1Cr13不锈钢与Q235碳钢的异种钢焊接技术
- 格式:doc
- 大小:31.00 KB
- 文档页数:12
摘要:1Cr13不锈钢与Q235碳钢的焊接属于异种钢焊接,而1Cr13不锈钢的焊接性较差,焊接接头容易出现裂纹缺陷。
在工程实践中通过认真分析,选用合适的焊接材料和焊接工艺,避免了缺陷的产生。
关键词:不锈钢;碳钢;焊接1 前言在石家庄岗黄水库供水二期工程中,检修闸门门槽主轨设计采用的结构是断面为40×60mm的1Cr13不锈钢焊接固定在厚度为50mm的Q235钢板上。
由于两种材料的热导率和线膨胀系数有很大差异,为了保证焊接质量,认真分析了两种材料的焊接性能及存在的问题,并据此制定了具体的焊接工艺措施。
2 焊接性能分析1Cr13不锈钢和Q235碳钢的化学成分及物理性能如表1、2所示。
1Cr13不锈钢的Cr含量在11.5%~13.5%,同时匹配有不大于0.15%的C,Cr本身能增加钢的奥氏体稳定性,加入碳后经固熔再空冷会发生马氏体转变,因此1Cr13不锈钢焊缝和热影响区焊后状态的组织为硬脆的马氏体组织。
另外,1Cr13的碳当量约为2.76%,因此它的焊接性较差。
由于1Cr13不锈钢的导热性较Q235碳钢差,焊接残余应力较大,加之本闸门主轨的刚度较大,所以从高温直接冷却到100~120℃以下时很容易产生冷裂纹。
由于焊接热循环的作用,1Cr13不锈钢有较大的过热倾向,晶粒易粗化,热影响区会出现粗大的铁素体和炭化物组织,塑性降低,冷却时能引起脆化,如果再有氢的作用,冷裂纹的倾向就更加明显。
3 焊接中的主要问题由于1Cr13不锈钢和Q235碳钢化学成分差异很大,因此它们的焊接属于异种钢焊接,要在熔焊的条件下获得可靠的焊接接头存在许多问题。
3.1 热导率和比热容的差异金属的热导率和比热容强烈地影响着被焊材料的熔化、熔池的形成,以及焊接区温度场和焊缝的凝固结晶。
1Cr13不锈钢热导率约为Q235碳钢的一半,这么大的差异可使两者的熔化不同步,熔池形成和金属结合不良,导致焊缝结晶条件变坏,焊缝性能和成形不良。
Q235碳钢与1Cr13不锈钢的异种钢焊接工艺研究作者:张含涛来源:《科技资讯》2011年第09期摘要:Q235碳钢与1Cr13不锈钢的焊接属于异种钢焊接,而1Cr13不锈钢的焊接性较差,焊接接头容易出现裂纹缺陷。
在异种焊接过程中通过认真分析,选用合适的焊接材料和焊接工艺,避免了异种钢焊接缺陷的产生,保证了焊接质量。
关键词:异种钢焊接 Q235碳钢 1Cr13中图分类号:TG457 文献标识码:A 文章编号:1672-3791(2011)03(c)-0102-01在某工程实践中把断面为40mm×60mm的1Cr13不锈钢焊接固定在厚度为50mm的Q235钢板上。
由于两种材料的热导率和线膨胀系数有很大差异,为了保证焊接质量,认真分析了两种材料的焊接性能及存在的问题,并据此制定了具体的焊接工艺措施。
1焊接性能分析Q235碳钢和1Cr13不锈钢的化学成分及物理性能如表1和表2所示。
1Cr13不锈钢的Cr 含量在11.5%~13.5%,同时匹配有不大于0.15%的C,Cr本身能增加钢的奥氏体稳定性,加入碳后经固熔再空冷会发生马氏体转变,因此1Cr13不锈钢焊缝和热影响区焊后状态的组织为硬脆的马氏体组织。
另外,1Cr13的碳当量约为2.76%,因此它的焊接性较差。
