现代统计分析方法与应用(人大 何晓群)第3章 定性数据的x2检验
- 格式:ppt
- 大小:1.40 MB
- 文档页数:69
何晓群编著,《现代统计分析方法与应用》第三版,中国人民大学出版社,2012。
数据和部分程序下载第2章服装标准例程序利用R软件,运行如下R程序便可计算相应的条件均值和条件协方差矩阵:#均值向量m=matrix(c(154.98,83.39,70.26,61.32,91.52),nrow=5,ncol=1);m;#协方差矩阵sigma=matrix(c(29.66,6.51,1.85,9.36,10.34,6.51,30.53,25.54,3.54,19.53,1.85,25.54,39.86,2.23,20.70,9.36,3.54,2.23,7.03,5.21,10.34,19.53,20.70,5.21,27.36),5,5);sigma;#条件均值x5=85;m1=matrix(m[1:4,1],4,1)+matrix(sigma[1:4,5]*sigma[5,5]^(-1),4,1)%*%(x5-sigma[5,1]);m1;#条件协方差1(d[x1,x2,x3,x4|x5])d1=sigma[1:4,1:4]-matrix(sigma[1:4,5]*sigma[5,5]^(-1),4,1)%*%matrix(sigma[5,1:4],1,4);d1;#条件协方差2(d[x1,x2,x3|x4,x5])d2=d1[1:3,1:3]-matrix(d1[1:3,4]*d1[4,4]^(-1),3,1)%*%matrix(d1[4,1:3],1,3);d2;注:上面程序假定585X ,可以根据实际情况更改5X的值以计算相应的条件均值。
利用R软件,运行如下的R程序便可计算出偏相关系数:#均值向量m=matrix(c(154.98,83.39,70.26,61.32,91.52),nrow=5,ncol=1);m;#协方差矩阵sigma=matrix(c(29.66,6.51,1.85,9.36,10.34,6.51,30.53,25.54,3.54,19.53,1.85,25.54,39.86,2.23,20.70,9.36,3.54,2.23,7.03,5.21,10.34,19.53,20.70,5.21,27.36),5,5);sigma;#偏相关系数1(r[12.45])r1=d2[1,2]/sqrt(d2[1,1]*d2[2,2]); r1;#偏相关系数2(r[13.45])r2=d2[1,3]/sqrt(d2[1,1]*d2[3,3]); r2;#偏相关系数3(r[23.45])r3=d2[2,3]/sqrt(d2[2,2]*d2[3,3]); r3;第3章例3.1 某超市为了研究顾客对三种牌号的矿泉水的喜好比例,以便为下一次进货提供决策,随机观察了150名购买者,并记录下他们所买的品牌,统计出购买三种品牌的人数如表3-1。
《应用回归分析》部分课后习题答案第一章回归分析概述1.1 变量间统计关系和函数关系的区别是什么?答:变量间的统计关系是指变量间具有密切关联而又不能由某一个或某一些变量唯一确定另外一个变量的关系,而变量间的函数关系是指由一个变量唯一确定另外一个变量的确定关系。
1.2 回归分析与相关分析的联系与区别是什么?答:联系有回归分析和相关分析都是研究变量间关系的统计学课题。
区别有 a.在回归分析中,变量y称为因变量,处在被解释的特殊地位。
在相关分析中,变量x和变量y处于平等的地位,即研究变量y与变量x的密切程度与研究变量x与变量y的密切程度是一回事。
b.相关分析中所涉及的变量y与变量x全是随机变量。
而在回归分析中,因变量y是随机变量,自变量x可以是随机变量也可以是非随机的确定变量。
C.相关分析的研究主要是为了刻画两类变量间线性相关的密切程度。
