医学统计方法选择流程
- 格式:doc
- 大小:129.50 KB
- 文档页数:9
标题:深度剖析肺功能参数正常预计值的获取方法与流程一、概述在临床医学中,肺功能参数的正常预计值是评估肺功能的重要指标之一,而获取这些参数的方法和流程对于临床医生和研究人员来说至关重要。
本文将从简单介绍肺功能参数的含义和重要性开始,逐步深入分析肺功能参数正常预计值的获取方法与流程,以帮助读者全面理解这一主题。
二、肺功能参数的含义和重要性肺功能参数是指用来评估呼吸系统功能状态的指标,包括肺活量、通气功能、弹性阻力等多个方面。
这些参数的正常预计值对于判断个体的肺功能状态、诊断呼吸系统疾病以及制定治疗方案都具有重要意义。
获取准确的正常预计值是非常必要的。
三、肺功能参数正常预计值的获取方法1. 临床研究法通过对大量健康人裙进行肺功能参数测量,并进行统计学分析,得出正常预计值。
这种方法需要较长的时间和大量的样本数据,但具有较高的科学性和代表性。
2. 标准参考法借鉴国际上公认的肺功能参数正常预计值标准,如美国国家卫生研究院(NIH)的标准参考值、欧洲呼吸学会(ERS)的标准参考值等。
这种方法简单直接,但可能存在地域和种族差异。
3. 专家共识法由多个专家组成小组,经过长时间的讨论和研究,达成一致意见得出肺功能参数的正常预计值。
这种方法融合了多方意见,可以更好地反映实际情况。
四、肺功能参数正常预计值的获取流程1. 数据采集选择健康人裙进行肺功能参数的测量和数据采集,包括芳龄、性莂、身高、体重等基本信息,并注意排除吸烟、有呼吸系统疾病等影响因素。
2. 统计分析对采集的数据进行统计学分析,包括均值、标准差、置信区间等指标,以及不同芳龄、性莂、身高、体重等情况下的分析。
3. 结果解读根据统计分析的结果,得出肺功能参数的正常预计值,并对结果进行解读和讨论,包括与国际标准的比较等。
五、个人观点和理解肺功能参数的正常预计值是进行肺功能评估和疾病诊断的重要依据,其获取方法和流程需要科学严谨,同时也需要考虑到地域和种族的差异。
医学界需要进一步加强对肺功能参数正常预计值的研究和标准化,以更好地为临床医生和研究人员提供参考。
医学论文中统计图表的正确使用在医学研究中,统计图表是表达和分析数据的重要工具。
本文将介绍如何在论文中正确使用统计图表,以提高研究成果的可读性和可信度。
关键词:医学论文、统计图表、数据表达、数据分析医学论文中通常需要处理大量的数据,包括临床试验、流行病学调查、基因组学等多方面的信息。
统计图表作为一种直观的数据表达方式,能够清晰地呈现研究结果,从而帮助读者更好地理解数据分析的结论。
在选择统计图表时,应根据研究数据的类型、数量和所要呈现的信息进行选择。
例如,对于比较两组数据的均值差异,可以选择柱状图或线图;对于展示多组数据间的关系,可以选择散点图或饼图。
选择合适的图表后,需要正确设置图表的各项参数。
例如,坐标轴的标签、图例、标题等,以便清晰地表达图表的含义。
同时,还需注意图表的尺度,确保数据表达的准确性。
选择正确的数据分析方法对于统计图表的使用至关重要。
常用的统计分析方法包括描述性统计、方差分析、卡方检验等。
作者需根据数据的特点和研究目的选择合适的方法进行数据分析。
统计图表中的尺度应设置合理,确保数据的准确性。
例如,在柱状图中,各柱子的高度应与其所代表的数据成比例;在线图中,线条的起伏应能反映出数据的变化。
在展示实验数据时,通常会涉及标准误差。
标准误差反映了数据散布的范围,帮助读者更好地理解数据的波动情况。
在制作图表时,应正确计算和标注标准误差。
为了使图表更加完整和易于理解,通常需要提供一些补充数据。
例如,可以在图表下方列出数据的平均值、中位数等指标,以便读者对数据进行整体把握。
下面通过一个实例来说明如何正确使用统计图表。
在一项探讨高血压与年龄关系的研究中,研究者收集了500名患者的血压和年龄数据,并采用统计图表来呈现分析结果。
