⼀个值为1,即αβ、必有⼀个为单位,则p 是不可约元.。
毕业论文(2016届)题目拉格朗日定理的若干应用学院数学计算机学院专业数学与应用数学年级2012级学号***********学生姓名苗壮指导教师王伟2016年5月8 日摘要拉格朗日定理是群论中一个非常重要的定理, 通过这个定理还可以得到许多群论中的数量关系,在近世代数中有着广泛的应用.首先介绍了群与子群的定义,其次介绍了子群的陪集和拉格朗日定理;并对拉格朗日定理用两种方法进行证明. 最后,通过讨论相关例题,总结运用拉格朗日定理证明与子群、阶有关的问题一些基本步骤和方法.关键词:群子群拉格朗日定理陪集AbstractLagrange law is a very important theorem in group theory, many quantitative relationships in group theory can be obtained through it, which is widely utilized in Modern Algebra. The definitions of groups and subgroups are introduced first. Then the coset of subgroup and Lagrange law are introduced and the law are proved on two ways. Finally, by talking about the relevant examples, certain primary methods and steps to use Lagrange law and to prove some problems about subgroups and order are concluded.Key words: group subgroup Lagrange law coset┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊目录1.引言................................................. 错误!未定义书签。
非正规子群是Sylow子群的有限群褚智伟【期刊名称】《《南通大学学报(自然科学版)》》【年(卷),期】2019(018)002【总页数】4页(P87-90)【关键词】有限群; 非正规子群; 共轭; Sylow子群【作者】褚智伟【作者单位】南通师范高等专科学校学前教育第一学院江苏南通 226006【正文语种】中文【中图分类】O152.1研究子群的正规性与有限群结构的关系是有限群的重要课题之一。
著名的Dedekind 群就是每个子群都正规的有限群。
这里我们讨论其对偶问题:非正规子群的性质对有限群结构的影响。
Sylow 子群是有限群中最重要的子群,它的正规性影响到群的幂零性,又是群性质和数量性质沟通的桥梁。
文献[1-2]研究了子群的性质对有限群结构的影响;文献[3]给出了恰有p 个相互共轭的非正规子群的有限群结构;文献[4]给出了非正规子群的共轭类类数为4的有限幂零群;文献[5-10]给出了恰有2,4,5,6,7 个非正规子群的有限群及有限NN-群的非正规子群的有限群结构。
本文将研究非正规子群为Sylow 子群的群结构,从数量性质出发探讨群结构的存在性。
1 预备知识和相关引理本文中涉及的群均为有限群。
Pr表示群G 的Sylow r-子群;nr表示群G 的Sylow r-子群的个数;表示群G 的非正规子群的共轭类类数;τ(G)表示群G 中非正规子群的个数;π(G)表示群G 的阶所含全体素因子的集合;表示与H 共轭的子群的个数。
首先,我们介绍几个有用的引理。
引理1[11]若G 为有限群,则如下命题等价:1)。
2)是一个非交换可裂扩张,其中N 为素数阶循环群,P 为素数幂阶循环群,,即,其中:p=2 时,n ≥3;p ≥3 时,n ≥2。
引理2[12]若G 为有限非幂零群,,P为G 的非正规的Sylow p-子群,则G 中除Sylow p-子群外,其余Sylow 子群都正规于G。
当P < NG(P)时,,其中是一非交换可裂扩张,。
第38卷第4期西南师范大学学报(自然科学版)2013年4月V o l.38N o.4J o u r n a l o f S o u t h w e s t C h i n aN o r m a lU n i v e r s i t y(N a t u r a l S c i e n c eE d i t i o n)A p r.2013文章编号:10005471(2013)04014804G A P 在近世代数教学中的应用①刘建军西南大学数学与统计学院,重庆400715摘要:针对近世代数课程内容比较抽象的特点,以及当前近世代数教学中过多注重理论体系的完整性,忽视学生作为主体地位的现状,介绍了适合近世代数教学的软件G A P及其在教学中的具体运用.通过G A P的使用,可以变革近世代数内容的呈现方式,使得证明清晰化,计算简单化,以及结论直观化,从而使近世代数学习变得更生动㊁更形象㊁更具体,以促进近世代数教学质量的提高.关键词:近世代数;教学;数学软件中图分类号:G420文献标志码:A近世代数(又名抽象代数)是以研究代数系统的性质与构造为中心的一门学科,是现代数学的重要基础,对培养学生严谨的思维方法和数学素养,提高学生的抽象思维能力和逻辑推理能力都具有重要意义.本文试图利用数学软件G A P来辅助近世代数的教学,变革教学内容的呈现方式,使其变得形象直观,达到激发学生的学习兴趣,提高逻辑思维能力,开阔视野的目的.1国内近世代数课程的教学现状近世代数的研究对象是群㊁环㊁域等带有运算的集合,它把集合中运算的共同点抽象出来作为不同的代数结构进行研究,因此近世代数具有高度的抽象性和严密的逻辑性,许多初学者感到这门课程生涩难懂,不具体直观.在我国,一般的近世代数教学都是教师按照教学大纲的要求,对定义㊁引理㊁定理等在课堂上给学生进行理论上的推导和计算,直到学生们理解并记忆下来为止.这种以教师讲授为主的教学方式在传授系统知识时具有比较好的效果,但过多偏重理论体系的完整性,过多强调证明和推理,忽视了学生作为主体的地位,不利于培养学生主动获取知识的能力,使学生缺乏创新能力.因此,学生很难具备用近世代数的基本思想和理论来处理或解决具体问题的能力,从而直接影响了后继课程学习的热情[1-4].随着计算机技术的迅速发展,利用计算机软件(如M a t l a b,M a t h e m a t i c a,M a p l e等)来辅助各门课程的教学已经非常普遍(参见文献[5-9]).然而,这些软件很少被应用到近世代数的教学中.究其原因主要是这门课程研究的对象较抽象,在一般的软件上难以实现.2G A P介绍G A P(G r o u p s,A l g o r i t h m s a n dP r o g r a mm i n g)和M a g m a的出现可以说是一场革命,它们实现了抽象对象的计算机化.由于M a g m a的使用需要收取一定的费用,不是很普及,所以我们这里只介绍可以从其官方网站免费下载的G A P.G A P于1986年由德国RWT H A a c h e n大学的研究团队开发,它是计算离散代数领域内的一个优秀系统,主要专注于计算群论的计算.G A P提供了上千个由G A P语言写成的用于算法①收稿日期:20111001Copyright©博看网. All Rights Reserved.基金项目:中央基本科研业务费(X D J K2012C039);西南大学博士科研启动基金(S WU111052).