第6章 树和二叉树的作业
- 格式:doc
- 大小:23.50 KB
- 文档页数:1
数据结构-习题-第六章-树和二叉树E F D G A B / + + * - C * 第六章 树和二叉树一、选择题1.已知一算术表达式的中缀形式为 A+B*C-D/E ,后缀形式为ABC*+DE/-,其前缀形式为( )A .-A+B*C/DE B. -A+B*CD/EC .-+*ABC/DE D. -+A*BC/DE【北京航空航天大学 1999 一、3 (2分)】2.算术表达式a+b*(c+d/e )转为后缀表达式后为( )【中山大学 1999 一、5】A .ab+cde/*B .abcde/+*+C .abcde/*++D .abcde*/++ 3. 设有一表示算术表达式的二叉树(见下图), 它所表示的算术表达式是( )【南京理工大学1999 一、20(2分)】A. A*B+C/(D*E)+(F-G)B.(A*B+C)/(D*E)+(F-G)C. (A*B+C)/(D*E+(F-G ))D.A*B+C/D*E+F-G4. 设树T 的度为4,其中度为1,2,3和4的结点个数分别为4,2,1,1 则T 中的叶子数为( )A .5B .6C .7D.8【南京理工大学 2000 一、8 (1.5分)】5. 在下述结论中,正确的是()【南京理工大学 1999 一、4 (1分)】①只有一个结点的二叉树的度为0; ②二叉树的度为2;③二叉树的左右子树可任意交换;④深度为K的完全二叉树的结点个数小于或等于深度相同的满二叉树。
A.①②③ B.②③④ C.②④ D.①④6. 设森林F对应的二叉树为B,它有m个结点,B的根为p,p的右子树结点个数为n,森林F中第一棵树的结点个数是()A.m-n B.m-n-1 C.n+1 D.条件不足,无法确定【南京理工大学2000 一、17(1.5分)】7. 树是结点的有限集合,它( (1))根结点,记为T。
其余结点分成为m(m>0)个((2))的集合T1,T2,…,Tm,每个集合又都是树,此时结点T称为Ti的父结点,Ti称为T的子结点(1≤i≤m)。
第六章作业一、选择题1.若不考虑结点的数据信息的组合情况,具有3个结点的树共有种()形态,而二叉树共有( )种形态。
A.2 B。
3C。
4 D。
52.对任何一棵二叉树,若n0,n1,n2分别是度为0,1,2的结点的个数,则n0= ()A.n1+1B.n1+n2C.n2+1 D。
2n1+13。
已知某非空二叉树采用顺序存储结构,树中结点的数据信息依次存放在一个一维数组中,即ABC□DFE□□G□□H□□,该二叉树的中序遍历序列为()A。
G,D,B,A,F,H,C,E B。
G,B,D,A,F,H,C,EC。
B,D,G,A,F,H,C,E D.B,G,D,A,F,H,C,E4、具有65个结点的完全二叉树的高度为()。
(根的层次号为1)A.8 B.7 C.6 D.55、在有N个叶子结点的哈夫曼树中,其结点总数为()。
A 不确定B 2NC 2N+1D 2N—16、以二叉链表作为二叉树存储结构,在有N个结点的二叉链表中,值为非空的链域的个数为().A N-1B 2N-1C N+1D 2N+17、树的后根遍历序列等同于该树对应的二叉树的( )。
A. 先序序列B。
中序序列 C. 后序序列8、已知一棵完全二叉树的第6层(设根为第1层)有8个叶结点,则完全二叉树的结点个数最多是()A.39 B.52 C.111 D。
1199、在一棵度为4的树T中,若有20个度为4的结点,10个度为3的结点,1个度为2的结点,10个度为1的结点,则树T的叶节点个数是()A.41 B.82 C。
113 D.122二、填空题。
1、对于一个具有N个结点的二叉树,当它为一颗_____ 二叉树时,具有最小高度。
2、对于一颗具有N个结点的二叉树,当进行链接存储时,其二叉链表中的指针域的总数为_____ 个,其中_____个用于链接孩子结点,_____ 个空闲着。
3、一颗深度为K的满二叉树的结点总数为_____ ,一颗深度为K的完全二叉树的结点总数的最小值为_____ ,最大值为_____ 。
第六章 树和二叉树第一次作业6.1试分别画出具有3个结点的树和3个结点的二叉树的所有不同形态。
