二叉树操作设计和实现
- 格式:pdf
- 大小:72.32 KB
- 文档页数:5
一 、实验目的和要求(1)掌握树的相关概念,包括树、节点的度、树的度、分支节点、叶子节点、孩子节点、双亲节 点、树的深度、森林等定义。
(2)掌握树的表示,包括树形表示法、文氏图表示法、凹入表示法和括号表示法等。
(3)掌握二叉树的概念,包括二叉树、满二叉树和完全二叉树的定义。
(4)掌握二叉树的性质。
(5)重点掌握二叉树的存储结构,包括二叉树顺序存储结构和链式存储结构。
(6)重点掌握二叉树的基本运算和各种遍历算法的实现。
(7)掌握线索二叉树的概念和相关算法的实现。
(8)掌握哈夫曼树的定义、哈夫曼树的构造过程和哈夫曼编码的产生方法。
(9)掌握并查集的相关概念和算法。
(10)灵活运用二叉树这种数据结构解决一些综合应用问题。
二、实验内容注:二叉树b 为如图7-123所示的一棵二叉树图7-123+实验7.1 编写一个程序algo7-1.cpp,实现二叉树的各种运算,并在此基础上设计一个程序exp7-1.cpp 完成如下功能:(1)输出二叉树b ;(2)输出H 节点的左、右孩子节点值; (3)输出二叉树b 的深度; (4)输出二叉树b 的宽度; (5)输出二叉树b 的节点个数;(6)输出二叉树b 的叶子节点个数。
实验7.2设计一个程序exp7-2.cpp,实现二叉树的先序遍历、中序遍历和后序遍历和非递归算法, 以及层次变量里的算法。
并对图7-123所示的二叉树b 给出求解结果。
b+ACF GIKL+NM+E+HdJD₄B臣1607-1.CPPif(b?-HULL)re3P4+;Qu[rear]-p-b;Qu[rear].1no=1;while(reart=front){Front++;b=Qu[front]-P;lnum-Qu[front].1no;if(b->Ichildt=NULL)rpar+t;Qu[rear]-p=b->1child;Qu[rear].Ino-lnun+1;if(D->rch11d?=NULL)1/根结点指针入队//根结点的层次编号为1 1/队列不为空1/队头出队1/左孩子入队1/右孩子入队redr+t;qu[rear]-p=b->rchild;Qu[rear].1no-lnun*1;}}nax-0;lnun-1;i-1;uhile(i<=rear){n=0;whdle(i<=rear ge Qu[1].1no==1num)n+t;it+;Inun-Qu[i].1n0;if(n>max)nax=n;}return max;田1607-1.CPPreturn max;}elsereturn o;口×int Modes(BTNode *D) //求二叉树D的结点个数int nun1,nun2;if(b==NULL)returng,else if(b->ichild==NULL&D->rchild==NULL)return 1;else{num1-Hodes(b->Ichild);num2=Nodes(b->rchild);return(num1+nun2+1);LeafNodes(BINode *D) //求二叉树p的叶子结点个数int num1,num2;1f(D==NULL)return 0;else if(b->1chi1d==NULLc& b->rch11d==NULL)return 1;else{num1-LeafModes(b->lchild);num2=LeafNodes(b->rchild);return(nun1+nun2);int程序执行结果如下:xCProrn FlslirosfViu l SudiollyPrjecslro7 LJebuglFoj7 ex<1)输出二叉树:A<B<D,E<H<J,K<L,M<,N>>>>),C<F,G<,I>>)<2)'H’结点:左孩子为J石孩子为K(3)二叉树b的深度:7<4)二叉树b的宽度:4(5)二叉树b的结点个数:14(6)二叉树b的叶子结点个数:6<?>释放二叉树bPress any key to continue实验7 . 2程序exp7-2.cpp设计如下:坠eTPT-2.EPP#include<stdio.h》winclude<malloc.h>deFn Masie 00typde chr ElemTyetypede sruct nde{ElemType data;stuc node *lclldstruct node rchild;》BTHode;extern vod reaeBNodeBTNode extrn void DispBTHode(BTNodeuoid ProrderBTNode *b)if(b?