作者简介:刘建军(1981),男,山西吕梁人,博士,讲师,主要从事有限群论的研究.补充方面的函数库,以及已经计算好的庞大的代数对象数据库.G A P 的软件系统是可扩展的,它支持面向对象的编程,用户可以使用G A P 语言编写需要的程序和建立自己的函数库.G A P 可用于群及其表示㊁环㊁向量空间㊁代数㊁组合结构等的研究.它还有如下的特点:拥有多种数学运算功能,内存自动管理,对一些关键的抽象对象加入了嵌入式数据类型,有灵活的菜单管理和完整的记录保存.国内已有很多学者在群论的研究中用到了G A P (参见文献[10-11]).因此,G A P 比较适合应用于近世代数的教学当中.3 G A P 在近世代数教学中的一些应用我们可以借助G A P 对近世代数的相关内容作较为直观的认识.另外,G A P 给出的结果反过来可以指导我们研究的方向,并能极大地减轻计算负担.下面我们介绍G A P 在近世代数教学中的一些应用.3.1 将繁琐证明清晰化近世代数的很多证明非常繁琐和抽象,可以用G A P 来具体说明,使得某些证明更加清晰和顺理成章.例1 证明凡200阶群都不是单群[1].解析 主要应用S y l o w 第三定理来证明.S y l o w 定理是近世代数教学中的一个难点.学生要理解它的具体用法比较难.课本给出的证明是:判断阶为200的群必然有正规子群.在这个过程中会有阶的分解㊁同余等知识的灵活应用,理解起来有一定的困难,而G A P 的使用可以很好地解决这个问题,降低学生理解的难度.下面我们用G A P 来具体说明.输入程序:g a p >A :=A l l S m a l l G r o u p s (S i z e ,200,I s S i m p l e ,t r u e ); #直接寻找200阶的单群输出:[]这表明不存在这样的群.如果我们想了解更多200阶群的信息,也可以将所有200阶群的结构输出,只需输入命令:g a p >B :=A l l S m a l l G r o u p s (200);L i s t (B ,S t r u c t u r e D e s c r i p t i o n );3.2 将复杂计算简单化几乎所有的数学软件都有非常好的计算功能,G A P 也不例外.在近世代数中出现的某些计算,使用G A P 之后会变得非常简单.3.2.1 共轭类中的G A P 计算由于有限群G 中与它的元素a 共轭的元素个数为|G ʒC G (a )|,因此要计算某个群中元素的共轭类需要计算它的中心化子.当群G 比较大的时候这个计算量将非常的大,但是用G A P 计算就显得非常容易了.例2 计算5次对称群S 5的所有共轭类的代表元及每类所含元素的个数.输入程序:g a p >G :=S y mm e t r i c G r o u p (5); #5次对称群g a p >c l :=C o n j u g a c y C l a s s e s (G );#S 5的共轭类输出:[()ɡG ,(1,2)ɡG ,(1,2)(3,4)ɡG ,(1,2,3)ɡG ,(1,2,3)(4,5)ɡG ,(1,2,3,4)ɡG ,(1,2,3,4,5)ɡG ]g a p >L i s t (c l ,R e p r e s e n t a t i v e );#共轭类代表元输出:[(),(1,2),(1,2)(3,4),(1,2,3),(1,2,3)(4,5),(1,2,3,4),(1,2,3,4,5)]g a p >L i s t (c l ,S i z e );#每个类所含的个数输出:[1,10,15,20,20,30,24]3.2.2 元素相乘及元素统计的G A P 计算例2中的S 5包含有120个元素,若要验证每个元素之间的性质,计算量将比较大.下面的两个例子将更能体现G A P 在计算方面的优势.例3 找一个S 5中的元,与给定的5阶元相乘,得另一个给定的5阶元.输入程序:g a p >G :=S y mm e t r i c G r o u p(5);251西南师范大学学报(自然科学版) h t t p ://x b b jb .s w u .c n 第38卷Copyright ©博看网. All Rights Reserved.g a p >a :=(1,4,3,2,5);b :=(1,2,3)(5,4);g a p >f o r g i nGd o #使用循环语句>i f g *b =a t h e n >P r i n t (g , , );>f i ;>o d ;输出:(1,2,4)(3,5)下面我们介绍如何用G A P 来统计满足某些性质的元素的个数.例4 找某个群的固定阶元并统计个数.输入程序:g a p >G :=G r o u p ((1,2),(1,2,3,4,5,6));g a p >i :=0;A :=[];g a p >f o r a i nGd o >i fO r d e r (a )=2t h e n >A d d (A ,a );>i :=i +1;>f i ;>o d ;g a p >A ;#可以得到群G 的每个2阶元g a p >i ;#群G 的所有2阶元的个数输出:753.3 将抽象结论直观化近世代数中抽象内容多,具体例子少,命题㊁定理多,推理㊁论证各式各样,使得学生较难理解和掌握[12].与抽象的内容相比,学生更易于识记生动㊁形象和有趣的知识和结论.G A P 强大的功能可以做到这一点.例5 4次交错群A 4无6阶子群.解析 在近世代数中这是一个非常基本的结论,常常会在构造反例及基本证明中用到,但是很难让学生有深刻的体会.下面我们用G A P 来具体说明.输入程序:g a p >L o a d P a c k a g e ( s o n a t a );#调用 s o n a t a ,为了使用命令s u b g r o u p s g a p >G :=A l t e r n a t i n g G r o u p (4);#4次交错群g a p >S :=S u b g r o u p s (G );g a p >L i s t (S ,S i z e );#列出所有子群的阶输出:[1,2,2,2,3,3,3,3,4,12]g a p >L i s t (S ,S t r u c t u r e D e s c r i p t i o n );#列出所有子群的结构输出:[ 1 , C 2 , C 2 , C 2 , C 3 , C 3 , C 3 , C 3 , C 2ˑC 2 , A 4 ]其中C 2表示2阶循环群,C 2ˑC 2表示两个2阶循环群的直积.经过软件G A P 的运算之后,4次交错群A 4的所有子群摆在了我们的面前,非常直观.4 小 结从上面的例子可以看到,利用G A P 辅助近世代数教学,可以让抽象的数学理论具体化㊁直观化,复杂的计算简单化.而且这种教学不仅是简单的演示,更大程度上能让学生亲身参与,并培养学生解决实际问题的能力.这在一定程度上实现了从被动接受的学习方式到主动发现和探索的过程,而且能增强数学学习兴趣,提高分析和解决问题的能力,最终达到提高教学质量的目的.351第4期 刘建军:G A P 在近世代数教学中的应用Copyright ©博看网. All Rights Reserved.451西南师范大学学报(自然科学版)h t t p://x b b j b.s w u.c n第38卷G A P作为一个辅助教学工具应用于近世代数教学中,主要功能在于协助教师教学,辅助学生学习.毫无疑问,G A P不能替代逻辑推理,如果一味追求其形象直观这一优势而不考虑其它因素,势必将会淡化主体,影响学习效果.