由于要探讨的是高血压与年龄之间的关系,可以选择散点图来展示数据点,同时绘制一条趋势线来反映二者的关系。
在散点图中,横坐标为年龄,纵坐标为血压。
为了便于观察,可以将数据点的大小和颜色进行调整,使其在图中更加突出。
一、平均水平常用的统计指标及其适用范围?常用统计指标包括算术均数,几何均数,中位数。
算术均数适用于对称分布,特别是正态分布的数据;几何均数适用于经对数变换后频数分布对称或呈等比级数的数据;中位数主要适用于三种情形:①非正态分布资料(对数正态分布除外)。
②频数分布的一端或两端无确切数据的资料。
③总体分布不清楚的资料。
二、应用相对数的注意事项1.计算相对数时应有足够的观察单位数。
例数太少会使相对数波动较大,这种情况下最好用绝对数表示。
2.正确计算合计率。
计算观察单位不等的几个率的合计率(平均率)时,不能将几个率直接相加求其平均率,而应分别将分子分母合计,再求出合计率。
3不能以构成比代替率。
构成比说明事物内部各部分所占的比重,不能说明某现象发生的频率或强度。
4.注意资料的可比性。
在比较相对数时,除了要比较的因素外,其余的因素应尽可能相同或相近。
5.样本率或构成比的比较应做假设检验。
由于样本率或构成比也存在抽样误差,比较两个或多个率或构成比时,不能凭样本率或构成比的差别作出结论,而必须进行差别的假设检验。
三、正常值范围与置信区间的区别四、标准误与标准差的区别与联系。
区别点标准误标准差含义样本均数的标准差,描述样本均数的抽样误差,即样本均数与总体均数的接近程度。
描述个体间的变异程度计算公式1k)xx(s2x--=∑---1n)xx(s2--=∑-用途总体均数的区间估计医学参考值范围估计相似点性质相似,都是用来说明变异程度五、简述四格表卡方检验统计方法的选择条件六、行×列表资料χ²检验的注意事项1.行×列表资料中各格的理论频数T均不应小于1,并且1≤ T<5的格子数不宜超过格子总数的1/5,否则可能产生偏性。
处理的方法有三种:①增大样本含量,使理论频数增大;②根据专业知识,删去理论频数太小的行或列或将理论频数太小的行或列与性质相近的邻行或邻列合并。
③改用双向无序R×C表的Fisher确切概率法。
SPSS数据分析的医学统计方法选择目录数据分析的统计方法选择小结........................................................................错误!未定义书签。
目录 (1)●资料1 (2)完全随机分组设计的资料 (2)配对设计或随机区组设计 (3)变量之间的关联性分析 (4)●资料2 (5)1。
连续性资料 (5)1.1两组独立样本比较 (5)1。
2两组配对样本的比较 (5)1.3多组完全随机样本比较 (6)1。
4多组随机区组样本比较 (6)2.分类资料 (6)2.1四格表资料 (6)2。
2 2×C表或R×2表资料的统计分析 (7)2。
3 R×C表资料的统计分析 (7)2。
4 配对分类资料的统计分析 (8)●资料3 (8)一、两个变量之间的关联性分析 (8)二、回归分析 (9)●资料4 (10)一.统计方法抉择的条件 (10)1.分析目的 (10)2.资料类型 (10)3.设计方法 (11)4.分布特征及数理统计条件 (12)二.数据资料的描述 (13)1.数值变量资料的描述 (13)2.分类变量资料的描述 (13)三.数据资料的比较 (14)1.假设检验的基本步骤 (14)2.假设检验结论的两类错误 (15)3.假设检验的注意事项 (15)4.常用假设检验方法 (16)四.变量间的相关分析 (17)1.数值变量(计量资料)的关系分析 (18)2.无序分类变量(计数资料)的相关分析 (18)3.有序分类变量(等级资料)等级相关 (18)●资料1完全随机分组设计的资料一、两组或多组计量资料的比较1.