人工智能导论
- 格式:ppt
- 大小:932.50 KB
- 文档页数:36
人工智能导论课程教学大纲一、课程基本信息课程编号:课程中文名称:人工智能导论课程性质:学院基础课程、专业核心课程开课学期:3课内学时:32学时,其中授课32学时课外学时:32学时学分:2学分主要面向专业:自动化、测控、电气、机器人工程二、先修课程高等数学、概率论、线性代数、生命科学导论三、课程目标人工智能导论是面向理工科专业的重要基础课程。
课程以学科基础、技术基础、重点方向与领域、行业应用、伦理与法律五维知识体系为主要内容,经典与现代人工智能知识结构模块化,具有广阔的思想和技术背景。
通过课程学习,使学生系统性掌握人工智能基本概念、方法、技术,把握人工智能重点方向及领域;掌握机器学习、深度神经网络等基本方法;初步具备利用人工智能技术解决问题的基本能力;初步理解人工智能伦理及其对人工智能技术发展的重要意义。
为进一步学习相关的专业基础课程和专业课程打下必要的理论和实践基础。
(1)从大历史观角度使学生理解人工智能发展的历史和思想脉络,使学生认识到人工智能的本质和内涵,思考人之为人的价值和意义,勇于承担社会发展责任。
(2)充分发挥人工智能多学科、多领域理论、知识交叉的特点和优势,培养学生多学科知识交叉思维和创新意识。
(3)激发学生学习人工智能的热情和人机协同创新思维,为后续人工智能+X专业学习、创新创业、竞赛、就业等奠定基础。
(4)系统理解机器智能实现技术和方法,认识到机器智能对人类智能补充与增强作用,学会利用人机协同技术和方法及解决各类问题。
(5)使学生充分理解人工智能对未来人类社会经济、科技和文明发展的重要作用,具备未来能社会发展需要的人工智能人才素质。
四、教学内容与教学方法五、考核方式六、参考教材及学习资源(一)参考教材:[1]莫宏伟,徐立芳.人工智能导论.第2版.[2]莫宏伟,徐立芳.人工智能伦理导论.。
人工智能导论在当今科技飞速发展的时代,人工智能(Artificial Intelligence,简称 AI)无疑是最引人瞩目的领域之一。
它已经逐渐渗透到我们生活的方方面面,从智能手机中的语音助手,到医疗领域的疾病诊断,再到交通系统的智能调度,人工智能的身影无处不在。
然而,对于大多数人来说,人工智能仍然是一个充满神秘色彩的概念。
那么,究竟什么是人工智能?它是如何工作的?又将如何影响我们的未来呢?要理解人工智能,首先我们需要明确它的定义。
简单来说,人工智能是指让计算机模拟人类的智能行为,例如学习、推理、解决问题、理解语言等。
它的目标是创造出能够像人类一样思考和行动的智能机器。
人工智能的发展并非一蹴而就,而是经历了漫长的历程。
早在 20世纪 50 年代,科学家们就开始了对人工智能的探索。
然而,由于当时计算机技术的限制以及对智能本质的理解不足,早期的研究进展缓慢。
但随着计算机性能的不断提升,以及算法和理论的不断完善,人工智能在近年来取得了突飞猛进的发展。
那么,人工智能是如何实现智能行为的呢?这主要依赖于机器学习和深度学习这两种技术。
机器学习是让计算机通过数据学习规律和模式,从而能够进行预测和决策。
例如,通过分析大量的医疗影像数据,机器学习算法可以帮助医生诊断疾病。
深度学习则是机器学习的一个分支,它使用多层神经网络来模拟人脑的神经元网络,从而能够处理更加复杂的数据和任务。
比如,图像识别、语音识别等领域都广泛应用了深度学习技术。
人工智能的应用场景十分广泛。
在医疗领域,人工智能可以帮助医生进行疾病诊断、制定治疗方案,甚至进行手术操作。
在金融领域,它可以进行风险评估、投资决策,预防欺诈行为。