因此,在实践中,教师需要根据每个章节具体的教学内容㊁教学目标以及学生的认知水平来决定是否有必要使用G A P.参考文献:[1]杨子胥.近世代数[M].北京:高等教育出版社,2003.[2]赵建伟,罗敏霞.关于近世代数教学的探讨[J].运城学院学报,2008,26(5):1-2.[3]吕恒,徐海静.关于近世代数中群论学习的探讨[J].西南师范大学学报:自然科学版,2012,37(2):131-133.[4]夏静波,邹庭荣,张四兰. 近世代数 的教学技巧[J].大学数学,2009,25(1):5-8.[5]王小华.基于M a t h e m a t i c a的高等数学教学实践[J].重庆科技学院学报:自然科学版,2010,12(4):14-16.[6]鲍四元,孙洪泉,陈旭元.M a t h e m a t i c a在振动波问题中的应用[J].物理与工程,2010,20(4):22-26.[7]堵秀凤,张水胜,李晓红.在大学数学中开设数学实验的实践研究[J].大学数学,2009,25(3):21-25.[8]戚景南,黄玉明.MA T L A B软件在构建潜流人工湿地水力学模型中的应用[J].西南大学学报:自然科学版,2008,30(5):145-148.[9]宋海珍,卢成,张鸿军.基于M a p l e的理论力学教学实践[J].实验室研究与探索,2011,30(7):11-14.[10]B E D A I W I SA,L I S h a n g-z h i.A n I n v e s t i g a t i o no nt h eP a r a b o l i cS u b g r o u p o f t h eG e n e r a lL i n e a rG r o u p sb y G A P[J].C h i n e s eQ u a r t e r l y J o u r n a l o fM a t h,2004,19(3):221-231.[11]B E D A I W I SA,李尚志.某些子群的正则结构的研究及其诱导特征标的计算[J].中国科学技术大学学报,2006,36(7):704-711.[12]李桃生.怎样克服近世代数学习中的困难[J].高等函授学报,1995(5):9-16.O nE x p l o r a t i o n i nT e a c h i n g A b s t r a c t A l g e b r a A s s i s t e dw i t hG A PL I UJ i a n-j u nS c h o o l o fM a t h e m a t i c sa n dS t a t i s t i c s,S o u t h w e s t U n i v e r s i t y,C h o n g q i n g400715,C h i n aA b s t r a c t:I n t h i s p a p e r,G A P,am a t h e m a t i c a l s o f t w a r e,i s i n t r o d u c e d f o r t e a c h i n g o f a b s t r a c t a l g e b r a.B y m e a n so fG A P,t e d i o u s p r o o fw i l l b e c o m e c l e a r,c o m p l e x c a l c u l a t i o n s s i m p l e a n d a b s t r a c t c o n c l u s i o n s i n t u-i t i v e.I t i s g e n e r a l l y b e l i e v e d t h a t t h eu s e o fG A Pw i l l i m p r o v e t h e q u a l i t y o f a b s t r a c t a l g e b r a t e a c h i n g. K e y w o r d s:a b s t r a c t a l g e b r a;t e a c h i n g;m a t h e m a t i c a l s o f t w a r e责任编辑廖坤Copyright©博看网. All Rights Reserved.。
本科毕业论文题目群论四大定理的探讨专业数学与应用数学作者姓名庄静学号**********单位聊城大学数学科学学院指导教师李令强2014 年 05 月教务处编原创性声明本人郑重声明:所提交的学位论文是本人在导师指导下,独立进行研究取得的成果。
除文中已经引用的内容外,论文中不包含其他人已经发表或撰写过的研究成果,也不包含为获得聊城大学或其他教育机构的学位证书而使用过的材料。
对本文的研究作出重要贡献的个人和集体,均在文中以明确的方式表明。
本人承担本声明的相应责任。
学位论文作者签名:日期:指导教师签名:日期:目录1.引言 (1)2.群同态与同构基本定理 (2)2.1 群同态与同构 (2)2.2 群同态基本定理 (6)2.3 群同构基本定理 (7)2.4 群同态与同构的意义 (10)3.有限群理论重要定理 (11)3.1 Sylow定理 (11)3.2 有限交换群的基本定理 (16)4.定理的应用 (22)4.1 群同态与同构定理的应用 (22)4.2 Sylow定理和有限交换群基本定理的应用 (23)5.小结 (27)6.参考文献 (28)7.致谢 (29)摘要在了解有关群论的基本定义的基础上把握群论的四大定理:群同态基本定理;群同构基本定理;Sylow定理;有限交换群基本定理,理解并掌握定理的深刻含义.群同态基本定理与群同构基本定理主要探讨的是有关群的结构、数量、联系的问题,在这两个定理的研究中,是从已知的群出发,来研究与之相关联的群,一步一步慢慢引申,更进一步来研究各类群之间的联系,把成千上万的,看起来杂乱无章的群进行归类,再研究每一类群的内在结构.有限群又是群论中非常值得研究的一类群,先通过介绍Sylow引理,循序渐进的探讨了Sylow三大定理的逻辑证明过程.紧接着又进一步探讨了另一种特殊的而又重要的群——有限交换群,探究这一类群是为了对群进行分解,分解成我们所熟知的一些群类,便于研究与应用.在最后论述这四大定理的一些应用,从而说明其重要性.关键词:群;群同态基本定理;群同构基本定理;Sylow定理;有限交换群基本定理.AbstractOn the basis of the understanding about the basic definition of group theory to grasp the four theorems of group theory: Group; Group of homomorphism fundamental theorem; The basic theorem; The Sylow theorem; The basic theorem of finite Abelian group, understand the profound meaning and master theorem. Group of homomorphism fundamental theorem and the basic theorem mainly discussed about the group structure, the number and contact problem.To solve this problem is to rely on basic theorem group homomorphism and isomorphism