由于1Cr13不锈钢的导热性较Q235碳钢差,焊接残余应力较大,加之本闸门主轨的刚度较大,所以从高温直接冷却到100℃~120℃以下时很容易产生冷裂纹。
由于焊接热循环的作用,1Cr13不锈钢有较大的过热倾向,晶粒易粗化,热影响区会出现对接质量问题。
2 焊接中存在的问题金属的热导率和比热容强烈地影响着被焊材料的熔化、熔池的形成,以及焊接区温度场和焊缝的凝固结晶。
Q235碳钢热导率约为1Cr13不锈钢的两倍,这么大的差异可使两者的熔化不同步,熔池形成和金属结合不良,导致焊缝结晶条件变坏,焊缝性能和成形不良。
线膨胀系数的差异。
由于的线膨胀系数不同,造成它们在形成焊接连接之后的冷却过程中,焊缝两侧的收缩量不同,导致焊接接头出现复杂的高应力状态,进而加速裂纹的产生。
不锈钢与碳钢的异种钢焊接技术要点探究摘要:不锈钢与碳钢两种金属材料的化学成分和力学性能相差很大,所以把这两种材料焊接称为异种钢焊接,焊接中容易出现硬而脆的σ相(Fe- Cr)和碳化物( M23C6),选用合适的焊接填充材料、适当的焊接工艺参数,选择好的焊接方法,尽量减少焊接时脆性相的析出,确保焊接产品的耐腐蚀性能和力学性能。
碳钢与不锈钢焊接接头是用填料来确定其化学组成,通过对材料焊接特性进行分析,以保证焊缝耐腐蚀性和力学性能,同时优化焊接工艺及焊接操作方法,以此保证整体焊接的科学性与合理性。
关键词:不锈钢;碳钢;475℃脆性;碳化物:焊接线能量;熔合比。
引言:现代化社会发展趋势下,我国焊接方面取得长足发展与进步,工业产品不断更新及新材料不断出现带动了焊接工艺实施手段不断突破与革新,其中强度高、低磁性或无磁性、可塑性好的不锈钢耐腐蚀材料受到广泛使用,但其价格较高。
从效益角度来看,碳钢的强度可控性强且更易于焊接,价格也比不锈钢更具有优势,在特殊情况下也可作为常用材料进行切削加工。
据此,把不锈钢与碳钢焊接在一起是一种高效又经济的方法,也可以增加较高的社会效益和经济效益。
本文章以不锈钢与碳钢的异种钢焊接技术要点进行讨论,为不锈钢与碳钢焊接提供技术指导与帮助。
一、母材介绍1.1不锈钢:通常是指具有一定防腐能力的合金钢,其主要成分是铁素体中加入大于12%的铬(Cr)或大于8%的镍(Ni)以及其他一些元素。
其原理是铬镍元素与空气中的氧发生化学反应,在金属表面形成致密的氧化膜,增加金属的耐腐蚀性。
1.2碳钢:铁素体中碳含量超过0.2%低于1.7%的金属称为碳钢,可以通过正火、淬火、退火、回火来改变其力学性能和进行切削加工,含碳量越低材质越软,强度及硬度越低塑性越高,越易于焊接。
相反含碳量越高,强度及硬度越大塑性越低,越不易焊接。
二、焊接性能分析2.1焊接接头的脆化现象:不锈钢金属里含有铬,当熔池结晶时600℃—375℃温度区间通过时,易形成一种脆而硬的(Fe -Cr)化合物,使焊缝的韧性急剧下降,这就是475℃脆性[1],在这个温度区间时间停留越长化合物(Fe- Cr)越多。
不锈钢与碳钢的异种钢焊接技术研究摘要:现代工业是国民经济的主导产业,在建筑、交通、国防等事业发展过程中发挥了重要作用。
不锈钢与碳钢是工业中经常用到的材料,不锈钢与碳钢的焊接降低了企业采购不锈钢产品或材料的成本,所以不锈钢与碳钢的异种钢焊接技术十分重要。
本文分析了不锈钢碳钢和碳钢的焊接性能,指出不锈钢和碳钢异种焊接过程中的问题,并提出其焊接技术措施,以供参考。
