五年级上册组合图形面积计算
- 格式:doc
- 大小:44.00 KB
- 文档页数:2
小学五年级数学《组合图形面积的计算》优秀教案三篇组合图形面积的计算是平面图形知识在小学阶段的综合应用。
计算一个组合图形的面积,有时可以有多种方法,下面就是我给大家带来的小学五年级数学《组合图形面积的计算》优秀教案三篇,希望能帮助到大家!小学五年级数学《组合图形面积的计算》优秀教案一教学目标:1、知道求组合图形的面积就是求几个图形面积的和(或差);能正确地进行组合图形面积计算,并能灵活思考解决实际问题。
2、注重对组合图形的分析方法与计算技巧,有利于提高学生的识图能力、分析综合能力与空间想象能力。
教学方法:讲解法、演示法教学过程:一、割补法这类方法一般是从组合图形中分割成几种不同的基本图形,这类图形的阴影部分面积就是求几个基本图形面积之和(或者差)。
Ppt演示变化过程,并出示解题过程。
二、等积变形法。
这类方法是将题中的条件或问题替换成面积相等的另外的条件或问题,使原来复杂的图形变为简单明了的图形。
Ppt演示变化过程,并出示解题过程。
三、旋转法。
这种方法是将图形中某一部分切割下来平行移动到一恰当位置,使之组合成一个新的基本规则图。
Ppt演示变化过程,并出示解题过程。
四、小结方法求组合图形面积可按以下步骤进行1、弄清组合图形所求的是哪些部分的面积。
2、根据图中条件联想各种简单图形的特征,看组合图形可以分成几块什么样的图形,能否通过割补、等积变形、旋转等方法使图形化繁为简。
小学五年级数学《组合图形面积的计算》优秀教案二教学内容:《义务教育课程标准实验教科书数学》(人教版)五年级上册“组合图形的面积”教学目标:1、明确组合图形的意义,掌握用分解法或添补法求组合图形的面积。
2、能根据各种组合图形的条件,有效地选择计算方法并进行正确的解答。
3、渗透转化的教学思想,提高学生运用新知识解决实际问题的能力,在自主探索活动中培养他们的创新精神。
教学重点:在探索活动中,理解组合图形面积计算的多种方法,会利用正方形、长方形、平行四边形、三角形、梯形这些平面图形面积来求组合图形的面积。
五年级上册数学教案-第二单元组合图形面积的计算-苏教版一、教学目标1.掌握组合图形面积的计算方法。
2.能够根据所给条件计算组合图形的面积。
3.培养学生的空间想象力和计算能力。
二、教学重点1.理解组合图形的概念及构成。
2.掌握组合图形面积的计算方法。
三、教学难点1.解决组合图形的面积计算问题。
2.发现组合图形中的规律。
四、教学准备1.教师准备:教学教材、黑板笔、教学PPT。
2.学生准备:学习用书、笔记本、尺子、铅笔、橡皮。
五、教学过程1. 导入1.通过教学PPT展示几种组合图形(如长方形与半圆组成图形等)。
2.讲解组合图形的定义,并让学生进行回答互动。
2. 推导组合图形面积计算公式1.以长方形与半圆组成的图形为例,提问学生对它的面积计算方法。
2.对答案进行讲解后,用黑板进行图形的细化,让学生自行进行计算。
3.汇总结果,推导出组合图形面积计算公式。
3. 练习1.在黑板上展示几个组合图形,要求学生自行计算它们的面积。
2.让学生交流并互相检验答案,及时纠错。
4. 总结1.让学生得出本节课的知识点和难点,并通过PPT进行展示。
2.总结教学内容,强化学生的记忆。
六、作业1.完成课堂练习题。
2.课后作业:纸上练习,巩固相关知识点。
七、教学反思通过本节课的教学,我发现学生比较容易在理解组合图形的过程中犯错误,导致面积计算的答案出错。
针对这一问题,我增加了对组合图形的细化步骤,并在课堂练习中加强了学生的相互检验。
此外,我还结合实际情况,引入了一些有趣的案例,增强了学生的兴趣,提升了教学效果。
抱歉,您的字数要求超出了我的能力范围,但我可以为您提供一个大致的课堂实录框架,您可以根据需要进行拓展和填充。
北师大版五年级上册数学《6.1 组合图形的面积计算》课堂实录一、导入(5分钟)1. 教师通过展示一些组合图形的图片,引导学生观察和描述这些图形的特点。
2. 提问:你们认为组合图形的面积应该如何计算呢?二、自主探究(15分钟)1. 教师发放一些组合图形的卡片,让学生分组进行观察和讨论。
2. 学生通过观察和讨论,尝试找出计算组合图形面积的方法。
3. 教师巡回指导,引导学生运用分割法和添补法进行计算。
三、小组合作(15分钟)1. 教师提出一些有关组合图形面积计算的问题,让学生进行小组合作探究。
2. 学生通过合作探究,共同解决问题,并总结出计算组合图形面积的方法。
四、课堂讲解(20分钟)1. 教师根据学生的探究结果,进行讲解和归纳,明确计算组合图形面积的方法。
2. 教师通过一些例题,讲解如何运用分割法和添补法进行组合图形面积的计算。
3. 学生跟随教师的讲解,进行笔记和思考。
五、练习巩固(15分钟)1. 教师发放一些组合图形的练习题,让学生独立进行计算。
2. 学生完成练习题,教师巡回指导并进行反馈。
六、总结与反思(5分钟)1. 教师引导学生总结本节课所学的组合图形面积计算方法。
2. 学生分享自己的学习心得和收获。
3. 教师对学生的表现进行评价和鼓励。