分析:一棵度为2的有序树与一棵二叉树的区别是:度为2的树有二个分支,没有左右之分;一棵二叉树也有两个分支,但有左右之分,且左右不能交换.33个结点的二叉树:6.4一个深度为H 的满k 叉树有如下性质:第H 层上的结点都是叶子结点,其余各层上每个结点都有k 棵非空子树。
如果按层次顺序(同层自左至右)从未有过开始对全部结点编号,问:(1) 各层的结点数目是多少?(2) 编号为i 的结点的双亲结点(若存在)的编号是多少?(3)编号为i 的结点的第j 个孩子结点(若存在)的编号是多少?(4) 编号为i 的结点有右兄弟的条件是什么?其右兄弟的编号是多少? 解:(1) K i -1(2) i =1时,该节点为根,无父节点;否则其父节点编号为(2)i k k +-⎢⎥⎢⎥⎣⎦(k ≥2) 分析:编号为p 的孩子结点的范围[(p -1)*k +2, p *k +1] 得出(i -1)/k ≤p ≤(i -2)/k +1(3) K *i +j +1-k(4)(i -1)MOD K <>0,该结点有右兄弟,其右兄弟的编号是i +16.5 已知一棵度为k 的树中有1n 个度为1的结点,2n 个度为2的结点,…,k n 个度为k 的结点,问该树中有多少个叶子结点?解: ∑=-+=k 1i i 0n )1i (1n分析:结点总数:n=n 0+n 1+n 2+……+n k ,n=1+n 1+2n 2+……+kn k所以得n 0 = n 2 + 2n 3 + …… + (k -1)n k + 1 6.6 已知在一棵含有n 个结点的树中,只有度为k 的分支结点和度为0的叶子结点,试求该树的叶子结点数目解:度:一个结点含有的子树的个数称为该节点的度;设有n k 个度为k 的分支结点,n 0个度为0的分支结点各点度数总和为:n=k*n k +1,最后计算得到叶节点个数为n-(n-1)/k 。
一、基础知识题6.1设树T的度为4,其中度为1,2,3和4的结点个数分别为4,2,1,1,求树T中的叶子数。
【解答】设度为m的树中度为0,1,2,…,m的结点数分别为n0, n1, n2,…, nm,结点总数为n,分枝数为B,则下面二式成立n= n0+n1+n2+…+nm (1)n=B+1= n1+2n2 +…+mnm+1 (2)由(1)和(2)得叶子结点数n0=1+即: n0=1+(1-1)*4+(2-1)*2+(3-1)*1+(4-1)*1=86.2一棵完全二叉树上有1001个结点,求叶子结点的个数。
【解答】因为在任意二叉树中度为2 的结点数n2和叶子结点数n0有如下关系:n2=n0-1,所以设二叉树的结点数为n, 度为1的结点数为n1,则n= n0+ n1+ n2n=2n0+n1-11002=2n0+n1由于在完全二叉树中,度为1的结点数n1至多为1,叶子数n0是整数。
本题中度为1的结点数n1只能是0,故叶子结点的个数n0为501.注:解本题时要使用以上公式,不要先判断完全二叉树高10,前9层是满二叉树,第10层都是叶子,……。
虽然解法也对,但步骤多且复杂,极易出错。
6.3 一棵124个叶结点的完全二叉树,最多有多少个结点。
【解答】由公式n=2n0+n1-1,当n1为1时,结点数达到最多248个。
6.4.一棵完全二叉树有500个结点,请问该完全二叉树有多少个叶子结点?有多少个度为1的结点?有多少个度为2的结点?如果完全二叉树有501个结点,结果如何?请写出推导过程。
【解答】由公式n=2n0+n1-1,带入具体数得,500=2n0+n1-1,叶子数是整数,度为1的结点数只能为1,故叶子数为250,度为2的结点数是249。
若完全二叉树有501个结点,则叶子数251,度为2的结点数是250,度为1的结点数为0。
6.5 某二叉树有20个叶子结点,有30个结点仅有一个孩子,则该二叉树的总结点数是多少。
第六章习题1.试分别画出具有3个结点的树和3个结点的二叉树的所有不同形态。
2.对题1所得各种形态的二叉树,分别写出前序、中序和后序遍历的序列。
3.已知一棵度为k的树中有n1个度为1的结点,n2个度为2的结点,……,nk个度为k的结点,则该树中有多少个叶子结点并证明之。
4.假设一棵二叉树的先序序列为EBADCFHGIKJ,中序序列为ABCDEFGHIJK,请画出该二叉树。
5.已知二叉树有50个叶子结点,则该二叉树的总结点数至少应有多少个?6.给出满足下列条件的所有二叉树:①前序和后序相同②中序和后序相同③前序和后序相同7. n个结点的K叉树,若用具有k个child域的等长链结点存储树的一个结点,则空的Child 域有多少个?8.画出与下列已知序列对应的树T:树的先根次序访问序列为GFKDAIEBCHJ;树的后根次序访问序列为DIAEKFCJHBG。