关键词:不锈钢;碳钢;异种钢焊接;技术引言:经济社会不断发展,社会工业化水平逐步提升,企业对于不锈钢材料的需求越来越大,不锈钢是防锈设备、防腐设备的主要材料。
但是相对于普通钢材,不锈钢的价格更高,加重了企业采购原材料的成本,所以企业会选择将不锈钢与碳钢进行异种焊接,所以不锈钢和碳钢的异种焊接成为现阶段企业和钢材生产厂的研究重点。
一、焊接性能分析(一)物理性能1.不锈钢的物理性能焊缝形态:不锈钢焊缝的形态主要包括凸起、凹陷、脆性、裂纹等。
不良的焊缝形态可能会导致焊接件的强度和密封性降低,从而影响其使用寿命和安全性。
焊接变形:不锈钢焊接过程中会产生热变形和冷却变形,导致焊接件的尺寸和形状发生变化。
过大的变形可能会影响焊接件的精度和尺寸一致性,从而影响其功能和性能。
焊接残余应力:不锈钢焊接后会产生残余应力,可能会导致焊接件出现变形、裂纹等问题。
因此,需要在焊接过程中控制焊接温度和焊接速度,以减轻残余应力的影响。
2.碳钢的物理性能焊缝强度:焊缝强度不足可能会导致焊缝开裂、焊接件变形等问题。
因此,在焊接前需要进行材料的预处理和表面清洁,同时选择合适的焊接工艺和焊接材料,以提高焊缝强度。
韧性:焊接后的碳钢材料需要具备足够的韧性,以避免在使用中发生裂纹和变形等问题,影响焊接件韧性的因素包括焊接工艺、焊接材料、焊接温度和残余应力等。
塑性:焊接后的碳钢材料需要具备足够的塑性,以避免在使用中产生脆性断裂等问题。
影响焊接件塑性的因素包括焊接工艺、焊接材料、焊接温度和残余应力等。
1Cr13(马氏体)不锈钢的焊接工艺摘要:1Cr13不锈钢焊接工艺性能较差,冷却时易在焊缝和不完全熔化区、过热区产生裂纹,本文给出1Cr13不锈钢焊材的特点,详细阐述1Cr13不锈钢焊接工艺,包括焊材的选择,焊接电流焊接速度等焊接重要参数,及对焊接中遇到的问题的给出理论的分析并进行施焊实例对存在问题的给出对策。
一、前言1Cr13不锈钢在温度30℃以下时的弱腐蚀介质中,即在大气、蒸气、淡水中,具有良好的耐腐蚀性能,且价格便宜,因而该类不锈钢在机械制造中得到广泛地应用。
1Cr13不锈钢的焊接工艺性能较差,其主要是淬硬倾向大和过热倾向大,金属组织的塑性和韧性也有差别,冷却时易在焊缝和不完全熔化区、过热区产生裂纹,并在热影响区产生粗大的马氏体组织。
从提高焊缝的塑性这点出发,希望得到缓慢的冷却焊缝。
二、1Cr13不锈钢焊接的特点由于1Cr13不锈钢的塑性和韧性都差,冷却时易在焊缝上和热影响产生裂纹,因此需要缓慢地冷却焊缝和热影响区及过热区。
在焊接热循环的作用下,热影响区晶粒急剧胀大,从而使焊缝变脆,即使选用的焊接材料与母材匹配的情况下,焊缝金属也会产生脆化问题,要选用的焊接材料以含Cr、Ni要高些为宜。
三、1Cr13不锈钢的焊接1Cr13不锈钢的焊接,目前多采用焊条电弧焊。
焊接时宜选用较小的焊接电流和尽快的焊接速度以及窄焊道、分段跳跃焊,防止因应力集中产生裂纹。
文献规定,为了防止1Cr13马氏体钢焊接时产生裂纹,焊前需经200~400℃的预热,焊后缓冷到150~200℃。
针对1Cr13马氏体钢的焊接易产生裂纹,可选用含Cr+Ni的焊接材料进行施焊,同时在焊接时每焊50%~60%要进行锤击(30~50次为宜)目的是清除焊接应力,把拉应力变为压应力,防止焊缝裂纹。
四、对焊接中遇到的问题的分析母材1Cr13马氏体钢经探伤测定,出现连续性条状和点状的氢白点,初步认为是母材层状撕裂,导致焊接时产生裂纹。