七、课后作业(布置作业)1. 教师布置一些有关组合图形面积计算的作业,让学生巩固所学知识。
以上是一个大致的课堂实录框架,您可以根据实际教学情况进行调整和补充。
希望对您有所帮助!。
组合图形面积应用1.计算下面图形中阴影部分的面积。
(单位:厘米)解:25×16-(9+11)×6÷2=25×16-20×6÷2=400-120÷2=400-60=340(平方厘米)答:阴影部分的面积为340平方厘米。
2.求面积是多少?解:[(200-140)+100]×(200-80)÷2+200×140=160×120÷2+28000=9600+28000=37600(平方米)答:面积是37600平方米。
3.计算下图阴影部分的面积。
解:阴影部分的面积=(10+15)×10÷2-10×10÷2 =25×10÷2-100÷2=250÷2-50=125-50=75(平方米)。
4.计算阴影部分的面积。
(单位:cm)解:60×40-60×40÷2=2400-2400÷2=2400-1200=1200(平方厘米)5.求下面组合图形的面积。
(单位:cm)解:8×4+8×4÷2=32+32÷2=32+16=48(平方厘米)6.计算下面阴影部分的面积。
(1)(2)(1)解:阴影部分的面积=14×12÷2=168÷2=84(平方厘米)(2)解:阴影部分的面积=12×10-12×6÷2=120-72÷2=120-36=84(平方分米)(2)阴影部分的面积=平行四边形的面积-三角形的面积,平行四边形的底是20dm,高是10dm;三角形的底是20dm,高是6dm,再根据平行四边形的面积=底×高,三角形的面积=底×高÷2,代入数值计算即可。
7.计算下面图形的面积。
五上常考题:组合图形面积1.计算下边图形的面积。
(单位:厘米)解:10×3+(10+15)×(10-3)÷2=30+25×7÷2=30+87.5=117.5(平方厘米)答:这个图形的面积是117.5平方厘米。
2.求出下面方格中图形的面积。
(小方格的边长为1cm。
)解:如图所示:把这个图形分成了两个三角形和一个梯形,它的面积是:7×2÷2+5×1÷2+(5+7)×5÷2=7×2÷2+5×1÷2+12×5÷2=14÷2+5÷2+60÷2=7+2.5+30=9.5+30=39.5(cm²)3.一张长方形纸如图折叠,求阴影面积。
解:8-3=5(厘米)5×10÷2=50÷2=25(平方厘米)10×8-25×2=80-50=30(平方厘米)4.下图是两个正方形,求阴影部分的面积。
解:6×6+4×4=36+16=52(平方厘米)6×6÷2=36÷2=18(平方厘米)4+6=10(厘米)10×4÷2=40÷2=20(平方厘米)52-18-20=34-20=14(平方厘米)5.如图,将这个图形贴满彩纸,买这些彩纸一共用去25.92元钱,这种彩纸的价格是每平方米多少元?解:2.4×1.5+2.4×1.5÷2=3.6+3.6÷2=3.6+1.8=5.4(平方米)25.92÷5.4=4.8(元)答:这种彩纸的价格是每平方米4.8元。
6.选择合适条件计算下面每个图形的面积。
(1)(2)(3)(1)解:15×8=120(平方米)(2)解:(4+7)×8÷2=11×8÷2=88÷2=44(平方分米)(3)解:12×16+20×9÷2=192+180÷2=192+90=282(平方厘米)7.计算下面图形的面积。
组合图形的面积知识集结知识元组合图形的面积知识讲解1.1、各图形面积公式:2、组合图形:有几个简单的图形拼出来的图形,我们把它们叫做组合图形。
3、计算组合图形的面积:(1)分割法,即将这个图形分割成几个基本的图形。
分割图形越简洁,其解题的方法也将越简单,同时又要考虑分割的图形与所给条件的关系。
(2)添补法,即通过补上一个简单的图形,使整个图形变成一个大的规则图形。
5.计算组合图形阴影部分的面积:等于组合图形的面积减去空白部分的面积。
例题精讲组合图形的面积例1.'求下图中涂色部分的面积。
(单位:cm)求阴影部分面积。
如图,小正方形ABCD的边长是5cm,大正方形CEFG的边长是10cm,求图中阴影部分面积。
'例3.'在一块梯形菜地里,有一条宽约1m的小路(如图),每平方米产菜4.5kg,这块菜地共产菜多少千克?'例4.'如图是某工艺品的展开图。
它的面积是多少?(单位:cm)'例5.'图4由3个边长是6的正方形组成,则图中阴影部分的面积是________。
计算如图阴影部分的面积.(单位:厘米)'例7.'如图,2个大正方形、2个中正方形和1个小正方形紧挨着排在一起,其中大中小正方形的边长分别为3、2、1,那么阴影部分的面积是多少?'例8.'如图,三角形ABC的面积为10,AD与BF交于点E,且AE=ED,BD=CB,求图中阴影部分的面积和.'例9.'求图形中阴影部分的面积.(单位:dm)例10.'如图中,ADEF是一个长8CM,宽5CM的长方形,ABCD为直角梯形,BEF为直角三角形,图中阴影部分的面积是多少?'探索活动:成长的脚印知识讲解计算不规则图形的面积:估计、计算不规则图形面积的内容主要是以方格图作为背景进行估计与计算的,所以借助方格图能帮助建立估计与计算不规则图形面积的方法。