而回归分析不仅可以揭示变量x对变量y的影响大小,还可以由回归方程进行预测和控制。
1.3 回归模型中随机误差项ε的意义是什么?答:ε为随机误差项,正是由于随机误差项的引入,才将变量间的关系描述为一个随机方程,使得我们可以借助随机数学方法研究y与x1,x2…..xp的关系,由于客观经济现象是错综复杂的,一种经济现象很难用有限个因素来准确说明,随机误差项可以概括表示由于人们的认识以及其他客观原因的局限而没有考虑的种种偶然因素。
1.4 线性回归模型的基本假设是什么?答:线性回归模型的基本假设有:1.解释变量x1.x2….xp是非随机的,观测值xi1.xi2…..xip是常数。
2.等方差及不相关的假定条件为{E(εi)=0 i=1,2…. Cov(εi,εj)={σ^23.正态分布的假定条件为相互独立。
4.样本容量的个数要多于解释变量的个数,即n>p.1.5 回归变量的设置理论根据是什么?在回归变量设置时应注意哪些问题?答:理论判断某个变量应该作为解释变量,即便是不显著的,如果理论上无法判断那么可以采用统计方法来判断,解释变量和被解释变量存在统计关系。
定性资料常用的统计学方法一、χ2检验χ2检验(chi-square test)是一种主要用于分析分类变量数据的假设检验方法,该方法主要目的是推断两个或多个总体率或构成比之间有无差别。
(一)四格表资料的χ2检验例17:为了解吲达帕胺片治疗原发性高血压的疗效,将70名高血压患者随机分为两组,试验组用吲达帕胺片加辅助治疗,对照组用安慰剂加辅助治疗,观察结果见表4 -5-1,试分析吲达帕胺片治疗原发性高血压的有效性。
表4 -5-1 两种疗法治疗原发性高血压的疗效1.四格表χ2检验的原理:对于四格表资料,χ2检验的基本公式为:式中,A为实际频数(actual frequency),T为理论频数(theoreticalfrequency)。
理论频数T根据检验假设H0:π1=π2确定,其中π1和π2分别为两组的总体率。
计算理论频数T的公式为:式中Tij 为第i行第j列的理论频数,ni+和n+j分别为相应行与列的周边合计数,n为总例数。
现以例17为例说明χ2检验的步骤:(1)建立检验假设并确定检验水准。
H0:π1=π2,即试验组与对照组的总体有效率相等H1:π1≠π2,即试验组与对照组的总体有效率不等α=0.05(2)计算检验统计量。
按式(4 -5-2)计算T11,然后利用四格表的各行列的合计数计算T12、T21和T22,即T11=(44×41)/70=25.77,T12=44-25.77=18.23T21=41-25.77=15.23,T22=26-15.23=10.77按式(4 -5-3)计算χ2值(3)确定P值,作出推断结论。
以ν=1查χ2分布界值表,得P<0.005。
按α=0.05水准,拒绝H,接受H1,可以认为两组治疗原发性高血压的总体有效率不等,即可以认为吲达帕胺片治疗原发性高血压优于对照组。
2.四格表资料χ2检验的专用公式:在对两样本率比较时,当总例数n≥40且所有格子的T≥5时,可用χ2检验的通用公式(4 -5-1)。
应用回归分析第三章习题 3.1y x =β基本假定:(1) 诸1234n x ,x x ,x x ……非随机变量,rank (x )=p+1,X 为满秩矩阵(2) 误差项()()200i i j E ,i j cov ,,i j⎧ε=⎪⎧δ=⎨εε=⎨⎪≠⎩⎩(3)()20i i j ~N ,,⎧εδ⎪⎨εε⎪⎩诸相互独立3.2()10111ˆX X X X |rank(X X )p rank(X )p n p -'β'≠'=+≥+≥+存在,必须使存在。
即|则必有故3.3()()()()()22111221222211111111n nn i i ii i i i nii i ni i E e D e h n h n p ˆE E e n p n p n p =====⎛⎫==-δ ⎪⎝⎭⎛⎫=-δ=--δ ⎪⎝⎭⎛⎫∴δ==--δ=δ ⎪----⎝⎭∑∑∑∑∑3.4并不能这样武断地下结论。