-NULL)- 回1 / 数据元素1 / 指向左孩子1 / 指向右孩子*eb car *str)xb1 / 先序遍历的递归算法1 / 访问根结点/ / 递归访问左子树1 7 递归访问右子树/ / 根结点入栈//栈不为空时循环/ / 退栈并访问该结点/ / 右孩子入栈{》v oidprintf(*c“,b->data); Preorder(b->lchild); Pre0rder(b->rchild);Preorder1(BTNode *b)BTNode xSt[Maxsize],*p;int top=-1;if(b!-HULL)top++;St[top]-b;uhle (op>-)p-St[top];top--;printf("%c“,p->data);if(p->rchild?-HULL)A约e程p7-2.CPPprintF(”后序逅历序列:\n");printf(" 递归算法=");Postorder(b);printf("\n");printf(“非递归算法:“);Postorder1(b);printf("\n");序执行结果如下:xCAPrograFleicsoftVisal SudlyrjecsProj 2Debuzlroj72ex"二叉树b:A(B(D,ECH<J,K(L,M<,N)>))),C(F,GC.I>))层次遍历序列:A B C D E F G H I J K L M N先序遍历序列:递归算法:A B D E H J K L M N C F G I非归算法:A B D E H J K L M N C F G I中序遍历序列:递归算法: D B J H L K M N E A F C G I非递归算法:D B J H L K M N E A F C G I后序遍历序列:递归算法: D J L N M K H E B F I G C A非递归算法:D J L N H K H E B F I G C APress any key to continue臼p7-3.CPP15Pp a t h[p a t h l e n]-b->d a t a;//将当前结点放入路径中p a t h l e n t+;/7路任长度培1Al1Path1(b->ichild,patn,pathlen);1/递归扫描左子树Al1Path1(b->rchild,path,pathlen); //递归扫描右子树pathlen-- ; //恢复环境uoid Longpath(BTNode *b,Elemtype path[1,int pathlen,Elemtype longpath[],int elongpatnien) int i;1f(b==NULL){if(pathlen>longpatnlen) //若当前路径更长,将路径保存在1ongpatn中for(i-pathlen-1;i>-8;i--)longpath[i]=path[1];longpathlen-pathlen;elsepath[pathlen]=b->data; pathlen4; //将当前结点放入路径中//路径长度增1iongPath(b->lchild,path₇pathlen,langpath,longpathien);//递归扫描左子树LongPath(b->rchiid,path,pathien,longpath,longpathien);//递归扫描石子树pathlen--; /7饮其环境oid DispLeaf(BTNode xb)- 口凶uoid DispLeaf(BTNode xb)iE(D!=NULL){ if(b->1child--HULL B& b->rchild--HULL)printf("3c“,b->data);elsepispLeaf(b->ichild);DispLeaf(b->rchild);oid nain()8TNodexb;ElenType patn[Maxsize],longpath[Maxsize];int i.longpathien-U;CreateBTNode(b,"A(B(D,E(H(J,K(L,H(,N))))),C(F,G(,I)))");printf("\n二灾树b:");DispBTNode(b);printf("\n\n*);printf(”b的叶子结点:");DispLeaf(b);printf("\n\n");printf("A11Path:");A11Path(b);printf("m");printf("AiiPath1:n");AliPath1(b.path.);printf("");LongPath(b,path,8,longpath,longpathlen);printf(”第一条量长路径长度=d\n”,longpathlen);printf(”"第一茶最长路径:");for(i=longpathlen;i>=0;i--)printf("c",longpatn[1]);printf("\n\n");。