在交通领域,人工智能可以优化交通流量,提高交通运输的效率和安全性。
在教育领域,它可以为学生提供个性化的学习方案,提高学习效果。
然而,人工智能的发展也带来了一些挑战和问题。
例如,人工智能可能会导致部分工作岗位的消失,从而引发就业结构的调整。
人工智能导论人工智能(Artificial Intelligence,简称AI)是指通过计算机和其他相关技术,模拟或复制人类智能的理论、方法、技术及应用系统。
人工智能的发展涉及计算机科学、心理学、哲学等多个学科领域。
本文将从AI的定义、发展历程、应用领域及挑战等方面展开讨论,并探讨AI在未来的发展前景。
一、AI的定义及发展历程人工智能的定义可以从不同视角进行解释。
从狭义上看,AI指的是计算机系统通过模拟人类智能行为的能力。
从广义上看,AI包括了解决问题、学习、推理、思考等方面的智能行为。
AI的概念最早起源于1956年,当时由达特茅斯会议提出,并逐渐成为独立的学科。
自此以后,AI经历了数次繁荣与停滞的周期,近年来又迎来了新一轮的发展浪潮。
二、AI的应用领域在如今的社会中,AI的应用已经渗透到各个领域。
以下是几个典型的应用领域:1. 无人驾驶技术无人驾驶技术是AI的一个重要应用领域,它通过感知、识别和决策等能力,实现车辆的自动行驶。
无人驾驶技术的研究不仅挑战了计算机视觉、机器学习、路径规划等关键问题,也对交通安全、车辆管理等方面产生了深远影响。
2. 人脸识别技术人脸识别技术是一种通过计算机对人脸图像进行分析和比对,从而完成身份识别的技术。
它被广泛应用于安全监控、边境管理、移动支付等领域,极大地提升了社会安全和便利性。
3. 语音识别技术语音识别技术是指将人的语音转化为计算机可以识别和理解的文字或指令。
随着语音助手如Siri、Alexa等的普及,语音识别技术在智能家居、语音交互等领域得到了广泛应用,极大地改善了人机交互方式。
4. 机器人技术机器人技术是一门涉及机械、电子、计算机等多学科的交叉技术,其目标是研制出能够模拟人类行为的智能机械设备。
机器人已经广泛应用于工业生产、服务业、医疗保健等领域,释放出巨大的劳动力和创造力。
三、AI面临的挑战尽管AI在各领域有着广泛的应用,但人工智能仍然面临着一些挑战:1. 数据隐私和安全问题随着AI应用的不断增长,个人用户的数据受到更多的关注。
《人工智能导论》重难点索引第1章绪论重点:1. 人工智能的定义智能机器: 能够在各类环境中自主地或交互地执行各种拟人任务(anthropomorphic tasks)的机器。
人工智能(学科): 人工智能(学科)是计算机科学中涉及研究、设计和应用智能机器的一个分支。
它的近期主要目标在于研究用机器来模仿和执行人脑的某些智力功能, 并开发相关理论和技术。
人工智能(能力):人工智能(能力)是智能机器所执行的通常与人类智能有关的智能行为, 如判断、推理、证明、识别、感知、理解、通信、设计、思考、规划、学习和问题求解等思维活动。
2. 人工智能的起源与发展过程了解人工智能的发展历史。
3. 人工智能与人类智能的关系4. 简介目前人工智能的主要学派符号主义(Symbolicism), 联结主义(Connectionism), 行为主义(Actionism)。
第2章数理逻辑基础重点:1. 数理逻辑概述了解数理逻辑的相关概念。
2. 命题逻辑理解命题逻辑的概念及物理意义, 掌握命题公式及其解释。
3. 谓词与量词理解谓词与量词的概念, 约束变元、自由变元、改名规则。
4. 谓词公式及其解释谓词公式的定义, 解释的定义及应用。