因为母材中存在非金属夹杂物,像硫化物和硅酸盐等,在高温作用下产生变形,这是在轧制过程中轧成很薄的片状,呈片状分布。
焊接技术毕业论文昆明工业职业技术学院毕业论文论文题目:如何选择合适的焊接材料学生姓名:王元铖班级名称:2011级焊接技术及自动化班学号:2011222416指导教师:钟炳辉职称:高级技师班组负责人:苏之品定稿日期:2013年12月星期日目录摘要 (1)前言 (1)1焊接准备及其要点 (1)1.1质量保证措施 (1)2焊接性能分析 (1)3 焊接中的主要问题 (2)3.1 热导率和比热容的差异 (2)3.2 线膨胀系数的差异 (2)3.3 1Cr13不锈钢和Q235碳钢焊接发生的特性 (2)4 焊接工艺措施 (2)4.1 正确选择焊接材料 (2)4.2 预热温度和层间温度 (3)4.3 焊后温度的控制及回火热处理 (3)4.4 操作工艺 (3)5 结束语 (4)6参考文献 (5)摘要:材料焊接是决定焊接接头质量的关键因素之一,有人说焊接是七分材料三分工艺,不管此说正确与否,它确实表明焊接材料的重要性。
在电弧焊熔敷金属的抗拉强度相等或相趋于被焊母材金属的抗拉强度,此法主要适用于对结构钢焊条的选用,焊接材料从光焊条到薄药皮焊条、厚药皮焊条、埋弧焊丝、气体保护焊丝直到今天的药芯焊丝。
因缺乏保护作用,空气直接参与了焊接时的冶金过程,合理选择焊条熔敷金属的化学成分符合或接近被焊母材。
此法主要适用对不锈钢,耐侯钢,耐热钢焊条的合理选择,这样就能保证焊缝金属具有同母材一样的抗腐蚀性,热强性等性能以及与母材有良好的熔合与匹配。
经过了长时期的发展,每种新材料的出现都使得焊接的发展产生了一个新的飞跃。
如1Cr13不锈钢与Q235碳钢的焊接属于异种钢焊接,如何焊接它们及选择合适的焊接材料。
Q235碳钢与1Cr13不锈钢的焊接属于异种钢焊接,而1Cr13不锈钢的焊接性较差,焊接接头容易出现裂纹缺陷。
在异种焊接过程中通过认真分析,选用合适的焊接材料和焊接工艺,避免了异种钢焊接缺陷的产生,保证了焊接质量。
理论上认为:焊缝强度不宜过高于母材的强度,最好趋于等强度。
第三节异种钢的焊接要点异种钢焊接的主要问题是熔合线附近的金属韧性下降。
由于焊件经受加热和冷却的作用,在熔合线附近产生脆性的马氏体组织和渗碳层,若再受到热应力的作用,就很易产生裂纹。
焊接参数、接头形式、预热温度及操作技术等直接决定着焊缝的稀释率。
而稀释率又取决于母材金属的熔合比,如图2-1和式(2—2)所示。
当用E308-16、E308-15型焊条焊接奥氏体钢与低碳钢,或焊接异种低合金钢时,即使焊缝的稀释率控制在20%左右,也容易在熔合线附近出现脆性的过渡层:其宽度为0.1--0.8mm,金相组织属于马氏体类型,显著地恶化了接头的质量。
异种钢焊接接头的设计,应有助于焊缝稀释率的减少,应避免在某些焊缝中产生应力集中。
较厚的焊件对接焊时宜用X形坡口或双U形坡口,这样稀释率及焊后产生的内应力较小,但坡口的根部必须焊透。
如受结构限制而只能采用单面焊双面成形工艺时,则先用手工钨极氩弧焊进行打底层焊接,从第二层开始改用焊条电弧焊。
厚度相差较大的焊件,为防止产生过大的应力集中,不推荐采用异种钢焊接。
焊缝的稀释率与钢材的合金含量有关,在同样的熔化面积下,随着合金含量的增多而稀释率增大。
珠光体耐热钢单层对接焊的稀释率在20%~40%。