课程设计报告设计题目:二叉树解决四则运算问题院系:自动化院班级:XXX学号:XXX姓名:XX指导老师:XX时间:XX一.程序功能简介利用二叉树的结构解决带括号的四则运算的问题。
程序利用二叉树的堆栈将二叉树的结点变成结点中的数据时运算符,左右子树是标准结点形式,或是另外的标准二叉树形式,通过后序遍历,经标准结点中的表达式求出。
二.课程设计要求(1)读懂程序,将程序的运算步骤完整的描述出来。
(2)四则运算的表达式可以接受空格输入(3)依照运算顺序依次输出四则运算每一步的算式及及结果,最后输出最终计算结果三.课程设计思想这个课题设计要求最关键的就是读懂程序,用类实现四则运算其实不是很难,只是利用二叉树实现带括号的四则运算有些难度。
初读源程序觉得摸不到头脑,几遍下来还是能够理解的。
在程序中先计算的式子放在栈顶,首先赋值右子树,再赋值左子树,保证优先级。
如图:二叉树类栈运算符栈)—* (+输入“+”,“(”,“*”三个运算符没有优先级冲突,按顺序压栈,然后输入“—”,优先级低于“*”,binary_tree temp_tree; //生成二叉树string thisstring="";thisstring = thisstring + OpStack.top();OpStack.pop() //将栈顶优先级高的运算符移除(即这边的乘号)etree.root = build_node(thisstring);//将优先级高的运算符作为二叉树的根结点copy(temp_tree.root,NodeStack.top().root);//将二叉树堆栈栈顶的二叉树复制到新生成的二叉树中(即把1复制到新的二叉树中)NodeStack.pop();//移除二叉树栈栈顶etree.root->right_child = temp_tree.root;//将二叉树作为新二叉树的右分支temp_tree.root = NULL;copy(temp_tree.root,NodeStack.top().root); //继续将下一个栈顶二叉树复制(即把5复制)etree.root->left_child = temp_tree.root;//成为新二叉树的左分支NodeStack.pop();//移除temp_tree.root = NULL;copy(temp_tree.root, etree.root);NodeStack.push(temp_tree);//新二叉树进栈etree.root = NULL;OpStack.push(c);//优先级低的运算符压栈过程如图:栈顶二叉树temp_tree二叉树Etree二叉树将temp_tree作为etree的右结点新的二叉树类栈最后进行一个遍历,判断运算符栈是否处理完,算出最后结果。
信息科学与技术学院《数据结构》课程设计报告题目名称:线索二叉树的计算学生姓名:刘少博学号: **********专业班级:计算机科学与技术指导教师:高攀2014年 1月 81、设计的目的与要求此程序需要完成如下要求:建立线索二叉树,并实现线索二叉树的插入、删除和恢复线索的实现。
实现本程序需要解决以下几个问题:1、如何建立线索二叉树。
2、如何实现线索二叉树的插入。
3、如何实现线索二叉树的删除。
4、如何实现线索二叉树恢复线索的实现。
此题目是线索二叉树的一系列操作问题。
首先就要明白线索二叉树是什么,利用二叉链表的空指针域将空的左孩子指针域改为指向其前驱,空的右孩子指针域改为指向其后继,这种改变指向的指针称为线索,加上了线索的二叉链表称为线索链表,相应的二叉树称为线索二叉树。
在这个问题中,要解决的任务是:实现线索二叉树的建立、插入、删除、恢复线索的实现。
N个结点的二叉链表中含有n+1个空指针域。
利用二叉链表中的空指针域,存放指向结点在某种遍历次序下的前趋和后继结点的指针(这种附加的指针称为"线索")。