theorems, in the study of these two theorems, starting from the known group, to the research of the group, step by step slowly extended, further to study the connection between the various groups, tens of thousands of, seem to be the group are classified, then study the internal structure each group. A finite group is a very worthy of study groups in group theory. This paper first introduce Sylow lemma theorem of Sylow, step by step on three theorems of the logic process of proof. Followed by a further discussion group important another special and -- finite abelian groups, study of this group is to decompose into the group, we know some class of groups, for research and application. In the last of the four theorems are discussed some applications ,to show its importance.Key words: Group; Group of homomorphism fundamental theorem; The basic theorem; The Sylow theorem; The basic theorem of finite Abelian group.1.引言群论有着悠久的历史,现在已发展成一门范围广泛和内容十分丰富的数学分支,在近世代数和整个数学中占有重要地位.对于映射的同态与同构已有所了解,而近世代数很少考察一般的映射,近世代数的研究对象是代数系统.其中群是最简单的代数系统,因为它在一个集合中只定义了一种代数运算.群的同构与同态在研究中有着它的重要作用,随着现代数学的高度抽象化和广泛应用,群的同构和同态的研究也越来越受到人们的重视.所以本文将对群论中的同态与同构进行一定的深入研究,了解其中的含义及内在意义.群的同态与同构都是研究群与群之间关系的重要手段.同构映射是群之间保持运算的映射,存在同构映射的两个群可以看成同一个群,因为它们有相同的群结构.代数中最基本与最重要的课题就是搞清楚各种代数体系在同构意义下的分类.而同态映射只要求保持运算,显然它比同构映射更灵活,它能研究两个不同构的群之间的联系.特别重要的是几个同态定理,如同态基本定理告诉我们,两个群在满同态的条件下蕴含着一个群同构.在处理一些同构问题时,我们也常常反过用这个定理,也就是说先构造出满同态.保持运算的映射既然能研究两个代数体系之间的一些关系,那么对于复杂一些的代数体系我们就可以用一些简单的代数系统去研究它们.有一种特殊的群——有限群,是值得我们深入研究的,这就要求我们必须认真把握与其有关的两大定理.2.群同态与同构基本定理2.1 群同态与同构定义:如果G 与F 是两个群,如果有一个G 到F 的映射Φ保持运算,即 )()()(b a ab ΦΦ=Φ ),(G b a ∈∀则称Φ为群G 与群F 的一个同态映射.当Φ又是满射时,则称群G 与F 同态,并表示为G ∽F .当Φ是一个双射时,称Φ为群G 到群F 的一个同构映射.如果群G 到群F 存在同构映射,就称群G 与群F 同构,记为G ≌F .群G 到自身的同态映射与同构映射,分别称为群G 的自同态映射和自同构映射,简称为群G 的自同态和自同构.注意:⑴ 同态具有方向性,即G 与F 同态,不一定G 与F 同态;⑵ 显然只含有恒元的群与任何群同态[]1.(映射规则取为乘群元素的逆一般不考虑这种同态)同态是一种等价关系①.它虽是满映射,但并不是一一映射,即F 的一个元素可对应着G 的多个元素.性质1 设G 是一个群,G 是一个有代数运算(也称为乘法)的集合.如果G 满同态于G ,则G 也是一个群.证明 因为G ∽G ,G 是群,其乘法满足结合律,所以G 的乘法也满足结合①等价关系的定义:集合M 的一个关系R 满足以下条件: ⑴. 对M 中任意元素a 都有aRa ; (反身性)⑵. 如果,aRb 必有bRa ; (对称性)⑶. 如果bRc aRb ,,必有aRc . (传递性)律.设e 是群G 的单位元,a 是G 的任一元素,又设Φ是G 到G 的满同态,且在Φ之下 ,,a a e e →→于是 a e ea →.但是,a ea =故a a e =.即e 是G 的单位元.又设 11--→a a则 a a a a 11--→但是,1e a a =-故e a a =-1.即1-a 是a 的单位元. 因此G 也是一个群.应注意性质1,如果集合G 与G 各有一个代数运算,且G ∽G ,则当G 为群时,G 不一定是群.而且性质1的意义在于,要验证一个集合G 对所指的代数运算作成群,可找一个已知群,并通过同态来实现.性质2 设Φ是群G 到群F 的一个同态映射(不一定是满射).则群G 的单位元的像是群F 的单位元,G 的元素a 的逆元的像是a 的像的逆元.即11--=a a 或 ()()11--Φ=Φa a 例1 令{=G 全体正负奇数},代数运算为数的普通乘法;又{}1,1-=G 关于数的普通乘法作成群,令 :Φ正奇数1→,负奇数1-→.则易知Φ是G 到G 的一个同态满射,故G ∽G .G 是群,但G 却不是群.例2 证明:{}3,2,1,0=G 对代数运算r b a = (r 为b a +用4除所得余数)作成一个群.证明 令Z 是整数加群,则易知':x x →Φ )(Z x ∈∀是Z 到G 得一个同态满射,其中'x 为x 整数用4除所得余数.由于Z 是群,故由性质1知,G 也是群. 这样在证明G 是一个群时,可以减少一些麻烦的验算过程.性质3 设Φ是群G 到G 的一个同态映射(不一定是满射),则⑴ 当H ≤G ①时,有()G H ≤Φ,且H ∽()H Φ;⑵ 当G H ≤时,有()G H ≤Φ-1,,且在Φ之下诱导出()H 1-Φ到H 的一个同态映射.证明 ⑴ 任取()H b a Φ∈,,且在Φ之下令 b b a a →→,,其中H b a ∈,.由于G H ≤,故H ab ∈,且 b a ab →. 从而()H b a Φ∈,即()H Φ对G 的乘法封闭,且H ∽()H Φ但H 是子集,从而()H Φ也是群且是G 的子群.⑵ 当G H ≤时,由于()H 1-Φ显然非空,任取()H b a 1,-Φ∈,且在Φ之下令 b b a a →→,.则11--→b a ab ,①符号“G H ≤”表示群H 是群G 的子群,即H 是G 的非空子集,如果H 本身对G 的乘法也做成一个群,则称H 为群G 的子群.其中H b a ∈,,而G H ≤,故H b a ∈-1,从而()H ab 11--Φ∈. 即()G H ≤Φ-1,且显然Φ诱导出()H 1-Φ到H 的一个同态映射.性质4 群G 到群G 的同态映射Φ是单射[]2的充要条件是,群G 的单位元e 的逆像只有e .证明 必要性显然,下证充分性.