9.假设用于通讯的电文仅由8个字母组成,字母在电文中出现的频率分别为:0.07,0.19,0.02,0.06,0.32,0.03,0.21,0.10请为这8个字母设计哈夫曼编码。
10.已知二叉树采用二叉链表存放,要求返回二叉树T的后序序列中的第一个结点指针,是否可不用递归且不用栈来完成?请简述原因.11. 画出和下列树对应的二叉树:12.已知二叉树按照二叉链表方式存储,编写算法,计算二叉树中叶子结点的数目。
13.编写递归算法:对于二叉树中每一个元素值为x的结点,删去以它为根的子树,并释放相应的空间。
14.分别写函数完成:在先序线索二叉树T中,查找给定结点*p在先序序列中的后继。
在后序线索二叉树T中,查找给定结点*p在后序序列中的前驱。
15.分别写出算法,实现在中序线索二叉树中查找给定结点*p在中序序列中的前驱与后继。
16.编写算法,对一棵以孩子-兄弟链表表示的树统计其叶子的个数。
17.对以孩子-兄弟链表表示的树编写计算树的深度的算法。
18.已知二叉树按照二叉链表方式存储,利用栈的基本操作写出后序遍历非递归的算法。
第六章树和二叉树作业一、选择题(每题2分,共24分)。
1. 一棵二叉树的顺序存储情况如下:树中,度为2的结点数为( C )。
A.1 B.2 C.3 D.42. 一棵“完全二叉树”结点数为25,高度为(B )。
A.4 B.5 C.6 D.不确定3.下列说法中,(B )是正确的。
A. 二叉树就是度为2的树B. 二叉树中不存在度大于2的结点C. 二叉树是有序树D. 二叉树中每个结点的度均为24.一棵二叉树的前序遍历序列为ABCDEFG,它的中序遍历序列可能是(B )。
A. CABDEFGB. BCDAEFGC. DACEFBGD. ADBCFEG5.线索二叉树中的线索指的是(C )。
A.左孩子 B.遍历 C.指针 D.标志6. 建立线索二叉树的目的是(A )。
A. 方便查找某结点的前驱或后继B. 方便二叉树的插入与删除C. 方便查找某结点的双亲D. 使二叉树的遍历结果唯一7. 有 D )示意。
A.B.C.D.8. 一颗有2046个结点的完全二叉树的第10层上共有(B )个结点。
A. 511B. 512C. 1023D. 10249. 一棵完全二叉树一定是一棵(A )。
A. 平衡二叉树B. 二叉排序树C. 堆D. 哈夫曼树10.某二叉树的中序遍历序列和后序遍历序列正好相反,则该二叉树一定是( C )的二叉树。
A .空或只有一个结点B .高度等于其结点数C .任一结点无左孩子D .任一结点无右孩子11.一棵二叉树的顺序存储情况如下:1 2 3 4 5 6 7 8 9 10 11 12 13 14 15A B C D E 0 F 0 0 G H 0 0 0 X结点D 的左孩子结点为( D )。
A .EB .C C .FD .没有12.一棵“完全二叉树”结点数为25,高度为( B )。
A .4B .5C .6D .不确定二、填空题(每空3分,共18分)。
1. 树的路径长度:是从树根到每个结点的路径长度之和。
对结点数相同的树来说,路径长度最短的是 完全 二叉树。
第六章 树和二叉树一、选择题1.已知一算术表达式的中缀形式为 A+B*C-D/E ,后缀形式为ABC*+DE/-,其前缀形式为( )A .-A+B*C/DE B. -A+B*CD/E C .-+*ABC/DE D.-+A*BC/DE【北京航空航天大学 1999 一、3 (2分)】2.算术表达式a+b*(c+d/e )转为后缀表达式后为( )【中山大学 1999 一、5】A .ab+cde/*B .abcde/+*+C .abcde/*++D 3. 设有一表示算术表达式的二叉树(见下图),它所表示的算术表达式是( ) 【南京理工大学1999 一、20(2分)】 A. A*B+C/(D*E)+(F-G) B. (A*B+C)/(D*E)+(F-G) C. (A*B+C)/(D*E+(F-G )) D. A*B+C/D*E+F-G 4. 设树T 的度为4,其中度为1,2,3和4的结点个数分别为4,2,1,1 则T 中的叶子数为( )A .5B .6C .7D .8【南京理工大学 2000 一、8 (1.5分)】5. 在下述结论中,正确的是( )【南京理工大学 1999 一、4 (1分)】①只有一个结点的二叉树的度为0; ②二叉树的度为2; ③二叉树的左右子树可任意交换;④深度为K 的完全二叉树的结点个数小于或等于深度相同的满二叉树。