这种加上了线索的二叉链表称为线索链表,相应的二叉树称为线索二叉树(ThreadedBinaryTree)。
根据线索性质的不同,线索二叉树可分为前序线索二叉树、中序线索二叉树和后序线索二叉树三种。
在此次课程设计中,采用的是中序线索二叉树。
目录摘要 (4)一、引言 (5)二、设计任务与目的 (5)三、设计方案与实施 (5)1、总体设计 (5)2、详细设计 (7)3、程序清单 (13)4、程序调试与体会 (24)5、运行结果(截图) (24)四、结论 (27)五、致谢 (27)六、参考文献 (27)摘要随着人们生活水平的提高,计算机发展异常迅速。
如今,计算机已经深入到我们社会的各个领域,计算机的使用也已不再局限于科学计算,它已进入人类社会的各个领域并发挥着越来越重要的作用。
通过计算机对各类问题求解已经成为一种高效、快捷的方式。
二叉树的储存结构的实现及应用二叉树是一种常见的数据结构,它在计算机科学和算法设计中广泛应用。
二叉树的储存结构有多种实现方式,包括顺序储存结构和链式储存结构。
本文将从这两种储存结构的实现和应用角度进行详细介绍,以便读者更好地理解二叉树的储存结构及其在实际应用中的作用。
一、顺序储存结构的实现及应用顺序储存结构是将二叉树的节点按照从上到下、从左到右的顺序依次存储在一维数组中。
通常采用数组来实现顺序储存结构,数组的下标和节点的位置之间存在一定的对应关系,通过数学计算可以快速找到节点的父节点、左孩子和右孩子。
顺序储存结构的实现相对简单,利用数组的特性可以迅速随机访问节点,适用于完全二叉树。
1.1 实现过程在采用顺序储存结构的实现中,需要首先确定二叉树的深度,然后根据深度确定数组的长度。
通过数学计算可以得到节点间的位置关系,初始化数组并按照规定的顺序将二叉树节点逐一填入数组中。
在访问二叉树节点时,可以通过计算得到节点的父节点和子节点的位置,从而实现随机访问。
1.2 应用场景顺序储存结构适用于完全二叉树的储存和遍历,常见的应用场景包括二叉堆和哈夫曼树。
二叉堆是一种特殊的二叉树,顺序储存结构可以方便地实现它的插入、删除和调整操作,因此在堆排序、优先队列等算法中得到广泛应用。
哈夫曼树则是数据压缩领域的重要应用,通过顺序储存结构可以有效地构建和处理哈夫曼树,实现压缩编码和解码操作。
二、链式储存结构的实现及应用链式储存结构是通过指针将二叉树的节点连接起来,形成一个类似链表的结构。
每个节点包含数据域和指针域,指针域指向节点的左右孩子节点。
链式储存结构的实现相对灵活,适用于任意形态的二叉树,但需要额外的指针空间来存储节点的地址信息。
2.1 实现过程在链式储存结构的实现中,每个节点需要定义为一个包含数据域和指针域的结构体或类。
通过指针来连接各个节点,形成一个二叉树的结构。
在树的遍历和操作中,可以通过指针的操作来实现节点的访问和处理,具有较高的灵活性和可扩展性。
实验报告课程:数据结构课程设计设计题目:二叉树遍历及应用学号:班级:软件11k1姓名: 南方小羊指导教师:刘军二叉树的遍历1、问题描述利用先序遍历建立一棵二叉树,并分别用前序、中序、后序遍历该二叉树2、节点形式Lchild data Rchild3、说明(1)输入数据:1,2,3,0,0,4,0,0,5,0,0其中“0”表示空子树。
(2)输出数据:先序:1,2,3,4,5中序:3,2,4,1,5后序:3,4,2,5,1二叉树的应用1、问题描述运用二叉树的遍历的算法,编写算法分别实现如下功能。
(1)求出二叉树中的结点的总数。
(2)求出二叉树中的叶子数目。
(3)求出二叉树的深度。
运用上题所建立的二叉树,求出其结点总数、叶子数目、深度,最后释放所有结点。
二叉树结点结构中包数据域(data),指针域(*lchild,*rchild)。
结点结构的代码如下:typedef struct tree{int data;struct tree *lchild,*rchild;}*bitree;本实例使用的是二叉树,首先建立头结点,并且保存数据,然后根据递归方法,分别建立其左右孩子结点,且左右孩子结点的指针域指向空。
先序递归遍历时,输出第一个根结点数据,然后分别遍历左子树再遍历右子树,中序遍历,先访问根结点的左子树输出数据,再输出根结点的数据,再访问右子树,后序遍历先访问根结点的右子树,再访问根结点,再访问左子树输出。