5. 谓词公式的等价与蕴涵等价与蕴涵的概念。
6. 谓词公式的标准形式范式的概念与类型, 各类范式的获取。
难点:1. 谓词公式的解释2. 谓词公式等价与蕴涵的区别3. 范式的计算第3章归结推理方法重点:1. 子句集的海伯伦域与海伯伦定理原子集的定义, 海伯伦域定义与海伯伦解释, 海伯伦定理的应用。
2. 置换与合一算法置换的定义与特征, 最一般合一算法(mgu算法)的定义与计算。
3. 归结原理与归结反演归结的概念, 命题逻辑与谓词逻辑中的归结原理, 归结反演的物理意义及其应用。
4. 归结控制策略归结的一般过程, 几种归结控制策略的概念及应用。
难点:1. 海伯伦域的求解2. 最一般合一算法的应用3. 归结反演的物理意义及其实际应用第4章知识表示方法重点:1. 知识的基本概念把有关信息关联在一起所形成的信息结构称为知识。
⼈⼯智能导论笔记⼈⼯智能导论1、概论 1.1⼈⼯智能介绍 ①⼈⼯智能1956年诞⽣;1997年IBM公司研发的深蓝超级计算机国际象棋世界冠军卡斯帕罗夫;2017年阿尔法狗击败中国世界围棋冠军柯洁 ②⼈⼯智能的三步⾛战略:同步(2020)、突破(2025)、领先(2030) ③SIRI、指纹识别、⼈脸识别、⽆⼈驾驶等都涉及到了AI ④AI就是让机器实现原本只有⼈类才能完成的任务 ⑤⼈⼯智能分为三种形态 1.弱:没有⾃主意识,只能完成程序设定内的任务,⼴泛⽤于取代机械体⼒劳动 2.强:具有⾃我意识,可以像⼈脑⼀样独⽴思考,并制定解决问题的最佳⽅案 3.超:全⽅位碾压⼈类脑⼒体⼒ 1.2⼈⼯智能概念 ①⼈⼯智能的定义众说纷纭,⼀般的解释为⼈⼯智能就是⽤⼈⼯的⽅法在机器(计算机)上实现的智能⾏为,包括感知、推理、学习、通信和复杂环境下的动作⾏为 1.3⼈⼯智能的发展史 ①⼈⼯智能现状 1.⼈⼯智能的发展较为单⼀ 2.⼈⼯智能尚处于起步阶段 3.“智能+X”成为⼈⼯智能应⽤的创新模式 4.⼈⼯智能领域的国际竞争⽇益激烈 ②当前中国⼈⼯智能 1.⾼度重视—国家⼤⼒⽀持 2.态势喜⼈—中国AI企业数量全球第⼆,中国AI领域融资规模占全球60% 3.差距不⼩—尚处于“跟跑”地位,与世界领先⽔平还存在明显差距 4.前景看好 1.4⼈⼯智能三⼤学派 ①⼈⼯智能三⼤学派 1.符号主义学派 2.连接主义学派 3.⾏为主义学派 ②图灵测试 测试者与被测试者(⼀个⼈和⼀台机器)隔开的情况下,通过⼀些装置(如键盘)向被测试者随意提问。
进⾏多次测试后,如果机器让平均每个参与者做出超过30%的误判,那么这台机器就通过了测试,并被认为具有⼈类智能。
(来源百度百科)2、状态搜索空间表⽰及其搜索技术 2.1状态空间法 ①问题求解过程实际上就是⼀个搜索的过程 问题求解技术主要涉及两个⽅⾯:问题的表⽰和求解的⽅法 ②状态空间表⽰法:⽤来表⽰问题及其搜索过程的⼀种⽅法,以状态和算符为基础来表⽰和求解问题 包括三要素:状态、算符和状态空间 状态—表⽰问题求解过程中每⼀步问题状况的数据结构 算符—当对⼀个问题状态使⽤某个可⽤操作时,它将引起该状态中某些分量值的变化,从⽽使问题从⼀个具体状态变为另⼀个具体状态 状态空间—⽤来描述⼀个问题的全部状态以及这些状态之间的相互关系;常⽤⼀个三元组表⽰:(S,F,G) S—问题的所有初始状态的集合;F—算符的集合;G—⽬标状态的集合 2.2图搜索 ①搜索的⽬的是为了寻找初始节点到⽬标节点的路径,所以要随时记录搜索轨迹 1.必须记住下⼀步还可以⾛哪些点,OPEN表 2.必须记住哪些点⾛过了,CLOSED表 3.