设Φ是群G 到群G 的任一同态映射,且在Φ之下e 的逆像只有e ,又设在Φ之下 b b a a →→,,当b a ≠时,必有b a ≠:因若b a =,则由于 e b a ab =→--11,故b a e ab ==-,1,矛盾.因此,Φ是单射.性质5 设N 是群G 的任一正规子群①,则G ∽N G ,即任何群都与其商群②同态.证明 在群G 与商群N G 之间建立以下映射:)(:G a aN a ∈∀→τ, 这显然是G 到N G 的一个满射.① 正规子群的定义:设N 是群G 的一个子群,若果对G 中每个元素a 都有 Na aN =,即N aNa=-1,则称N 是群G 的一个正规子群(或不变子群). ② 商群的定义:将正规子群H 及其全部陪集作为元素,以陪集乘法定义为群乘法而形成的新群称之G 相对正规子群H 的商群,通常记为H G /.商群的单位元素为H ,各个陪集是商群的其它元素.又任取G b a ∈,,则有))(()(bN aN N ab ab =→,即τ是G 到N G 的同态满射,故G ∽N G .今后称群G 到商群N G 的这个同态满射τ为G 到商群N G 的自然同态.2.2 群同态基本定理群同态基本定理: 设Φ是群G 到群G 的一个同态满射,则Φ=Ker N 是G 的正规子群,且 G N G ≅/.证明 首先,由于G 的单位元是G 的一个正规子群,由此可知,其所有逆象的集合,即ΦΦ=Ker N 的核也是G 的一个正规子群.其次,设 a a →Φ: ),(G a G a ∈∈ 则在G 与N G /间建立以下映射: )(:a a aN Φ=→σ⑴ 设bN aN =,则N b a ∈-1.于是 b a e b a b a ===--,11即N G /中的每个陪集在σ之下在G 中只有一个象,因此,σ确N G /为到G 的一个映射;⑵ 任取G a ∈,则因Φ是满射,故有G a ∈使a a =Φ)(.从而在σ之下元素a 在N G /中有逆象aN ,即σ为到G 的一个满射; ⑶ 又若bN aN ≠,则N b a ∉-1,从而b a e b a ≠≠-,1,即σ为N G /到G 的一个单射.因此,σ是N G /到G 的一个双射.又由于有 b a ab abN bN aN =→=))((故σ为同构映射,从而G N G ≅/.应注意,本定理中的Φ是一个同态满射.如果Φ只是一个同态映射(不一定是满射),虽然也有ΦKer 是群G 的正规子群,但最后结论应改为 ΦKer G ≌()Φ=ΦIm G .由上一节的性质5和群同态基本定理知:G G −→−Φ,)(a a a Φ=→;又G N G G −→−−→−στ,)(a a aN a Φ=→→,其中Φ=Ker N .因此,στ=Φ.上一节的性质5表明,任何群都同它的商群同态[]3;本节群同态基本定理表明,如果一个群G 同另一个群G 同态,则这个群G 在同构意义下是G 的一个商群.因此,在同构意义下,两个的意思是:每个群能而且只能同它的商群同态.这是群论中最重要的结论之一,在很多场合下,都要经常用到这个事实. 另外,由群同态基本定理的证明知,若G ∽G ,且同态核①是N ,则G 中每个元素的全体逆象恰好是关于N 的一个陪集.G 中元素与陪集的这种对应不仅是一个双射,而且是一个同构映射.2.3 群同构基本定理这部分我们将介绍三个定理,这三个定理在群论的研究中都很重要,它们的证明有多种方法,其中有的与群同态基本定理有直接的关系.① 设Φ是群G 到群F的一个同态映射,G 的单位元在Φ之下所有逆像作成的集合,叫作Φ的核,记为ΦKer .定理 1(第一同构定理[]4) 设Φ是群G 到群'G 的一个同态满射,又N Ker ⊆Φ是G 的正规子群,)(N N Φ=,则N G /≅N G /证明 令τ:N G G →()N a a Φ→ (G a ∈∀)⑴ τ是映射:设b a =(G b a ∈,),因为Φ是同态映射,故()()b a Φ=Φ从而()()N b N a Φ=Φ,即τ是G 到N G 的映射.⑵ τ是满射:任取N G N a ∈(G a ∈),则因Φ是满同态,故有G a ∈使()a a =Φ从而在τ之下N a 有逆像a ,即τ是满射.⑶ τ保持运算:在τ之下有()()()()()N b N a N b a N ab ab b a Φ⋅Φ=ΦΦ=Φ→=⋅,故τ为G 到N G 的同态满射.又因为τKer ={G a ∈|()}N a =τ={G a ∈|()}N N a =Φ ={G a ∈|()}N a ∈Φ={G a ∈|()}N a 1-Φ∈={G a ∈|()}N ΦΦ-1={G a ∈|}N a ∈=N故由群同态基本定理知 N G ≌N G .以上的同构当然也可以写成 N G ≌()()N G ΦΦ但应注意,定理1中的Φ必须是满同态而且N 必须是G 的包含核Φker 的正规子群. 另外,此定理的证明也可以是找一个τ是商群N G 到N G 的一个同构映射,依次证明τ是映射,是单射,满射且保持运算.定理2(第二同构定理) 设G 是群,又G H ≤,N 是G 的正规子群,则N H 是H 的正规子群,并且)/(/N H H N HN ≅证明 因为G H ≤,N 是G 的正规子群,故G HN ≤,且N 是HN 的正规子群,又易知xN x →Φ: )(H x ∈∀是子群H 到商群N HN /的同态满射,且核为N H ,故由群同态基本定理知: N H 是H 的正规子群且 N H H ≌N HN从而结论成立.定理3(第三同构定理[]5) 设G 是群,又N 是G 的正规子群,N G H /≤.则 ⑴ 存在G 的惟一子群H ⊇N ,且N H H /=;⑵ 又当H 是N G /的正规子群时,有惟一的H 是G 的正规子群使 NH H /=且 N H N G H G ///≅ 证明 ⑴ 设在自然同态G :σ∽N G / 之下H 的逆象为H ,则G H H N ≤=⊆-)(1σ,且因σ是满同态,故可知 []H H H ==-)()(1σσσ但又知,N H H /)(=σ故 N H H /=由同态基本定理的定理,由于G 中含N 的不同子群其象也不同,故可知这样的H 也是惟一的.⑵ 当H 是N G /的正规子群时,由2.3.1中的定理2可知,G 有惟一正规子群N H ⊇使N H H /=,又由于在自然同态G ∽N G /之下有N H ⊇,且H 的象是N H /,故由第一同构定理知, N H H G H G ///≅此定理表明,商群N G /的子群仍为商群,且呈N H /形,其中H 是G 的含N 的子群;又H 是G 的正规子群当且仅当N H /是N G /的正规子群.通过群同构三大定理的证明过程我们看出,群同态基本定理是群同构三大定理的基础,通过群同态基本定理只要找准同态核就能很容易的找出一对具有同构关系的群.2.4 群同态与同构的意义由群同态基本定理知,在同构的意义下,任何群都能而且只能与其商群同态.所以要特别强调一下群同构的意义[]6.设}{ ,,,c b a M =是一个有代数运算 的群,而M {} ,,,c b a =是另一个有代数运算 的群.如果M ≌M ,且在这个同构之下,c c b b a a →→→,,…则根据同构的定义,c b a = 当且仅当c b a = .这就是说,除去元素本身的性质和代数运算名称与所用的符号不同之外,从运算的性质看,M 与M 并没有任何实质性的差别.更具体的说,就是由M 仅根据代数运算所推演出来的一切性质和结论.都可以自动地全部转移到与M 同构的一切代数系统上去.因此,在近世代数中常把同构的代数系统等同起来,甚至有时候不加区分.这正表现出这门学科所研究的问题的实质所在.3.有限群理论重要定理有限群是代数学的一个重要分支,它在群的理论中占有非常重要的地位.