A .①②③B .②③④C .②④D .①④6. 设森林F 对应的二叉树为B ,它有m 个结点,B 的根为p,p 的右子树结点个数为n,森林F 中第一棵树的结点个数是( )A .m-nB .m-n-1C .n+1D .条件不足,无法确定 【南京理工大学2000一、17(1.5分)】7. 树是结点的有限集合,它( (1))根结点,记为T 。
其余结点分成为m (m>0)个((2))的集合T1,T2, …,Tm ,每个集合又都是树,此时结点T 称为Ti 的父结点,Ti 称为T的子结点(1≤i ≤m )。
第6章树和二叉树第 6 章树和二叉树6.1 已知一棵树如图所示,回答下列问题:(1) 哪个是根结点?(2) 哪些是叶子结点?(3) 哪个是结点 G 的双亲?(4) 哪些是结点 G 的祖先?(5) 哪些是结点 B 的孩子?(6) 哪些是结点B的子孙?(7) 哪些是结点 E 的兄弟?(8) 结点 B 和 H 的层次号分别是什么 ?(9) 树的深度是多少?(10) 以结点 C 为根的子树的深度是多少? 【6.1 解】:(1) A(2) K, F,G,H,I,J(3) B(4) B,A(5) E,F,G(6) E,F,G,K(7) F,G(8) 2, 3(9) 4(10) 26.2 在结点个数为n(n>1)的各棵树中,最小的高度是多少?它有多少个叶结点?多少个分支结点?最大的高度树是多少?它有多少个叶结点?多少个分去结点?【6.2解】结点个数为n时,高度最小的树高度为1,有2层;它有n-1个叶结点,1个分支结点;高度最大的树的高度为n-1,有n层;它有1个叶结点,n-1个分支结点。
6.3简述树与二叉树的区别?【6.3解】二叉树的度最大为2,而树的度可以大于2;二叉树的每个结点的孩子有左、右之分,而树中结点的孩子无左右之分。
6.4 n(n>1)个结点的各棵二叉树中,最小的高度(h≥1)多少?最大的高度是多少?【6.4解】最小高度为:⎣⎦n2log+1,此时树为完全二叉树;最大高度为n,比如一棵斜二叉树。
6.5如果一棵树有n1个度为1的结点,有n2个度为2的结点,…,n m个度为m的结点,试问有多少个度为0的结点?试推导之。
【6.5解】设叶子结点数为n0,则树中结点数和总度数分别为: 结点数=n0+n1+n2+...+n m总度数=n1+2n2+...+m×n m结点数等于总度数加1,所以得到:n0=∑=+-miini21))1((6.6如果已知一棵二叉树有20个叶子结点,有10个结点仅有左孩子,15个结点仅有右孩子,求出该二叉树的结点数目。
第6章树和二叉树
一、基础知识题
1.在结点个数为n(n>1)的各棵树中,高度最小的树的高度是多少?它有多少个叶结点?多少个分支结点?高度最大的树的高度是多少?它有多少个叶结点?多少个分支结点?
2.试分别画出具有3个结点的树和3个结点的二叉树的所有不同形态。
3.如果一棵树有n1个度为1的结点,有n2个度为2的结点,…,n m个度为m 的结点,试问有多少个度为0的结点?试推导之。
4.试分别找出满足以下条件的所有二叉树:
(1)二叉树的前序序列与中序序列相同;
(2)二叉树的中序序列与后序序列相同;
(3)二叉树的前序序列与后序序列相同。
5.填空题
(1)对于一棵具有n个结点的树,该树中所有结点的度数之和为。
(2)假定一棵三叉树的结点个数为50,则它的最小高度为,最大高度为。
(3)一棵高度为h的四叉树中,最多含有结点。
(4)在一棵三叉树中,度为3的结点数有2个,度为2的结点数有1个,度为1的结点数为2个,那么度为0的结点数有个。
(5)一棵高度为5的满二叉树中的结点数为个,一棵高度为3的满四叉树中的结点数为个。
(6)在一棵二叉树中,假定度为2的结点有5个,度为1的结点有6个,则叶子结点数有个。
(7)对于一棵含有40个结点的理想平衡树,它的高度为。
(8)若对一棵二叉树从0开始进行结点编号,并按此编号把它顺序存储到一堆数组a中,即编号为0的结点存储到a[0]中,其余类推,则a[i]元素的左子女结点为,右子女结点为,双亲结点(i≥1)为。