2R 与回归方程中的自变量数目以及样本量n 有关,当样本量n 与自变量个数接近时,2R 易接近1,其中隐含着一些虚假成分。
因此,并不能仅凭很大的2R 就模型的优劣程度。
3.5首先,对回归方程的显著性进行整体上的检验——F 检验001230p H :β=β=β=β==β=……接受原假设:在显著水平α下,表示随机变量y 与诸x 之间的关系由线性模型表示不合适 拒绝原假设:认为在显著性水平α下,y 与诸x 之间有显著的线性关系第二,对单个自变量的回归系数进行显著性检验。
00i H :β=接受原假设:认为i β=0,自变量i x 对y 的线性效果并不显著3.6原始数据由于自变量的单位往往不同,会给分析带来一定的困难;又由于设计的数据量较大,可能会以为舍入误差而使得计算结果并不理想。
中心化和标准化回归系数有利于消除由于量纲不同、数量级不同带来的影响,避免不必要的误差。
3.71122011122201122ppp p p p p ˆˆˆˆˆy x x x ˆˆˆˆˆˆy y (x x )(x x )(x x )ˆˆˆˆy x x )x x )x x )y =β+β+β++β-=β+β-+β-++β--ββ=-+-++-=对最小二乘法求得一般回归方程:……对方程进行如下运算:…………*jjˆ+β=……即3.812132123313221231221233131231123233213231313*********111r r r r r r r r rr r r r r r r r r r r r ⎛⎫ ⎪= ⎪ ⎪⎝⎭∆==-∆==-∆==-即证3.9()()()()()1211121121211111j jj j j p j j j p yj j j p SSR /SSE F SSE /n p SSE /n p SSE x ,x ,,x ,x x SSE x ,x ,,x ,x ,x x r SSE x ,x ,,x ,x x -+-+-+∆∆==-----=……,?………,?…而……,?…由上两式可知,其考虑的都是通过j SSE ∆在总体中所占比例来衡量第j 个因素的重要程度,因而j F 与2yj r 是等价的。
实用回归分析第四版 第一章 回归分析概述1.3 回归模型中随机误差项ε的意义是什么?答:ε为随机误差项,正是由于随机误差项的引入,才将变量间的关系描述为一个随机方程,使得我们可以借助随机数学方法研究y 与x1,x2…..xp 的关系,由于客观经济现象是错综复杂的,一种经济现象很难用有限个因素来准确说明,随机误差项可以概括表示由于人们的认识以及其他客观原因的局限而没有考虑的种种偶然因素。
1.4 线性回归模型的基本假设是什么?答:线性回归模型的基本假设有:1.解释变量x1.x2….xp 是非随机的,观测值xi1.xi2…..xip 是常数。
2.等方差及不相关的假定条件为{E(εi)=0 i=1,2…. Cov(εi,εj)={σ^23.正态分布的假定条件为相互独立。
4.样本容量的个数要多于解释变量的个数,即n>p.第二章 一元线性回归分析思考与练习参考答案2.1 一元线性回归有哪些基本假定?答: 假设1、解释变量X 是确定性变量,Y 是随机变量;假设2、随机误差项ε具有零均值、同方差和不序列相关性: E(εi )=0 i=1,2, …,n Var (εi )=σ2 i=1,2, …,n Cov(εi, εj )=0 i≠j i,j= 1,2, …,n 假设3、随机误差项ε与解释变量X 之间不相关: Cov(X i , εi )=0 i=1,2, …,n假设4、ε服从零均值、同方差、零协方差的正态分布 εi ~N(0, σ2 ) i=1,2, …,n 2.3 证明(2.27式),∑e i =0 ,∑e i X i =0 。