有限群之所以重要,不仅因为这种理论对数学本身特别是群产生重要影响,而且在实际应用中,例如在理论物理、量子力学、量子化学以及结晶学等方面都有广泛应用,所以本节将集中介绍有限群理论中两个最基本最重要的内容,即Sylow 定理和有限交换群①基本定理.3.1 Sylow 定理为了证明Sylow 定理,下面先介绍重陪集概念及其简单性质.定义1 设K H ,为群G (不一定有限)的两个子集,又令G x ∈,则称G 的子集{hxk HxK =|}K k H h ∈∈,为群G 关于子群K H ,的重陪集.简称HxH 为关于子群H 的一个重陪集.引理1 对群G 的任二重陪集Hxk 与HyK ,若≠HyK HxK φ,则必有HyK HxK =.证明 由于≠HyK HxK φ,故有元素∈a HyK HxK .令()K k H h yk h xk h a i i ∈∈==,2211则HyK k yk h h x ∈=--112211.从而对任意K k H h ∈∈,,有HyK k k k y h hh hxk ∈=--)()(112211①如果对群G 中任意二元素b a ,均有a b b a =,即群的代数运算满足交换律,则称G 为交换群.而且群G 中只含有有限个元素,则称群G 为有限交换群.因此,HyK HxK ⊆.同理有HxK HyK ⊆.故HyK HxK =.下面的引理回答了包含在重陪集HxK 内的H 右陪集有多少个. 引理2 在群G 的重陪集HxK 中,含子群H 的右陪集的个数等于(H :K Hx x 1- );含子群K 的左陪集的个数等于(H :1-xKx H ).证明 设{Hxk S =|}K k ∈, {k Hx x K T )(1-= |}K k ∈; 并令)()(:1K k k Hx x K Hxk ∈∀→Φ-如果),(2121K k k Hxk Hxk ∈=,则Hx x k k H x k xk 11211121,----∈∈⋅,从而Hx x K k k 1121--∈ .因此 2111)()(k Hx x K k Hx x K --= ,这说明Φ是S 到T 的一个映射.类似证明,可知Φ是单射,又显然Φ是满射.因此Φ是S 到T 的一个双射.同理可证引理中的另一结论.引理3[]7 设H Hx H Hx H Hx G r 21=是有限群G 关于子群H 的重陪集分解,则对任意)(H N Ha ⊂,都有某个j Hx 使)1(r j Hx Ha j ≤≤=.证明 因为任何右陪集必含于某个重陪集之中,故不妨设 H Hx Ha j ⊆,r j ≤≤1,于是H Hx a j ∈.令),(2121H h h h x h a j ∈=,则1211--=ah h x j .据此,并根据)(H N Ha a ⊆∈与Ha aH =便可得Ha Hx j =,即j Hx Ha =.定理1( 第一Sylow 定理——存在性和包含性[]8 ) 设G 是有限群,且m p G s =,其中p 是素数,s 是正整数,p 不整除m .则对G 的每个)1,,1,0(-=s i p i 阶子群H ,总存在G 的1+i p 阶子群K ,使H 是K 的正规子群.证明 设G 关于)0(s i p i <≤阶子群H 的重陪集分解为 H Hx H Hx H Hx G r 21=, ⑴ 且H Hx j 是由j t 个H 的右陪集所组成.于是由引理2及⑴知:.,,2,1),:(1r j Hx x H H t j j j ==-⑵r t t t H G +++= 21):( ⑶ 又因为)0(s i p G i <≤=,故):():(H G p H G H m p G i s ===,从而p |):(H G ,于是分别由⑶及⑵得p |r t t t +++ 21,j t |r j p i,,2,1 = ⑷ 下证:j t =1 )(H N Hx j ⊆⇔.1) 设j t =1 .由⑵得1=):(1j j Hx x H H -,因此j j j j Hx x Hx x H H 11--⊆= . 但是j j Hx x H 1-=,故j j Hx x H 1-=,)(,H N x Hx H x j j j ⊆=.从而)(H N Hx j ⊆2)设)(H N Hx j ⊆,由于j j Hx x ∈,故H Hx x Hx H x j j j j ==-1,.从而1):(1==-j j j Hx x H H t .由引理3,正规化子集)(H N 内的右陪集均呈j Hx 形,故以上说明:在r t t t ,,21中1=j t 的个数就是)(H N 中右陪集的个数,也就是指数):)((H H N ,从而由⑷知:p |):)((H H N 或 p |H H N )(. 于是商群H H N )(有p 阶子群.又由群的第三同构定理,此p 阶子群设为H K (H 为K 的正规子群且)(H N K ≤),从而H 为K 的正规子群且1+=⋅=⋅=i i p p p H H K K .于是当0=i 时10=p 阶子群(即单位元群)总存在,从而以上论证表明s p p p ,,,2 阶子群总是存在的,且其中的i p 还是1+i p 阶子群的正规子群.特别其中的s p 阶子群就是G 的Sylow p -子群.定理2(第二Sylow 定理——共轭性[]9) 设G 是有限群,p 是素数.则G 的所有Sylow p -子群恰好是群G 的一个共轭子群类.证明 设,m p G s =p 不整除m .显然,与Sylow p -子群共轭的子群都是Sylow p -子群.下面进一步证明:G 的任意二Sylow p -子群必共轭.设K H ,是群G 的任二Sylow p -子群,从而s p K H ==.根据引理1,设G 关于K H ,的重陪集分解为K Hx K Hx K Hx G r 21=,且重陪集中H 的右陪集的个数为r i Hx x K K t i i i ,,2,1):(1 ==-. 由此得r t t t H G +++= 21):(. ⑴ 由于):(H G H G =和s p H =,故p 不整除):(H G ;又因为每个i t 都是p 的非负整数次幂,故由⑴知,至少有一个1=i t .例如不妨设11=t ,即1):(111=-Hx x K K ,从而111111Hx x Hx x K K --⊆= .但是s p Hx x K ==-111,故 111Hx x K -=,即H 与K 共轭.因此,G 的全体Sylow p -子群恰好是一个共轭子群类.例3 求出三元对称群3S 的所有Sylow p -子群.解 由于3263⋅==S ,故当素数3,2≠p 时,3S 的Sylow p -子群就是3S 的10=p 阶子群,即{})1(.3S 的Sylow2-子群(p =2)有3个,即{}{}{})23(),1(,)13(),1(,)12(),1(321===H H H .它们是3S 的一个共轭子群类.最后,3S 的Sylow3-子群(p =3)只有一个,即{})132(),123(),1(4=H .它当然是3S 的一个正规子群.定理3(第三Sylow 定理——计数定理[]10) 设G 是有限群,且m p G s =,其中p 是素数,p 不整除m .若的Sylow p -子群共有k 个,则k |G 且p |1-k ,即)(mod 1p k ≡.证明 首先,设H 是群G 的一个Sylow p -子群,则))(:(H N G k =.从而k |G .其次,根据引理1,设H Hx H Hx H Hx G r 21=是G 关于H 的重陪集分解,并设):(1i i i Hx x H H t -= ),,2,1(r i =是H Hx i 中含H 的右陪集的个数,则r t t t H G +++= 21):( ⑴ r t t t ,,,21 中共有):)((H H N 个是1,而其余的i t 都是p 的正整数次幂.