必须记住从⽬标返回的路径 ②例题 2.3盲⽬式搜索 ①定义—按预定的控制策略进⾏搜索,在搜索⼯程中获得的中间信息不⽤来改进控制策略(没有启发信息的⼀种搜索形式) ②种类—宽度优先(⼴度);深度优先;等代价搜索 ③不⾜—适合简单问题求解,问题较复杂时,效率低 ④宽度优先搜索 ⑤深度优先搜索 深度界限—⼀个节点扩展最⼤深度,防⽌搜索过程沿着⽆益的路径扩展下去;起始节点的深度为0 ⑥等代价搜索 等代价搜索是宽度优先搜索的⼀种推⼴,沿着等代价路径断层进⾏扩展 2.4启发式搜索 ①启发性信息—指那种与具体问题求解过程有关的,并可指导搜索过程朝着最有希望⽅向前进的控制信息 ②A算法 ③A*算法 A* 算法的搜索效率在很⼤程度上取决于h(n),在满⾜h(n)<=h*(n)的前提下,h(n)的值越⼤越好3、问题归约知识表⽰及搜索技术 3.1问题归约法及与或图 ①问题归约法基本思想—从已知问题的描述出发,通过⼀系列变换把此问题最终变为⼀个⼦问题集合;这些⼦问题的解可以直接得到,从⽽解决了初始问题(类似于递归) ②问题归约法组成 1.⼀个初始问题的描述 2.⼀套把问题变换为⼦问题的操作符 3.⼀套本原问题 ③与或图 ④所有节点都是或节点,这时就是⼀般的图,即状态空间图 除了起始节点外,所有节点只有⼀个⽗节点,此时称为与或树 ⑤可解节点 1.终叶节点是可解节点 2.如果某个⾮终叶节点含有或后继节点时,只有当其后继节点⾄少有⼀个是可解的时,此⾮终叶节点才是可解的 3.如果某个⾮终叶节点含有与后继节点时,只有当其后继节点全部可解时,此⾮终叶节点才是可解的 ⑥不可解节点 1.没有后继节点的⾮终叶节点 2.全部后继节点为不可解的⾮终叶节点且含有或后继节点 3.后继节点⾄少有⼀个为不可解的⾮终叶节点且含有与后继节点 3.2与或图的盲⽬式搜索 ①与或图搜索—在与或图上执⾏搜索的过程,其⽬的在于标明起始节点是有解的,即搜索不是去寻找到⽬标节点的⼀条路径,⽽是寻找⼀个解树 解树—由能够证明初始节点时可解的可解节点构成的连通的⼦图 ②与或树—除初始节点,其余节点只有⼀个⽗节点 ③与或图—除初始节点,其余节点允许有多个⽗节点 ④与或树搜索过程 ⑤与或树的宽度优先搜索—先产⽣的节点先扩展 求解步骤为: 初始化:节点1送到OPEN表,且不为终叶节点OPEN CLOSED1 STEP1:把节点1放⼊CLOSED表,扩展,得到节点2、3OPEN CLOSED12,31 STEP2:扩展节点2后,得到节点4、t1;节点t1是终叶节点且为可解节点,对其先辈节点进⾏标志;t1的⽗结点是与节点,⽆法判断节点2是否可解,接着扩展节点3OPEN CLOSED12,313,4,t11,2 STEP3:扩展节点3,得到节点5、B;节点5、B都不是终叶节点,接着扩展节点4OPEN CLOSED12,313,4,t11,24,t1,5,B1,2,3t1,5,B1,2,3,4 STEP4:扩展节点4,得到节点A、t2;节点t2是终叶节点且为可解节点,对其先辈节点进⾏标志;节点4、2可解,但不确定1是否可解;从OPEN表中删除掉A;此时节点5是OPEN表第⼀个待考察的节点,下⼀步扩展节点5OPEN CLOSED12,313,4,t11,24,t1,5,B1,2,3t1,5,B,A,t21,2,3,45,B,t21,2,3,4,t1B,t21,2,3,4,t1,5 STEP5:扩展节点5后,得到节点t3、t4;节点t3、t4都是终叶节点且为可解节点,对其先辈节点进⾏标志;节点5可解,接着推出节点3可解,节点1可解,从OPEN表中删除B,成功退出OPEN