两组资料:1)大样本资料或服从正态分布的小样本资料(1)若方差齐性,则作成组t检验(2)若方差不齐,则作t’检验或用成组的Wilcoxon秩和检验2)小样本偏态分布资料,则用成组的Wilcoxon秩和检验2.多组资料:1)若大样本资料或服从正态分布,并且方差齐性,则作完全随机的方差分析.如果方差分析的统计检验为有统计学意义,则进一步作统计分析:选择合适的方法(如:LSD检验,Bonferroni检验等)进行两两比较.2)如果小样本的偏态分布资料或方差不齐,则作Kruskal Wallis的统计检验.如果Kruskal Wallis的统计检验为有统计学意义,则进一步作统计分析:选择合适的方法(如:用成组的Wilcoxon秩和检验,但用Bonferroni方法校正P值等)进行两两比较。
医学研究中统计分析方法的选择与应用一般人认为统计学在医学研究中的应用就是资料的统计分析,这是因为这部分工作容易被人觉察到,并且也是统计学中非常重要的一部分,然而这是一种不太全面的看法。
因为统计学在医学科研中的作用不仅仅是资料的统计分析,它的应用贯穿于整个研究过程之中,包括计划、设计、实施、资料处理与分析,到结果的展示和解释,直至到最后论文发表,都需要统计学知识的支持。
因此,学好统计学基本理论,掌握每一种统计方法的适用条件及其使用技巧,对每一位医学研究人员来讲是必须具备的基本功之一。
第1节临床科研中研究变量的类型在进行资料统计分析之前,必须辨别清楚将要统计分析的研究变量的性质和在研究中所起的作用。
因为不同类型的资料所选用的统计量和统计方法不同,在病因学科研中研究变量所起的作用以及研究其目的不同,对它们的处理也不一样。
以下按测量单位和病因学研究的目的对研究变量的类型加以介绍。
一、按测量尺度分类1.计量资料对每个观察单位用定量的方法测定某项指标的大小,所得的资料称为计量资料(measurement data),一般有度量衡等单位。
例如在研究血压与身高、体重等身体型态指标的关系时,以人为观察单位,测得的身高(cm)、体重(kg)和血压(mmHg)属于计量资料。
又如在环境污染与人体健康关系的研究时,以每个采样点为观察单位,测量不同采样点空气中二氧化碳、氮氧化物、悬浮颗粒等的浓度(mg/L)。
再如临床实验室检验中,血脂的浓度、血糖的含量、血清中肌酸磷酸激酶浓度(IU)等也属于计量资料。
计量资料又可分为离散型和连续型资料两种。
离散型资料往往是一种计数,如每名儿童口腔中的龋齿个数、单位面积内细菌菌落的个数、显微镜下每个方格中的红细胞数。
这种计数只能是0和正整数,不可能是负数,也不会有小数点。
连续型资料,理论上在任何两个数值之间都会有无穷多个数据,如身高,在175厘米与176厘米之间理论上存在无穷多个数据。
2.计数资料将观察单位按某种属性或类别分组,然后清点各组观察单位的个数所得的资料称为计数资料(enumeration data)。
第1章绪论1. 生物统计学与其他统计学有什么区别和联系?答:统计学可细分为数理统计学、经济统计学、生物统计学、卫生统计学、医学统计学等,都是关于数据的学问,是从数据中提取信息、知识的一门科学与艺术。
而生物统计学是统计学原理与方法应用于生物学、医学的一门科学,与医学统计学和卫生统计学很相似,其不同之处在于医学统计学侧重于介绍医学研究中的统计学原理与方法,而卫生统计学更侧重于介绍社会、人群健康研究中的统计学原理与方法。
2. 某年级甲班、乙班各有男生50人。
从两个班各抽取10人测量身高,并求其平均身高。
如果甲班的平均身高大于乙班,能否推论甲班所有同学的平均身高大于乙班?为什么?答:不能。
因为,从甲、乙两班分别抽取的10人,测量其身高,得到的分别是甲、乙两班的一个样本。
样本的平均身高只是甲、乙两班所有同学平均身高的一个点估计值。
即使是按随机化原则进行抽样,由于存在抽样误差,样本均数与总体均数一般很难恰好相等。