于是由⑴知: p |):)(():(H H N H G - ⑵ 但是):)(():)(())(:():(H H N k H H N H N G H G =⋅=, ⑶ 故由⑵知,p 整除):)(():)((H H N H H N k -,即p |)1():)((-⋅k H H N ⑷ 又因为现在的H 是群G 的一个Sylow p -子群,故p 不整除):(H G ,从而由⑶知, p 不整除):)((H H N ,再由⑷得p |1-k ,即)(mod 1p k ≡.本节所论述的Sylow 定理是有限群中非常重要的定理,三个定理都与素数p 有关,三个定理是彼此相关的.对于任意的素数p ,首先论述G 的Sylow p -子群是否存在?接着的定理回答了,如果存在,有多少个及它们之间有什么样的关系?3.2 有限交换群的基本定理上一节利用Sylow 定理证明了有限交换群可以分解成它的Sylow 子群的直积.但Sylow 子群不一定是循环群,也不一定是不可分解群,所以本节将进一步加细这种分解,从而得到有限交换群的基本定理.为证明有限交换群的基本定理,先证明以下引理1 设a 是群G 的一个有限阶元素,且G H ≤.又设k 是使H a k ∈得最小正整数,则1) 当H a s ∈时,k |s ;2) 当e H a ≠ 时,a k <.证明 1)令k r r kq s <≤+=0,. 则由于G H ≤,故H a a a a a a q k s r r kq s ∈⋅=⋅=-)(,再由k 最小性知,0=r .因此,k |s .2)因为e H a ≠ ,故有e b H a b ≠∈, .令H a b s ∈=. 因为H e a a∈=,故由k 的最小性知,a k ≤. 如果a k =,则由1)知,a |s .于是e a b s ==,这与e b ≠矛盾.因此,a k ≤.定理1(有限交换群基本定理[]11 ) 任何阶大于1的有限交换群G 都可以唯一的分解为素幂阶循环群(从而为不可分解群)的直积:n a a a G ⨯⨯⨯= 21, 其中i a 是i a i p (i p 为素数,n i ,,2,1 =且0>i a )阶循环群.我们称每个素数幂i a i p (n i ,,2,1 =)为G 的初等因子,而称其全体{}n a n a a p p p ,,2121为群G 的初等因子组. 证明 由于阶大于1的有限交换群都可以唯一的分解为其Sylow 子群的直积,故只需假设G 是素幂阶有限交换群即可.因此,设a p G =, p 是素数, a 是正整数.1)存在性.设n a a a G ,,,21 =,且n a a a ,,,21 是G 的使n a a a +++ 21最小的一组n 元生成系.即对G 的任一n 元生成系n x x x ,,,21 均有n a a a +++ 21≤n x x x +++ 21.下证n a a a G ⨯⨯⨯= 21. ⑴ 为此,令n t t i a a a a H 111+-=, n t ,,2,1 =因此,要证⑴成立显然只需证明:n t eH a t t ,,2,1 ==. 设若不然,例如不防设r i eH a i i ,,2,1 =≠,n r t e H a j j ,,1 +==,其中1≥r .现令i k 是使),,2,1(r i H a i k i i =∈得最小正整数,且不妨设),,,m in(211r k k k k =. 则由于i a i H e a i ∈=,故由引理,i k |i a .但是,a p G =,故每个i a (从而每个i k )都是p 的方幂.于是1k |i k r i ,,2,1 =. ⑵特别地,由引理还可知:11a k < ⑶ 再由于11k a n a a a H 321=∈,故可令n r r s n s r s r s s s a a a a a a 13211321++=. ⑷ 但是∈j s j a n r j e H a j j ,,1,+==故n r j e a j s j ,,1, +==.于是由⑷知:r s r s s k a a a a 321321=. ⑸由此等式又可知i s i H a i ∈,从而再由引理,i k |i s .再由⑵知,1k |i s (r i ,,2,1 =).令r i q k s i i ,,2,1,1 == ⑹并且,令r q r q a a a b --= 2211. ⑺ 则由此可知r q r q a a b a 2211=.从而n a a b G ,,,21 =,即n a a b ,,,21 也是群G 的一组n 元生成系.然而由⑺以及⑸、 ⑹可知e a a a b r q k r q k k k ==--12111211 , 于是由⑶知,111a k b <≤.从而n a a b +++ 21<n a a a +++ 21, 这与n a a a +++ 21的最小性矛盾,所以⑴成立.2)唯一性.设r a a a G ⨯⨯⨯= 21s b b ⨯⨯⨯= 21⑻是G 的两种这样的分解,且其初等因子组分别为:{}r m m m ,,,21 , {}s n n n ,,,21 ,其中每个i m 和每个j n ()s j r i ,,2,1;,,2,1 ==都是p 的方幂.不妨假定r m m m ≥≥≥ 21,s n n n ≥≥≥ 21.若s r ≠且不妨设s r <.① 若r r n m n m == ,11,则由⑻知,G 的阶按第一种分解为=r m m m 21s n n n 21,而按第二种分解又为⋅r n n n 21s r n n 1+,这显然是不可能的.② 若1111,--==t t n m n m ,但t t n m >.则令{}G x x H t n ∈=,并由此容易知道G H ≤,且由⑻有t t t t n s n n r n b b a a H ⨯⨯=⨯⨯= 11. 因为i i m a =,故()r i m n m a i t i n i t ,,2,1,, ==. 但因i m 与j n 都是p 的方幂,故),2,1(t i m n i t =.从而H 的阶按第一种分解为正整数),(,,),(,,,,,11121r t r t t t t t t t t t m n m m n m n m n m n m n m ++-, 之积.同理,H 的阶按第二种分解又为正整数1,,1,,,,121 tt t t n n n n n n - 之积.显然也是不可能的.因此,由①与②可知:s r =且i i n m =(r i ,,2,1 =),从而i a ≌i .亦即G 的两种分解的初等因子组相同.应注意,如果有限交换群G 的初等因子组为{}n k n k k p p p ,,2121,则其中的素数n p p p ,,,21 不一定是互异的,甚至也可以是完全相同的.另外,在G 的两种这样的分解中,如果i i b a =,则只能肯定i a ≌i b ,但不一定有 i a =i b .由定理1知,一个有限交换群完全由其初等因子组所决定.定理2 两个阶大于1的有限交换群同构的充要条件是,二者有相同的初等因子组.由前面的讨论可知,循环群是完全研究清楚了的一个群类.现在由定理1与定理2可知,有限交换群也是完全研究清楚的另一个重要群类.这两类群在群论的整个研究中占重要的地位并起着基本的作用.另外,由本节的讨论我们可知,有限交换群的初等因子的概念和理论,完全类似于高等代数中 -矩阵的初等因子的概念和理论.所以可以进行类比的理解学习.4.定理的应用4.1 群同态与同构定理的应用研究各种代数体系就是要解决这些代数体系的下面三个问题:存在问题、数量问题以及结构问题.如果这些问题都得到完满的解答就算达到了目的.研究群时,需要明白共有多少个不同的群,每个群的结构如何,结构相同的群如何对待等.