CLOSED12,313,4,t11,24,t1,5,B1,2,3t1,5,B,A,t21,2,3,45,B,t21,2,3,4,t1B,t2,t3,t41,2,3,4,t1,5t2,t3,t41,2,3,4,t1,5 ⑥与或树深度优先搜索—新产⽣的节点先扩展 求解步骤为: 初始化:节点1送到OPEN表,且不为终叶节点OPEN CLOSED1 STEP1:把节点1放⼊CLOSED表,扩展,得到节点2、3;节点2、3都不是终叶节点,接着扩展节点2,此时OPEN表只剩节点3OPEN CLOSED12,3131,2 STEP2:扩展节点2后,得到节点4、t1;t1是终叶节点,但⽆法表⽰节点2;继续扩展节点4OPEN CLOSED12,314,t1,31,2t1,31,2,4 STEP3:扩展节点4后,得到节点A、t2;标志4、2为可解节点,但不能确定1是否可解;删掉OPEN表中的节点A,接着扩展节点3OPEN CLOSED12,314,t1,31,2A,t2,t1,31,2,431,2,4,t2,t1 STEP4:扩展节点3,得到节点5、B;接着扩展节点5OPEN CLOSED12,314,t1,31,2A,t2,t1,31,2,431,2,4,t2,t15,B1,2,4,t2,t1,3B1,2,4,t2,t1,3,5OPEN CLOSED STEP5:扩展节点5后,得到节点t3、t4;标志可解节点5、3,推出初始节点1可解,删掉节点B;成功退出OPEN CLOSED12,314,t1,31,2A,t2,t1,31,2,431,2,4,t2,t15,B1,2,4,t2,t1,3t3,t4,B1,2,4,t2,t1,3,5t3,t41,2,4,t2,t1,3,5 3.3博弈树搜索 ①机器博弈—机器参与的博弈,参与智⼒竞技 ②博弈树特点 ③Max-Min搜索 ④α-β剪枝搜索 对于⼀个与节点来说,它取当前⼦节点中的最⼩倒退值作为它倒退值的上界,称此为β值(β<=最⼩值) 对于⼀个或节点来说,它取当前⼦节点中的最⼤倒退值作为它倒退值的下界,称此为α值(α>=最⼤值)。
人工智能导论(一)
引言概述:
人工智能 (AI) 是一门研究如何设计和构建智能机器的学科,它已经成为了当今科技领域的热门话题之一。
尽管AI在过去几十年中已经取得了许多突破性的发展,但我们还只是触及了其表面。
本文将介绍人工智能的基本概念和原理,具体包括:定义和历史、机器学习、自然语言处理、计算机视觉和专家系统。
通过深入研究这些内容,我们能更好地理解人工智能的工作原理和应用领域,并为进一步探索人工智能科技奠定坚实基础。
正文内容:
1. 定义和历史:
- 人工智能的定义和范畴
- 人工智能的发展历史和里程碑事件
- 当前人工智能的应用领域
2. 机器学习:
- 机器学习的基本概念和框架
- 监督学习、无监督学习和强化学习的区别和应用
- 机器学习算法的常见类型和应用案例
3. 自然语言处理:
- 自然语言处理的定义和目标
- 文本分析和情感分析的基本原理
- 机器翻译和语音识别的应用
4. 计算机视觉:
- 计算机视觉的基本原理和技术
- 特征提取和图像分类的方法
- 人脸识别和物体检测的应用
5. 专家系统:
- 专家系统的定义和原理
- 知识表示和推理机制
- 专家系统在医疗和金融领域的应用案例
总结:
人工智能正以惊人的速度改变着我们的世界,它在各行各业中发挥着越来越重要的作用。
通过本文的介绍,我们对人工智能的定义、历史和基本原理有了更深入的了解,并了解了机器学习、自然语言处理、计算机视觉和专家系统等核心概念和应用。
然而,人工智能领域仍面临着许多挑战和机遇,进一步的研究和发展将为我们带来更多创新和惊喜。