证明:其中:∑∑+-=-=nii i n i X Y Y Y Q 121021))ˆˆ(()ˆ(ββ01ˆˆˆˆi i i i iY X e Y Y ββ=+=-0100ˆˆQQββ∂∂==∂∂即: ∑e i =0 ,∑e i X i =02.5 证明0ˆβ是β0的无偏估计。
应用回归分析第三章习题 3.1y x =β基本假定:(1) 诸1234n x ,x x ,x x ……非随机变量,rank (x )=p+1,X 为满秩矩阵(2) 误差项()()200i i j E ,i j cov ,,i j⎧ε=⎪⎧δ=⎨εε=⎨⎪≠⎩⎩(3)()20i i j ~N ,,⎧εδ⎪⎨εε⎪⎩诸相互独立3.2()10111ˆX X X X |rank(X X )p rank(X )p n p -'β'≠'=+≥+≥+存在,必须使存在。
即|则必有故3.3()()()()()22111221222211111111n nn i i ii i i i nii i ni i E e D e h n h n p ˆE E e n p n p n p =====⎛⎫==-δ ⎪⎝⎭⎛⎫=-δ=--δ ⎪⎝⎭⎛⎫∴δ==--δ=δ ⎪----⎝⎭∑∑∑∑∑3.4并不能这样武断地下结论。
2R 与回归方程中的自变量数目以及样本量n 有关,当样本量n 与自变量个数接近时,2R 易接近1,其中隐含着一些虚假成分。
因此,并不能仅凭很大的2R 就模型的优劣程度。
3.5首先,对回归方程的显著性进行整体上的检验——F 检验001230p H :β=β=β=β==β=……接受原假设:在显著水平α下,表示随机变量y 与诸x 之间的关系由线性模型表示不合适 拒绝原假设:认为在显著性水平α下,y 与诸x 之间有显著的线性关系第二,对单个自变量的回归系数进行显著性检验。
00i H :β=接受原假设:认为i β=0,自变量i x 对y 的线性效果并不显著3.6原始数据由于自变量的单位往往不同,会给分析带来一定的困难;又由于设计的数据量较大,可能会以为舍入误差而使得计算结果并不理想。
中心化和标准化回归系数有利于消除由于量纲不同、数量级不同带来的影响,避免不必要的误差。
3.71122011122201122ppp p p p p ˆˆˆˆˆy x x x ˆˆˆˆˆˆy y (x x )(x x )(x x )ˆˆˆˆy x x )x x )x x )y =β+β+β++β-=β+β-+β-++β--ββ=-+-++-=对最小二乘法求得一般回归方程:……对方程进行如下运算:…………*jjˆ+β=……即3.812132123313221231221233131231123233213231313*********111r r r r r r r r rr r r r r r r r r r r r ⎛⎫ ⎪= ⎪ ⎪⎝⎭∆==-∆==-∆==-即证3.9()()()()()1211121121211111j jj j j p j j j p yj j j p SSR /SSE F SSE /n p SSE /n p SSE x ,x ,,x ,x x SSE x ,x ,,x ,x ,x x r SSE x ,x ,,x ,x x -+-+-+∆∆==-----=……,?………,?…而……,?…由上两式可知,其考虑的都是通过j SSE ∆在总体中所占比例来衡量第j 个因素的重要程度,因而j F 与2yj r 是等价的。
第一章导论1.什么是统计学?统计学是搜集、处理、分析、解释数据并从中得出结论的科学。
2.解释描述统计与推断统计。
描述统计研究的是数据搜集、处理、汇总、图表描述、概括与分析等统计方法。
推断统计研究的是如何利用样本数据来推断总体特征的统计方法。
3.统计数据可分为哪几种类型?不同类型的数据各有什么特点?按照计量尺度可分为分类数据、顺序数据和数值型数据;按照数据的搜集方法,可以分为观测数据和试验数据;按照被描述的现象与实践的关系,可以分为截面数据和时间序列数据。