因此,不能仅凭两个样本均数高低就作出两总体均数熟高熟低的判断,而应通过统计分析,进行统计推断,才能作出判断。
3. 某地区有10万个7岁发育正常的男孩,为了研究这些7岁发育正常男孩的身高和体重,在该人群中随机抽取200个7岁发育正常的男孩,测量他们的身高和体重,请回答下列问题。
(1) 该研究中的总体是什么?答:某地区10万个7岁发育正常的男孩。
(2) 该研究中的身高总体均数的意义是什么?答:身高总体均数的意义是: 10万个7岁发育正常的男孩的平均身高。
(3) 该研究中的体重总体均数的意义是什么?答:体重总体均数的意义是: 10万个7岁发育正常的男孩的平均体重(4) 该研究中的总体均数与总体是什么关系?答:总体均数是反映总体的统计学特征的指标。
(5)该研究中的样本是什么?答:该研究中的样本是:随机抽取的200个7岁发育正常的男孩。
第2章统计描述1. 对定量资料进行统计描述时,如何选择适宜的指标?答:详见教材表2-18。
《医学统计学》教学大纲适用对象:药学专业本科生(学分:2 学时:36)一、课程的性质和任务医学统计学是开展医学研究的重要手段,是认识和揭示医学领域里各种数量特征的科学分析方法,是使医学科研得以成功的一种重要辅助工具。
医学统计学的主要内容包括医学统计学的基本概念、基本原理和基本方法及研究设计的部分内容。
本课程通过讲授、课堂实习、课堂讨论等教学方式,使学生熟悉统计的基本理论、掌握统计方法的应用,加深对基本理论和基本概念的理解。
目的让学生建立统计学的观念,培养统计学的思维,学会从不确定性、机遇、风险和推断的角度去思考医学问题,以提高自身的科学素质和科学研究能力。
二、相关课程的衔接本门课程的先修课程是:高等数学、计算机基础。
三、教学的基本要求1、掌握医学统计学的基本原理、基本概念和基本统计方法。
理论课着重讲授教材的重点、难点,启发和帮助学生自己阅读教材和参考资料,培养学生独立思考能力及自学能力。
2、掌握医学资料的正确整理方法,统计图表的绘制及注意事项,常用统计指标的计算方法、选用原则。
初步掌握使用计算机软件计算常用统计指标。
3、培养学生正确的统计思想,培养学生分析医学资料的初步技能,为同学今后从事医学教学、科研、临床等工作打下坚实的基础。
四、教学方法与重点、难点教学方法:理论课以课堂讲授为主,计算机平台软件操作为辅,采用多媒体与板书结合的教学方法。
重点:医学统计学的基本原理、基本概念和基本统计方法。
难点:统计资料的分析方法五、建议学时分配六、教学方式本课程采用多媒体理论教学与上机实习相结合的方式。
主要讲授医学统计学基本原理和概念,培养学生统计学思维,通过分析各种临床案例,结合统计学软件进行上机实习过程的学习,集课堂教学、实践教学和网络教学为一体,教学环节包括课堂讲授、学生自学、上机实验以及期末考核。
课程大部分内容的讲授需要采用多媒体课件或者网络机房进行教学,并实时演示相关软件操作和网络数据库检索流程等课程的重点内容。
新园乡卫生院卫生统计工作流程1设计主要指统计设计,是影响研究能否成功的最关键环节,是提高观察或实验质量的重要保证。
内容包括对资料搜集,整顿和分析全过程的设想与安排。
实验设计的三大原则:随机化,重复,对照。
2搜集资料:目的指应采取措施使能取得准确可靠的原始数据。
来源:统计报表,工作记录,专题调查或实验研究,统计年鉴和统计数据专辑。
要求:随机性和样本含量足够大3整顿资料:将原始数据净化,系统化和条理化,为下一步计算和分析打好基础过程。
4分析资料:在表达数据特征的基础上,阐明事物的内在联系和规律性,包括两方面:统计描叙和统计推断均数的可信区间与参考值范围的区别?均数的可信区间与参考值范围的区别主要体现在含义,计算公式和用途三个方面的不同。
(1)意义:均数的可信区间是按预先给定的概率,确定的未知参数的可能范围。
实际上一次抽样算得的可信区间要么包含了总体均数,要么不包含。
但可以说:该区间可多大(如当a=0.05时为95%)的可能包含了总体均数。