对群进行比较时,采用的主要工具就是同态和同构. 群的同构是一个等价关系,通过同构群的意义我们知道,彼此同构的群具有完全相同的性质.这样通过对群的比较,从而揭示出两个群的某些共同性质,以至区别二者的异同.在群论中,主要研究本质上不同的群之间的关系,所以同构是群论中非常重要的手段.这无疑是在群的研究中具有重要意义的基本观念和基本理论,同时也是实践性很强的基本方法.群同态与同构在群论中最重要的应用就是便于分类[]12,这样可以把千千万万的群归纳为几类,因此只要研究透彻每一类的具有代表性的群后就可以知晓群论中群的特点,便于在各个领域的灵活运用.为了深入研究代数系统的结构,须将同类型的代数系加以比较,以得到这种体系更为本质的性质,使得将这种类型的代数系统分类成为可能,分类的目的就是减少研究对象,即通过对少数特殊代数系的研究,把结果移植到与其有相同或相似结构的对象中.同构与同态就是实现这种分类的主要途径,也是代数学的最基本的研究工具.对于同构的群G 与G ,我们认为G 与G 是代数相同的,因为这是对于近世代数所研究的问题来说,除了符号与名称上的区别之外,二者没有实质的差异.例4 设两个群{}+,Z 和{},Z ,其中:{};,3,2,1,0,1,2,3, ---=Z{}{},10,10,10,10,10,10,10,103210123---=∈=Z n Z n作,:Z Z →ϕn n 10→,(Z n ∈∀)显然,ϕ是双射,且:()()()n m m n n m n m ϕϕϕ⋅=⋅==++101010于是知:Z Z ≅{},Z +与{},Z 这两个群没有实质性的差异,其中一个是另一个以不同符号和名称实现出来的结果.例5(循环群的结构定理]13[)设a G =是由生成元a 生成的循环群,则⑴ 当a =∞时,G ={} ,,,,,,212a a e a a a --=为无限循环群,且与整数加群Z 同构.⑵ 当a =n 时,G =a ={}12,,,,-n a a a e 为n 阶循环群,且与n 次单位根群n U 同构.由于群间的同构关系具有反身性,对称性和传递性,故此定理说明,凡无限循环群都彼此同构,凡有限同阶循环群都彼此同构,而不同的群,由于不能建立双射,当然不能同构.这样,抽象地看,即在同构意义下,循环群只有两种,即整数加群Z 和n 次单位根群n U .所以循环群的存在问题,数量问题,构造问题已彻底解决.4.2 Sylow 定理和有限交换群基本定理的应用作为Sylow 定理的一个应用,我将证明下述定理:定理1 设G 是有限群,pq G =,其中q p ,是互异的素数,且p 不整除1-q ,q 不整除1-p ,则G 是一个循环群①.证明 由第三Sylow 定理,G 的Sylow p -子群的个数k 整除pq G =,且 ① 循环群的定义:如果群G 可以由一个元素a 生成,即,则称G 为由a 生成的一个循环群,并称a 为的G 一个生成元。
sylowp子群的阶数Sylow子群是一类重要的群论概念,被广泛应用于许多数学领域,特别是在群的结构和分类研究中。
本文将对Sylow子群的定义、性质以及与群的阶数的关系进行详细探讨。
首先,我们来给出Sylow子群的定义。
设G是一个有限群,p是一个素数,如果存在一个子群H使得H的阶数是p的幂次,但不是p的更高次幂,那么H被称为G的一个p-Sylow子群。
我们将从几个方面来探讨Sylow子群的性质。
首先,我们来看一个重要的特例——p-子群。
如果一个子群H的阶数是p的幂次,那么H被称为G的一个p-子群。
p-子群是Sylow子群的一个特殊情况,它所包含的元素的数量是有限的,且是p的幂次。
而Sylow子群是一类更为一般化的概念,它的阶数可以是任意的p的幂次。
接下来,我们来探讨Sylow子群的存在性。
古典的Sylow第一定理指出,对于有限群G,如果p是G的一个素因子,那么G必定存在一个p-子群。
换句话说,任何有限群的阶数都可以分解成不同素数幂次的乘积,而且对应于每个素因子,都存在一个相应的p-子群。
根据Sylow子群的存在性,我们可以得到Sylow第二定理和Sylow 第三定理。
Sylow第二定理指出,如果H和K是一个有限群G的两个不同的p-子群,那么H和K存在一个共轭的关系,即存在一个g∈G,使得gHg^(-1)=K。
这个定理说明了任意两个p-子群都存在一个共轭的关系,它们在群G中的位置是等价的。
Sylow第三定理指出,如果H是一个p-子群,那么H的阶数整除G 的阶数,并且H是G的一个Sylow子群当且仅当H是G的唯一的p-子群。
这个定理说明了Sylow子群的唯一性。
也就是说,如果在一个群G 中存在Sylow子群,那么这些Sylow子群之间的阶数必定相等,且任意两个Sylow子群是共轭的。
通过上述定理,我们可以得到Sylow子群的一个重要性质——Sylow子群的阶数与群的阶数的关系。
根据Sylow第三定理,如果H是一个p-子群,那么H的阶数整除G的阶数。
9. 对S4, 验证Sylow定理的正确性.证明:Sylow定理设G是有限群,则:(i)G至少有一个Sylow p子群;(ii)G的任意两个Sylow p子群在G中共轭;(iii)G的任意p子群均含在某一Sylow p子群中;(iv)G的Sylow p子群的个数n p≡1﹙mod p﹚.利用S4验证Sylow定理的正确性,如下:G=S4=﹛﹙1﹚,﹙12﹚,﹙13﹚,﹙14﹚,﹙23﹚,﹙24﹚,﹙34﹚,﹙123﹚,﹙132﹚,﹙124﹚,﹙142﹚,﹙134﹚,﹙143﹚,﹙234﹚,﹙243﹚,﹙12﹚﹙34﹚,﹙13﹚﹙24﹚,﹙14﹚﹙23﹚,﹙1234﹚,﹙1243﹚,﹙1324﹚,﹙1342﹚,﹙1423﹚,﹙1432﹚﹜﹙i﹚︱G︱=24=23×3∴G有Sylow2子群和Sylow3子群Sylow2子群的阶=23=8∴Sylow2子群中只可能有1阶元、2阶元和4阶元﹙结论1﹚首先,Sylow2子群中肯定有单位元﹙1﹚,若Sylow2子群中有形如“﹙12﹚”的元,则最多只能有两个。
否则会出现三阶元,与结论1矛盾。
那么,即使﹙12﹚﹙34﹚,﹙13﹚﹙24﹚,﹙14﹚﹙23﹚都在Sylow2子群中,Sylow2子群中的元至多只有六个。
由此可判断Sylow2子群中一定有四阶元。
不妨设﹙1324﹚在Sylow2子群中,则﹙1324﹚2=﹙12﹚﹙34﹚,﹙1324﹚3=﹙1423﹚,﹙1324﹚4=﹙1﹚也在Sylow2子群中。
此时Sylow2子群中有4个元﹙1﹚、﹙12﹚﹙34﹚、﹙1324﹚、﹙1423﹚若﹙12﹚在Sylow2子群中,则﹙12﹚﹙12﹚﹙34﹚=﹙34﹚,﹙12﹚﹙1324﹚=﹙14﹚﹙23﹚,﹙12﹚﹙1423﹚=﹙13﹚﹙24﹚也在Sylow2子群中若﹙13﹚在Sylow2子群中,则﹙13﹚﹙12﹚﹙34﹚=﹙1432﹚,﹙13﹚﹙1324﹚=﹙124﹚也在Sylow2子群中,与结论1矛盾若﹙14﹚在Sylow2子群中,则﹙14﹚﹙12﹚﹙34﹚=﹙1342﹚,﹙14﹚﹙1324﹚=﹙243﹚也在Sylow2子群中,与结论1矛盾综上可得Sylow2子群H1=﹛﹙1﹚,﹙12﹚﹙34﹚,﹙13﹚﹙24﹚,﹙14﹚﹙23﹚,﹙12﹚,﹙34﹚,﹙1324﹚,﹙1423﹚﹜;同理可得:H2=﹛﹙1﹚,﹙12﹚﹙34﹚,﹙13﹚﹙24﹚,﹙14﹚﹙23﹚,﹙13﹚,﹙24﹚,﹙1234﹚,﹙1432﹚﹜;H3=﹛﹙1﹚,﹙12﹚﹙34﹚,﹙13﹚﹙24﹚,﹙14﹚﹙23﹚,﹙14﹚,﹙23﹚,﹙1243﹚,﹙1342﹚﹜;∴Sylow2子群有H1、 H2和H3Sylow3子群的阶=3∴Sylow3子群中只有1阶元和3阶元首先,Sylow3子群中肯定有单位元﹙1﹚。