4.解释分类数据、顺序数据和数值型数据的含义。
分类数据是只能归于某一类别的非数字型数据;顺序数据是只能归于某一有序类别的非数字型数据;数值型数据是按照数字尺度测量的观测值,其结果表现为具体的数值。
5.举例说明总体、样本、参数、统计量、变量这几个概念。
总体是包含所研究的全部个体的集合,样本是从总体中抽取的一部分元素的集合,参数是用来描述总体特征的概括性数字度量,统计量是用来描述样本特征的概括性数字度量,变量是用来说明现象某种特征的概念。
6.变量可分为哪几类?变量可分为分类变量、顺序变量和数值型变量。
分类变量是说明书屋类别的一个名称,其取值为分类数据;顺序变量是说明十五有序类别的一个名称,其取值是顺序数据;数值型变量是说明事物数字特征的一个名称,其取值是数值型数据。
7.举例说明离散型变量和连续型变量。
离散型变量是只能去可数值的变量,它只能取有限个值,而且其取值都以整位数断开,如“产品数量”;连续性变量是可以在一个或多个区间中取任何值的变量,它的取值是连续不断的,不能一一列举,如“温度”等。
第二章数据的搜集1.什么是二手资料?使用二手资料需要注意些什么?与研究内容有关、由别人调查和试验而来、已经存在并会被我们所利用的资料为二手资料。
使用时要评估资料的原始搜集人、搜集目的、搜集途径、搜集时间且使用时要注明数据来源。
2.比较概率抽样和非概率抽样的特点。
举例说明什么情况下适合采用概率抽样,什么情况下适合采用非概率抽样。
统计学完整(贾俊平)人大课件ppt课件•引言•数据收集与整理•描述性统计分析目录•概率论基础•推断性统计分析•方差分析与回归分析•时间序列分析与预测•统计决策与风险管理目录•总结与展望01引言统计学是一门研究如何收集、整理、分析和解释数据的科学。
统计学的定义统计学的历史统计学的分支统计学的发展经历了古典统计学、近代统计学和现代统计学三个阶段。
统计学可以分为描述统计学和推断统计学两大分支。
030201统计学概述社会科学医学与健康工程与技术商业与经济统计学应用领域01020304在社会科学领域,统计学被广泛应用于调查研究、民意测验、市场分析等方面。
在医学和健康领域,统计学被用于临床试验、流行病学研究、健康风险评估等方面。
在工程和技术领域,统计学被用于质量控制、可靠性分析、信号处理等方面。
在商业和经济领域,统计学被用于市场分析、财务分析、经济预测等方面。
通过学习,学生应掌握统计学的基本概念和方法,包括数据收集、整理、描述和分析等方面的内容。
掌握统计学基本概念和方法具备数据处理和分析能力了解统计学的应用领域培养批判性思维学生应具备独立处理和分析数据的能力,能够运用适当的统计方法进行数据分析和解释。
学生应了解统计学的应用领域,能够运用所学知识解决实际问题。
学生应培养批判性思维,能够对统计结果进行合理的解释和评估。
学习目标与要求02数据收集与整理数据来源及类型数据来源包括原始数据和二手数据,原始数据是通过直接调查、实验或观察获得的数据;二手数据则是已经经过他人收集、整理和处理过的数据。
数据类型包括定性数据和定量数据,定性数据是描述性的、非数值的,如文字、图像等;定量数据则是可以用数值表示的,如年龄、收入等。
此外,还可以根据数据的测量尺度将其分为名义型数据、顺序型数据、间隔型数据和比率型数据。
调查法实验法观察法大数据收集数据收集方法通过问卷、访谈、电话调查等方式收集数据,可以获取大量的、详细的信息。
直接观察研究对象的行为、状态等,记录相关数据,适用于无法控制或干预的情况。
x²检验1. 简介x²检验(chi-squared test)是一种用于检验两个分类变量之间是否存在相关性的统计方法。
它比较了观察到的频数与期望的频数之间的差异,来判断这种差异是否具有统计学意义。