奥氏体不锈钢的稀释率比珠光体钢约高10%~20%。
焊接电流、焊条直径、焊接速度、焊条摆动方法及焊接层数的选择,应以减少母材金属的熔化和提高焊缝的堆积量为主要原则。
为减少焊缝金属的稀释率,一般采用小电流、细直径焊条及高的焊接速度进行焊接。
随着焊接电流的增大,焊缝稀释率增大。
采用多层多道焊,对于避免接头中的冷裂纹有着显著的效果。
当被焊的两种钢材之一是淬硬钢时,必须进行预热,其温度应根据焊接性差的钢材选择。
用奥氏体钢焊条焊接异种钢接头时,可适当降低预热温度或不预热。
焊接复杂结构时,先分件组装焊接,然后再整体拼装焊接比整体组装焊接好,有助于减小刚度及焊接残余应力。
装配时的定位焊截面不能太薄。
奥氏体不锈钢与其他钢材对接焊时,可在非不锈钢一侧的坡口边缘预先堆焊一层高铬高镍的金属,焊条牌号选用E309-16、E309-15。
奥氏体不锈钢管(1Cr18Ni9Ti)与碳钢板(Q235)的焊接摘要:本文通过对奥氏体不锈钢管(1Cr18Ni9Ti)与碳钢板(Q235)的焊接性能、焊接工艺和施焊方法的介绍,找到了两种异种钢材的焊接难点和关键,采用合理的焊接工艺,生产出合格产品。
关键词:奥氏体不锈钢、碳钢、焊接1前言随着我国经济的快速发展,钢结构在工业、农业及民用建筑中都得到了广泛的应用,人们在追求钢结构的坚固耐用的同时,多种装饰性材料也越来越多的运用到钢结构建筑中,如不锈钢、铝及铝合金、复合材料等,其中现在运用最多的是不锈钢。
近期,我公司承接了山大教学楼顶层一标志性构件,上端为直径300mm 厚度10mm的奥氏体不锈钢管,材质为1Cr18Ni9Ti,底座为直径800mm厚度20mm的碳钢钢板,材质为Q235。
由于两种材料不同,为了保证焊接质量,通过对焊接性和焊接特点的分析,制定了具体的焊接工艺措施。
2奥氏体不锈钢管(1Cr18Ni9Ti)与碳钢板(Q235)的焊接性和焊接特点分析奥氏体不锈钢管(1Cr18Ni9Ti)与碳钢板(Q235)的焊接是异种材质的焊接,它在焊接过程当中有许多的特殊问题,如:焊缝的稀释、热裂纹等。
奥氏体不锈钢管(1Cr18Ni9Ti)与碳钢板(Q235)的化学成分见下表:表1 奥氏体不锈钢管(1Cr18Ni9Ti)与碳钢板(Q235)的化学成分由表1可知,碳钢板(Q235)含碳量较低,可焊性较好,奥氏体不锈钢管(1Cr18Ni9Ti)含有18%左右的Cr和9%左右的Ni,而碳钢没有这些成分,焊接时如不添加一定量的Cr、Ni元素,由两种钢组成的焊缝金属其化学成分必然显著降低,即形成焊缝稀释。
焊缝稀释的结果是形成马氏体组织,使焊缝的力学性能变硬变脆,并产生冷裂纹。
解决焊缝稀释的方法就是采用适当高含量的鉻镍焊条和减小熔合比的工艺方法。
由于焊缝金属含有较高的合金元素,易产生某些低熔点共晶物,如:硫、镍形成的Ni3S2,其熔点为645℃。
摘要:1Cr13不锈钢与Q235碳钢的焊接属于异种钢焊接,而1Cr13不锈钢的焊接性较差,焊接接头容易出现裂纹缺陷。
在工程实践中通过认真分析,选用合适的焊接材料和焊接工艺,避免了缺陷的产生。
关键词:不锈钢;碳钢;焊接1 前言在石家庄岗黄水库供水二期工程中,检修闸门门槽主轨设计采用的结构是断面为40×60mm的1Cr13不锈钢焊接固定在厚度为50mm的Q235钢板上。
由于两种材料的热导率和线膨胀系数有很大差异,为了保证焊接质量,认真分析了两种材料的焊接性能及存在的问题,并据此制定了具体的焊接工艺措施。