统计二叉树叶子的个数可以看成一个遍历问题,访问一个结点,判断该结点是否为叶子,如果是将叶子树加1,可以采用任何遍历实现,求二叉树的深度是假设根结点为第一层的结点,所有K层结点的左右孩子在K+1层,所以可以通过先序遍历计算二叉树中每个结点的层数,其中最大的就是二叉树的深度。
四、实验心得:树结构是数据结构课程的典型内容,而且综合使用了多种逻辑结构,具有代表性,可以锻炼个人编程能力。
在刚开始选题后,我感觉无从下手,一是因为没有实践经验,二是因为对数据结构课程的内容没有把握到位,然后在参考一些专业书籍并且学习了之前其他人的课程设计,才逐渐可以上手去自己做。
设计以先序遍历的顺序建立二叉树的二叉链表存储结构的算法一、算法简介二叉树是一种重要的树形结构,它的建立方式有多种,其中一种是按照先序遍历的顺序建立二叉树。
这种方式需要将先序遍历序列和二叉树的存储结构相结合,采用二叉链表存储结构。
具体流程是按照先序遍历序列的顺序依次创建二叉树的各个节点,同时使用二叉链表结构保存每个节点的数据和指针信息。
二、算法实现算法的实现主要包括初始化二叉树、创建节点、建立二叉树等步骤,下面对这些步骤进行详细描述。
1. 初始化二叉树初始化二叉树需要创建一个根节点,同时将根节点的左右指针指向NULL,表示二叉树为空。
2. 创建节点创建节点需要通过输入元素数据来创建,同时节点的左右指针也需要初始化为NULL。
3. 建立二叉树建立二叉树是按照先序遍历序列来实现的,具体流程如下:(1)读入当前节点的元素数据,创建节点,并将其作为当前节点。
(2)判断当前节点的元素数据是否为结束符号(这里结束符号可以指定),如果是,则返回NULL。
(3)递归创建当前节点的左子树,将左子树的根节点赋值给当前节点的左指针。
(4)递归创建当前节点的右子树,将右子树的根节点赋值给当前节点的右指针。
(5)返回当前节点。
三、算法优化虽然上述算法实现简单明了,但它有一个缺点,即无法处理空节点的情况,如果输入的先序遍历序列中存在空节点,那么该算法就无法建立正确的二叉树了。
因此,可以在输入的先序遍历序列中使用一个特殊的符号(如#)表示空节点,在建立节点时,如果遇到该符号,则将该节点的指针设置为NULL即可。
四、算法总结按照先序遍历的顺序建立二叉树是一种基于二叉链表存储结构的建树方式。
它通过递归的方式构建整个二叉树,同时为了处理空节点的情况,还需要对输入的先序遍历序列进行特殊处理。
该算法的效率较高,适用于对先序遍历序列已知的情况下建立二叉树。
二叉排序树课程设计一、课程目标知识目标:1. 学生能够理解二叉排序树的基本概念和性质,掌握其结构特点和应用场景。
2. 学生能够掌握二叉排序树的插入、删除和查找操作,并了解其时间复杂度。
3. 学生能够理解二叉排序树与其他排序算法的关系,了解其在排序中的应用。
技能目标:1. 学生能够运用所学知识,独立构建二叉排序树,并实现插入、删除和查找功能。
2. 学生能够分析二叉排序树的性能,对其进行优化,提高排序效率。
3. 学生能够运用二叉排序树解决实际问题,如数据排序、查找等。
情感态度价值观目标:1. 学生通过学习二叉排序树,培养对数据结构和算法的兴趣,提高解决问题的能力。
2. 学生在学习过程中,学会合作、交流,培养团队精神和共享意识。
3. 学生能够认识到二叉排序树在实际应用中的价值,激发对计算机科学的热爱。
本课程针对高中年级学生,课程性质为理论与实践相结合。
在教学过程中,注重启发式教学,引导学生主动探究、实践。
根据学生特点和教学要求,课程目标具体、可衡量,以便学生和教师能够清晰地了解课程的预期成果。
课程目标的分解为具体的学习成果,为后续的教学设计和评估提供依据。
二、教学内容1. 引入二叉排序树的概念,讲解其定义、性质和基本操作。
- 理解二叉树的基础知识,回顾二叉树的遍历方法。
- 介绍二叉排序树的定义,阐述其特点及应用场景。
- 分析二叉排序树的性质,如二叉排序树的中序遍历结果为有序序列。
2. 探讨二叉排序树的构建、插入、删除和查找操作。
- 讲解二叉排序树的构建方法,学会从无序数据建立二叉排序树。
- 分析插入、删除和查找操作的步骤,理解它们的时间复杂度。
- 举例说明如何利用二叉排序树实现数据排序和查找。
3. 分析二叉排序树的性能及优化方法。
- 探讨二叉排序树的高度、平衡因子等性能指标。
- 介绍常见的优化方法,如平衡二叉树(AVL树)和红黑树。
4. 实践环节:二叉排序树的应用。
- 设计实践题目,让学生动手实现二叉排序树的基本操作。
二叉树实验报告1. 引言二叉树是一种常用的数据结构,广泛应用于计算机科学和信息技术领域。