而参考值范围是指‘正常人’的解剖,生理生化某项指标的波动范围。
均数的可信区间计算公式(1)σ未知:X±指均数可信区间的用途:估计总体均数,参考值范围是指判断观察对象的某项指标是否正常。
.假设检验与区间估计的关系:置信区间具有假设检验的主要功能;置信区间在回答差别有无统计学意义的同时,还可以提示差别是否具有实际意义;假设检验可以报告确切的P值,还可以对检验的功效做出估计。
1.标准差与标准误的区别:标准差是衡量观察值的离散趋势,描述正态分布资料的频数。
标准误是样本均数的变异程度,表示抽样误差的大小,用于总体均数区间估计。
两者联系:两者都是变异指标。
在样本含量一定时,S越大标准误也越大,即在抽取相同例数的前提下,标准差越大,抽到的样本均数的抽样误差也越大。
2.P值和α:P值时从样本求得H0条件下随机抽样得到目前的统计量以及更极端统计量的概率,反映样本信息是否支持H0,也反映做出拒绝或不拒绝H0决定的理由充分程度。
临床新药研究的若干统计问题临床研究的设计(一)专业原则(统计前提)一、医学论理学起步-发展-重视,SOP二、研究基础研究者手册、文献资料、毒性、疗效、ADR三、目的明确方案合理,疗效提高,提高,ADR减少四、一致性检验统一检验,量表评分、同一SOP五、专业标准诊断标准、纳入标准(是)、排除标准(否)、推出标准、剔除标准、终止标准、疗效标准。
六、三种对象集:1、意愿用药集:包括用药后感到无效及难受而中途退出者。
2、符合方案集:是完成全部临床研究过程的病人。
3、安全分析集:凡用过一次药都在内,出现ADR均应统计。
PP分析、ITT分析及SS分析一、格病例分析(PP)对完成治疗方案,且依从性好的病例分析,分析不良反应时所有出现反应的病例应予统计、分析病菌敏感率时所有检测的菌株应予统计。
二、意向性分析(ITT)对意愿用药者的分析,更接近于上市实际情况,包括合格病例及已接受治疗又退出的病例,退出病例的最后一次数据转换为最终数据,不包括剔除的病例(误诊、误纳、未用药、无记录)三、安全集分析(SS)只要用过一次药,不论有无检测记录,出现不良反应均应统计,计算分母是安全集临床研究的全面记录1、筛选人数:入选检查前的人数2、入选人数:入选检查后的人数3、剔除人数:误诊、误纳、应排除过敏、未服药、未检测、不应或无法统计。
4、退出人数:中辍、脱落。
5、合格病例人数6、试验全面中止:出现严重ADR、无效、申办人中止、SFDA中止。
7、纳入标准:写明年龄、性别、诊断、病情、病程或病期、特殊检验的要求、已签署知情同意书。
8、排除标准(拒纳标准):并非纳入标准的反义语,重要脏器功能异常者,应一一明确规定异常范围。
特定疾病或病史(精神病、艾滋病、器官移植、胃出血)治疗前若干时间接受了新药研究或特定治疗或药物过敏体质或对两种药物食物有过敏者,怀孕或哺乳期、月经期妇女。
9、剔除标准:误诊、未用药,无检查记录。
10、退出标准:病人自退又称脱落、病人自退、自感效差、自感难耐受、失访、不说明原因、医师令退、依从性差、ADR、泄盲、转科治疗、加杂症。
医学统计方法选择流程图(含第9-14讲容)
师打算考我们什么,比如是实验设计还是
假设检验或者统计描述等然后在相应的
章节选择答案。
当考假设检验或者相关分析时,一定要先
看数据类型,是定性资料还是定量资料,
而后看设计方式,比如是定量资料的配对
设计中,不服从正太性时,我们只能使用
Wilcoxon符号秩检验,假如是定性资料的
四格表我们只能使用卡方检验或是确切
概率法。
对应的资料和设计方式,最后看
分析目的(这点较难),而后选择合适的
统计学方法。
在统计描述中我们习惯用均数加减标准
差表示,这是针对近似符合正态性的数据
进行表示,假如不符合,我们只能使用中位数和四分位数间距一起表示。
而且前者优先。
在假设检验中,能使用参数检验(如t检验,F检验)优先选择,否则,才选用非参数检验(如秩和检验)。