2 焊接性能分析1Cr13不锈钢和Q235碳钢的化学成分及物理性能如表1、2所示。
1Cr13不锈钢的Cr含量在11.5%~13.5%,同时匹配有不大于0.15%的C,Cr本身能增加钢的奥氏体稳定性,加入碳后经固熔再空冷会发生马氏体转变,因此1Cr13不锈钢焊缝和热影响区焊后状态的组织为硬脆的马氏体组织。
另外,1Cr13的碳当量约为2.76%,因此它的焊接性较差。
由于1Cr13不锈钢的导热性较Q235碳钢差,焊接残余应力较大,加之本闸门主轨的刚度较大,所以从高温直接冷却到100~120℃以下时很容易产生冷裂纹。
由于焊接热循环的作用,1Cr13不锈钢有较大的过热倾向,晶粒易粗化,热影响区会出现粗大的铁素体和炭化物组织,塑性降低,冷却时能引起脆化,如果再有氢的作用,冷裂纹的倾向就更加明显。
3 焊接中的主要问题由于1Cr13不锈钢和Q235碳钢化学成分差异很大,因此它们的焊接属于异种钢焊接,要在熔焊的条件下获得可靠的焊接接头存在许多问题。
3.1 热导率和比热容的差异金属的热导率和比热容强烈地影响着被焊材料的熔化、熔池的形成,以及焊接区温度场和焊缝的凝固结晶。
1Cr13不锈钢热导率约为Q235碳钢的一半,这么大的差异可使两者的熔化不同步,熔池形成和金属结合不良,导致焊缝结晶条件变坏,焊缝性能和成形不良。
3.2 线膨胀系数的差异由于1Cr13不锈钢与Q235碳钢的线膨胀系数不同,造成它们在形成焊接连接之后的冷却过程中,焊缝两侧的收缩量不同,导致焊接接头出现复杂的高应力状态,进而加速裂纹的产生。
3.31Cr13不锈钢和Q235碳钢焊接时同样存在焊缝稀释和形成过渡层的问题,导致Q235碳钢一侧焊缝形成脱碳层而1Cr13不锈钢一侧形成增碳层,随着扩散的持久,使Q235碳钢一侧的含碳量降低,变成了铁素体组织,并使焊接接头的焊缝组织成为奥氏体加铁素体。
4 焊接工艺措施为了获得无裂纹的焊接接头,应尽量避免焊接接头熔合线组织与焊缝金属的不一致性,使1Cr13不锈钢一侧没有显著的稀释现象,在工艺上采取了以下措施:4.1 正确选择焊接材料1Cr13不锈钢与Q235碳钢焊接接头的焊缝金属化学成分主要取决于填充金属。
为了保证结构使用性能的要求,焊缝金属的成分应力求接近于其中一种钢的成分。
为了尽量减小构件的焊接变形,采取了两名电焊工对称焊接的手工弧焊方法,焊条选用E5015(或E309),焊缝金属的Cr当量为5%~6%,经回火处理后具有良好的力学性能。
4.2 预热温度和层间温度焊前预热和层间温度的控制对减少裂纹的形成有一定影响。
预热温度过高,会导致焊缝的冷却速度变慢,有可能引起焊接接头晶粒边界碳化物的析出和形成铁素体组织,大大地降低接头的冲击韧性。
预热温度过低,则起不到预热的作用,无法防止裂纹的形成。
1Cr13不锈钢与Q235碳钢焊接的预热温度和层间温度要控制在150~300℃。
4.3 焊后温度的控制及回火热处理焊后必须缓慢冷却至100~150℃,保温0.5~1h,使焊接接头的组织全部转变为马氏体,随后才能升温回火,进行热处理。
回火温度应控制在700~730℃范围内,保温时间在4~5h。
4.4 操作工艺为防止不锈钢焊接一侧晶体粗大,产生脆化和裂纹,还要采取以下工艺措施:1选用小的热输入,小的焊接电流,较快的焊接速度。
2采用短弧焊,电弧稍偏向碳钢母材侧,使两母材金属受热均匀一致。