本实验旨在通过对二叉树的理解和实现,加深对数据结构与算法的认识和应用能力。
本报告将介绍二叉树的定义、基本操作以及实验过程中的设计和实现。
2. 二叉树的定义二叉树是一个有序树,其每个节点最多有两个子节点。
树的左子节点和右子节点被称为二叉树的左子树和右子树。
3. 二叉树的基本操作3.1 二叉树的创建在实验中,我们通过定义一个二叉树的节点结构来创建一个二叉树。
节点结构包含一个数据域和左右指针,用于指向左右子节点。
创建二叉树的过程可以通过递归或者迭代的方式来完成。
3.2 二叉树的插入和删除二叉树的插入操作是将新节点插入到树中的合适位置。
插入时需要考虑保持二叉树的有序性。
删除操作是将指定节点从树中删除,并保持二叉树的有序性。
在实验中,我们可以使用递归或者循环的方式实现这些操作。
3.3 二叉树的遍历二叉树的遍历是指按照某种次序访问二叉树的所有节点。
常见的遍历方式包括前序遍历、中序遍历和后序遍历。
前序遍历先访问根节点,然后按照左孩子-右孩子的顺序递归遍历左右子树。
中序遍历按照左孩子-根节点-右孩子的顺序递归遍历左右子树。
后序遍历按照左孩子-右孩子-根节点的顺序递归遍历左右子树。
3.4 二叉树的查找查找操作是指在二叉树中查找指定的值。
可以通过递归或者循环的方式实现二叉树的查找操作。
基本思路是从根节点开始,通过比较节点的值和目标值的大小关系,逐步向左子树或者右子树进行查找,直到找到目标节点或者遍历到叶子节点。
4. 实验设计和实现在本实验中,我们设计并实现了一个基于Python语言的二叉树类。
具体实现包括二叉树的创建、插入、删除、遍历和查找操作。
在实验过程中,我们运用了递归和迭代的方法实现了这些操作,并进行了测试和验证。
4.1 二叉树类的设计我们将二叉树的节点设计为一个类,其中包括数据域和左右子节点的指针。
另外,我们设计了一个二叉树类,包含了二叉树的基本操作方法。
竭诚为您提供优质文档/双击可除二叉树的建立和遍历的实验报告篇一:二叉树遍历实验报告数据结构实验报告报告题目:二叉树的基本操作学生班级:学生姓名:学号:一.实验目的1、基本要求:深刻理解二叉树性质和各种存储结构的特点及适用范围;掌握用指针类型描述、访问和处理二叉树的运算;熟练掌握二叉树的遍历算法;。
2、较高要求:在遍历算法的基础上设计二叉树更复杂操作算法;认识哈夫曼树、哈夫曼编码的作用和意义;掌握树与森林的存储与便利。
二.实验学时:课内实验学时:3学时课外实验学时:6学时三.实验题目1.以二叉链表为存储结构,实现二叉树的创建、遍历(实验类型:验证型)1)问题描述:在主程序中设计一个简单的菜单,分别调用相应的函数功能:1…建立树2…前序遍历树3…中序遍历树4…后序遍历树5…求二叉树的高度6…求二叉树的叶子节点7…非递归中序遍历树0…结束2)实验要求:在程序中定义下述函数,并实现要求的函数功能:createbinTree(binTreestructnode*lchild,*rchild;}binTnode;元素类型:intcreatebinTree(binTreevoidpreorder(binTreevoidInorder(binTreevoidpostorder(binTreevoidInordern(binTreeintleaf(bi nTreeintpostTreeDepth(binTree2、编写算法实现二叉树的非递归中序遍历和求二叉树高度。
1)问题描述:实现二叉树的非递归中序遍历和求二叉树高度2)实验要求:以二叉链表作为存储结构3)实现过程:1、实现非递归中序遍历代码:voidcbiTree::Inordern(binTreeinttop=0;p=T;do{while(p!=nuLL){stack[top]=p;;top=top+1;p=p->lchild;};if(top>0){top=top-1;p=stack[top];printf("%3c",p->data);p=p->rchild;}}while(p!=nuLL||top!=0);}2、求二叉树高度:intcbiTree::postTreeDepth(binTreeif(T!=nuLL){l=postTreeDepth(T->lchild);r=postTreeDepth(T->rchil d);max=l>r?l:r;return(max+1);}elsereturn(0);}实验步骤:1)新建一个基于consoleApplication的工程,工程名称biTreeTest;2)新建一个类cbiTree二叉树类。