2. 背景在进行数据分析时,我们经常需要研究两个或多个分类变量之间的关系。
例如,我们可能要研究两个产品的销售量是否存在关联,或者研究一个营销活动对用户购买行为的影响。
这时,x²检验就是一种常用的工具。
3. 假设检验x²检验是一种基于频数的假设检验方法。
它以观察到的频数与期望的频数之间的差异为基础,进行统计推断。
在x²检验中,我们要设置以下两个假设:•Null Hypothesis(零假设):两个分类变量之间不存在相关性。
•Alternative Hypothesis(备择假设):两个分类变量之间存在相关性。
我们的目标是拒绝零假设,从而支持备择假设。
4. 检验流程x²检验的流程如下:1.收集数据,形成观察到的频数矩阵。
2.计算期望的频数矩阵。
3.计算x²值,它衡量了观察到的频数与期望的频数之间的差异。
4.根据自由度和显著性水平,查找x²分布表,找到临界x²值。
5.比较计算得到的x²值与临界x²值。
如果计算得到的x²值大于临界x²值,则拒绝零假设,否则接受零假设。
5. 举例说明假设我们要研究两种不同颜色的汽车(红车和蓝车)在不同地区的销售情况是否存在关联。
我们收集了一组数据,观察到了不同地区红车和蓝车的销售数量。
我们的零假设是红车和蓝车的销售情况之间不存在关联,备择假设是红车和蓝车的销售情况之间存在关联。
我们首先构建观察到的频数矩阵,如下所示:地区 A 地区 B 地区 C红车70 60 50蓝车40 50 60然后,我们计算期望的频数矩阵。
期望的频数是根据总体频数和预期比例计算得出的。
125第七章 次数资料分析——χ2检验前面介绍了计量资料的统计分析方法−−t 检验法与方差分析法。
在畜牧、水产等科学研究中,除了分析计量资料以外,还常常需要对次数资料、等级资料进行分析。
等级资料实际上也是一种次数资料。
次数资料服从二项分布或多项分布,其统计分析方法不同于服从正态分布的计量资料。
本章将分别介绍对次数资料、等级资料进行统计分析的方法。
第一节 2χ统计量与2χ分布一、2χ统计量的意义为了便于理解,现结合一实例说明2χ (读作卡方) 统计量的意义。
根据遗传学理论,动物的性别比例是1:1。
统计某羊场一年所产的876只羔羊中,有公羔428只,母羔448只。
按1:1的性别比例计算,公、母羔均应为438只。
以A 表示实际观察次数,T 表示理论次数,可将上述情况列成表7-1。
表7-1 羔羊性别实际观察次数与理论次数性别 实际观察次数A 理论次数T A-T (A -T )2/T 公 428(1A ) 438(1T ) -10 0.2283 母 448(2A ) 438(2T ) 10 0.2283 合计 876 876 0 0.4566从表7-1看到,实际观察次数与理论次数存在一定的差异,这里公、母各相差10只。
这个差异是属于抽样误差(把对该羊场一年所生羔羊的性别统计当作是一次抽样调查)、还是羔羊性别比例发生了实质性的变化?要回答这个问题, 首先需要确定一个统计量用以表示实际观察次数与理论次数偏离的程度;然后判断这一偏离程度是否属于抽样误差,即进行显著性检验。
为了度量实际观察次数与理论次数偏离的程度,最简单的办法是求出实际观察次数与理论次数的差数。
从表7-1看出:A 1-T 1 =-10,A 2-T 2=10,由于这两个差数之和为0, 显然不能用这两个差数之和来表示实际观察次数与理论次数的偏离程度。
为了避免正、负抵消,可将两个差数A 1-T 1、A 2-T 2平方后再相加,即计算∑(A -T )2,其值越大,实际观察次数与理论次数相差亦越大,反之则越小。
第二章 一元线性回归2.14 解答:(1)散点图为:(2)x 与y 之间大致呈线性关系。