3由于需要多层焊,前一层焊缝冷却至200~300℃后焊下一道焊缝。
4焊后进行缓冷。
具体焊接工艺参数选择如表3。
5 结语对于1Cr13不锈钢与Q235碳钢的异种钢焊接,采用手工电弧焊,焊条选用E5015或E309,选择合适的焊前预热温度、焊接电流及速度等焊接工艺参数并进行适当的焊后热处理,就能获得良好的焊接效果,满足焊接结构的使用要求。
本工程由于采用了合理的焊接材料和焊接工艺,焊接接头成形良好,未见裂纹的产生。
锅炉汽包、联箱和厚壁管的焊接问题锅炉汽包、联箱和厚壁管的焊接问题摘要锅炉汽包、联箱和厚壁管的缺陷返修补焊,是一项难度较大的工作,本文收集了我国某些火电厂上述部件的缺陷修复实例,按同种钢焊接与异种钢焊接,筒体环缝补焊与管座角缝补焊的工艺、检验、热处理等分类作重点介绍。
关键词焊接汽包联箱厚壁管1 前言锅炉汽包、联箱和蒸汽管道因不直接受热,机械应力一般较小。
它的焊接缺陷,往往在投运后许多年才暴露。
一旦发现,如不及时处理将严重威胁安全运行。
汽包、联箱和蒸汽管道壁厚较大,材料有低碳钢也有合金,这些部件的焊接,有同种钢焊接也有异种钢焊接,对焊接要求较高,尤其是在电厂现场焊接条件较差,如何保证焊接质量应十分重视。
2 等壁厚同种钢的环焊低碳钢环炉太原第一热电厂2号炉是前苏联巴尔纳乌尔锅炉厂出品的中温中压炉。
汽包外径1382mm,壁厚48mm,长8505mm,20号钢制成,原焊缝为埋弧自动焊。
该锅炉已运行三十多年,于1992年 12月大修时发现汽包环焊缝多处裂纹,其中超标的两段见图1。
A段裂纹长400(907-557)mm,B段长160(290-130)mm。
该汽包为20号钢,焊接性能好。
制造厂未提供缺陷处理的原始资料,安装时和投产后亦无焊缝裂纹记录,单凭这次大修的发现,很难对裂纹的产生作出正确的原因分析。
现将该厂现场修复的坡口加工、焊接和热处理的工艺,以及焊后检验等扼要介绍如下。
图1 汽包环焊缝裂纹示意图补焊坡口开在汽包外壁,采用机械方法备制坡口。
焊条选用507,1~4层用32,其余各层用4焊条。
为了防止裂纹的产生,焊前后进行热处理,热处理采用远红外加热器,控制设备为WDK-3120可编程温度控制柜和DKJ-C自动控制仪。
焊后质量检验合格。
锰钢环焊湖南鲤鱼江电厂8号炉型号为DG300/100-4,汽包参数为1600×90mm,19Mn5钢,工作压力1 MPa,饱和温度320℃。
该炉1981年投运,1991年在东北电管局锅炉检测中心派员指导下,经超声波探伤,发现一条编号为H2的环焊缝和一条Z3纵焊缝有裂纹群。
H2裂纹走向均为垂直于环缝的裂纹群,绝大部分裂纹埋藏深度范围为距内壁20~70mm处,裂纹长度为5~2 2mm,裂纹沿H2环缝周向分布范围约90mm,见图2。
Z3纵缝裂纹走向为八字形,与汽包纵向轴线成45°的夹角,裂纹长7~16mm,18条互不相连的裂纹。
H2裂纹为密集型裂纹群,裂纹群区域内的金属材料质地已恶化。
经强度计算H2裂纹群区域实际对强度的有效壁厚,已小于汽包强度计算要求的最小壁厚,属不安全、应修理的缺陷。
Z3裂纹群计算结果尚可满足强度要求,可监督运行。
1995年湖南省电力局决定对汽包H2环缝裂纹群进行挖补处理。
图2 H2环缝横向裂纹部位图由于裂纹最大埋藏深度达80mm,如裂纹清除单纯只采用机械方法,则工作量很大,该厂采取先用碳弧气刨刨除法,刨除到离缺陷最深处位置约20mm处,然后采用机械方法清除剩余裂纹。
此法既减小了工作量又避免气刨时扩大裂纹。
碳弧气刨前,先用乙炔焰预热控制区域到10 0~150℃。
当裂纹分布区经碳弧气刨后还剩有约20mm的金属时,改用角向砂轮磨削。
补焊坡口修磨成形后,须经渗透探伤检查,证明刨削打磨过程未出现任何新裂纹或原裂纹延长才能施焊。
为了避免焊接应力导致补焊区产生裂纹,该电厂采取如下措施:a 焊前预热200~250℃,补焊中保持此温度;b 按程序补焊,即由坡口两侧往中间进行,采取单向不摆动的运条法;c 每焊完一道,立即跟踪锤击消除残余应力;d 焊接电流不宜太大。
焊接速度不要太快;e 当补焊到工作量的1/3时,进行中间消氢处理,消氢处理温度为300~400℃,保温2h;f 补焊完毕即进行消氢处理和去应力退火。
图3系整个热处理工艺曲线。
1 补焊2 中间消氢2h3 继续补焊4 焊后消氢2h图3 鲤鱼江热处理工艺曲线焊补热处理后质量鉴定十分重要,包括外观检查、硬度测量、无损探伤和汽包弯曲度测定。
该汽包补焊后检验合格,现已经过数年运行考验。
3 锰钢和碳钢厚壁管之间的角焊锰钢和低碳钢都属可焊性较好的钢种,但因为是大管径、厚壁、异种钢的角焊,且用于高温高压锅炉,焊缝缺陷将威胁到机组的安全运行。
广西合山电厂6号炉为DG410/100-3型。
汽包材料19Mn、外径1780mm、壁厚90mm。
汽包4根集中下降管管座材料为20号钢,管外径467mm,管壁厚80mm。
该炉1978年投运后到1994年大修时累计运行62816h。
1982年首次发现汽包集中下降管一管座角焊处有一面积28×12mm2、深约90mm的面状缺陷。
后与制造厂共同检验、判断为未熔合。
根据JB1152-81,该缺陷尚未超标。
1985年复检,该缺陷无变化,但在相距15mm处又发现一17×13mm2面状缺陷,按JB1152-81仍未超标。
在以后的测试中,两缺陷端点的距离逐年减小,至1994年大修探伤发现,两缺陷相邻端点的探伤回波相互覆盖,显示为1个面状大缺陷。
改变探头晶片尺寸、频率和入射方式等进行核查,也证明两个已并成1个缺陷。
缺陷面积约55×22mm2,距探面深(86~96)mm,是一条朝向汽包壁厚方向的裂纹。
裂纹产生和扩展的原因,首先是制造厂出厂时未查出角焊处已有的块状未熔合。
该炉投运20 年来启停炉超过200次,又有两年机组参加调峰的记录,促使块状未熔合发展。
在裂纹部位的内壁用远红外加热到150℃。
加热面积以缺陷为中心,向周围扩展(350~400)m m范围。
用碳弧气刨刨至适当的深度,再用机械方法彻底剔除裂纹,然后打磨修成补焊的坡口,见图4。
图4 合山电厂汽包角焊剔除裂纹后坡口示意图热处理采用远红外线幅射、复带式远红外陶瓷块。
全覆盖法远红外可按下式计算其容量。
P=KDS式中〖WB〗P--加热功率,W;D--联箱或管座直径,mm;S--联箱或管座壁厚,mm;K--系数,可选。
联箱,管座mm^2。
合山电厂补焊后热处理工艺按图5进行,升温时内外壁温差控制在40±10℃。
降温时到300℃ 以下缓冷至环境温度。
热处理后进行上述各项检验、证明合格。
图5 合山电厂汽包管座重焊热处理曲线4 以X20CrMoV121为管材的角焊X20CrMoV121(F12)为马氏体不锈耐热钢,广泛用于电厂中500~600℃以下的蒸汽管道和联箱等。