(3)设回归方程为01y x ββ∧∧∧=+1β∧=12217()ni ii nii x y n x yxn x --=-=-=-∑∑0120731y x ββ-∧-=-=-⨯=-17y x ∧∴=-+可得回归方程为(4)22ni=11()n-2i i y y σ∧∧=-∑ 2n 01i=11(())n-2i y x ββ∧∧=-+∑=2222213⎡⎤⨯+⨯+⨯⎢⎥+⨯+⨯⎣⎦(10-(-1+71))(10-(-1+72))(20-(-1+73))(20-(-1+74))(40-(-1+75)) []1169049363110/3=++++=6.1σ∧=≈ (5)由于211(,)xxN L σββ∧t σ∧==服从自由度为n-2的t 分布。
因而/2|(2)1P t n αασ⎡⎤⎢⎥<-=-⎢⎥⎣⎦也即:1/211/2(p t t ααβββ∧∧∧∧-<<+=1α-可得195%β∧的置信度为的置信区间为(7-2.3537+2.353 即为:(2.49,11.5)2201()(,())xxx Nn L ββσ-∧+t ∧∧==服从自由度为n-2的t 分布。
因而/2(2)1P t n αα∧⎡⎤⎢⎥⎢⎥<-=-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦即0/200/2()1p βσββσα∧∧∧∧-<<+=- 可得195%7.77,5.77β∧-的置信度为的置信区间为()(6)x 与y 的决定系数22121()490/6000.817()nii nii y y r y y ∧-=-=-==≈-∑∑(7)由于(1,3)F F α>,拒绝0H ,说明回归方程显著,x 与y 有显著的线性关系。
(8)t σ∧==其中2221111()22n ni i i i i e y y n n σ∧∧====---∑∑ 7 3.661==≈ /2 2.353t α= /23.66t t α=>∴接受原假设01:0,H β=认为1β显著不为0,因变量y 对自变量x 的一元线性回归成立。
统计学x2和p值计算过程统计学中X^2(卡方)检验和P值的计算过程是用于判断观察值与理论分布是否有显著差异的一种常用统计方法。
本文将详细介绍X^2检验和P值计算的过程。
一、X^2(卡方)检验概述X^2(卡方)检验是一种非参数统计方法,适用于观测数据是分类变量的情况。
它的核心思想是将观测值与理论值进行比较,通过计算卡方值来判断它们之间的差异程度。
计算具体过程如下:1.建立假设:在进行X^2检验时,首先需要建立原假设和备择假设。
原假设(H0)通常为“观测值与理论分布没有显著差异”,备择假设(H1)则通常为“观测值与理论分布存在显著差异”。
2.构建列联表:X^2检验通常使用列联表(Contingency Table)来整理数据,列联表是一个二维表格,行列分别代表两个变量的不同取值,交叉单元中的数值表示对应取值下的观测频数。
3.计算期望值:期望值是指在原假设成立的情况下,理论上每个交叉单元中的期望频数。
计算期望值的公式为:期望频数=(对应行的总频数*对应列的总频数)/总频数。
4.计算卡方值:计算卡方值的公式为:X^2=Σ(观测频数-期望频数)^2/期望频数。
计算得到的卡方值越大,观测值与理论分布之间的差异越大。
5.判断显著性:判断观测值与理论分布之间的差异是否显著,需要结合自由度和显著性水平进行判断。
计算卡方值后,可以查阅卡方分布表,根据初始设定的显著性水平(通常为0.05),确定拒绝域。
6.计算P值:P值是指在原假设成立的情况下,观察到当前或者更极端情况下的概率。
根据卡方分布的性质,可以通过查表或利用统计软件计算出对应的P 值。
如果P值小于设定的显著性水平,就拒绝原假设;否则,不能拒绝原假设。
二、P值计算的方法在进行X^2检验时,计算P值的方法有两种:查表法和计算器法。
下面将分别介绍这两种方法。
1.查表法:查表法是通过查找卡方分布表,确定对应卡方值所对应的P值。
卡方分布表通常提供不同自由度(df,自由度等于行数减1乘以列数减1)和显著性水平下的卡方临界值。