2012土木工程毕业设计目录及外文参考文献
- 格式:doc
- 大小:83.00 KB
- 文档页数:7
土木工程专业毕业设计外文文献及翻译Here are two examples of foreign literature related to graduation design in the field of civil engineering, along with their Chinese translations:1. Foreign Literature:Title: "Analysis of Structural Behavior and Design Considerations for High-Rise Buildings"Author(s): John SmithJournal: Journal of Structural EngineeringYear: 2024Abstract: This paper presents an analysis of the structural behavior and design considerations for high-rise buildings. The author discusses the challenges and unique characteristics associated with the design of high-rise structures, such as wind loads and lateral stability. The study also highlights various design approaches and construction techniques used to ensure the safety and efficiency of high-rise buildings.Chinese Translation:标题:《高层建筑的结构行为分析与设计考虑因素》期刊:结构工程学报年份:2024年2. Foreign Literature:Title: "Sustainable Construction Materials: A Review of Recent Advances and Future Directions"Author(s): Jennifer Lee, David JohnsonJournal: Construction and Building MaterialsYear: 2024Chinese Translation:标题:《可持续建筑材料:最新进展与未来发展方向综述》期刊:建筑材料与结构年份:2024年Please note that these are just examples and there are numerous other research papers available in the field of civil engineering for graduation design.。
土木工程英文参考文献(优选.)Introduction to Civil Engineering PapersCivil Engineering for the development of a key role, first as a material foundation for the civil engineering construction materials, followed by the subsequent development of the design theory and construction technology. Every time a new quality of building materials, civil engineering will be a leap-style development.People can only rely on the early earth, wood and other natural materials in the construction activities, and later appeared in brick and tile that artificial materials, so that the first human to break the shackles of natural building materials. China in the eleventh century BC in the early Western Zhou Dynasty created the tile. The first brick in the fifth century BC to the third century BC, when the tomb of the Warring States Period. Brick and tile better than the mechanical properties of soil, materials, and easy to manufacture.The brick and tile so that people began to appear widely, to a large number of housing construction and urban flood control project, and so on. This civil engineering technology has been rapid development. Up to 18 to the 19th century, as long as two thousand years, brick and tile has been a major civil engineering construction materials, human civilization has made a great contribution to the even was also widely used in thepresent.The application of a large number of steel products is the second leap in civil engineering. Seventeen 1970s the use of pig iron, the early nineteenth century, the use of wrought iron bridges and the construction of housing, which is a prelude to the emergence of steel.From the beginning of the mid-nineteenth century, metallurgical industry, smelting and rolling out high tensile and compressive strength, ductility, uniformity of the quality of construction steel and then produce high-strength steel wire, steel cables. As a result of the need to adapt to the development of the steel structure have been flourishing. In addition to the application of the original beam, arch structure, the new truss, a framework, the structure of network, cable structures to promote the gradual emergence of the structure of Yan in the form of flowers.From the brick building long-span structures, stone structures, a few meters of wood, steel structure to the development of tens of meters, a few hundred meters, until modern km above. So in the river, cross the bridge from shelves, on the ground since the construction of skyscrapers and high-rise tower, even in the laying of underground railway, to create an unprecedented miracle.In order to meet the needs of the development of steel works, on the basis of Newton's mechanics, material mechanics, structural mechanics, structural engineering design theory came into being, and so on.Construction machinery, construction technology and construction organization design theory also development, civil engineering from the experience of rising to become science, engineering practice and theoretical basis for both is a different place, which led to more rapid development of civil engineering.During the nineteenth century, 20, made of Portland cement, concrete has come out. Concrete can aggregate materials, easy-to-concrete structures forming, but the tensile strength of concrete is very small, limited use. By the middle of the nineteenth century, the surge in steel production, with the emergence of this new type of reinforced concrete composite construction materials, which bear the tension steel, concrete bear the pressure and play their own advantages. Since the beginning of the 20th century, reinforced concrete is widely used in various fields of civil engineering.From the beginning of the 1930s, there have been pre-stressed concrete. Pre-stressed concrete structure of the crack resistance, rigidity and carrying capacity, much higher than the reinforced concrete structure, which uses an even wider area. Civil Engineering into the reinforced concrete and prestressed concrete dominant historical period. Concrete buildings to bring about the emergence of new economic, aesthetic structure in the form of engineering, civil engineering so that a new construction technology and engineering design of the structure of thetheory. This is another leap in the development of civil engineering.A project to build the facilities in general to go through the investigation, design and construction in three stages, require the use of geological prospecting projects, hydro-geological survey, engineering survey, soil mechanics, mechanical engineering, engineering design, building materials, construction equipment, engineering machinery, building the economy , And other disciplines and construction technology, construction and other fields of knowledge, as well as computer and mechanical testing techniques. Civil engineering is therefore a broad range of integrated disciplines. With the progress in science and technology development and engineering practice, the civil engineering disciplines have also been developed into a broad connotation, the number of categories, the structure of complex integrated system.Civil Engineering is accompanied by the development of human society developed. It works in the construction of facilities reflect the various historical periods of socio-economic, cultural, scientific, technological development outlook, which civil society has become one of the historical development of the witness.In ancient times, people began to build simple houses, roads, bridges and still water channel to meet the simple life and production. Later, in order to adapt to the war, production and dissemination of religious life, as well as the needs of the construction of the city, canals, palaces,temples and other buildings.Many well-known works shown in this historical period of human creativity. For example, the Great Wall of China, Dujiangyan, the Grand Canal, Zhaozhou Bridge, Yingxian Wooden Tower, the pyramids of Egypt, Greece's Parthenon, Rome's water supply project, colosseum amphitheater (Rome large animal fighting Field), as well as many other well-known churches, palaces and so on.After the industrial revolution, especially in the 20th century, on the one hand, civil society to put forward a new demand; On the other hand, all areas of society for the advancement of civil engineering to create good conditions. Thus this period of civil engineering has been advanced by leaps and bounds. All over the world there have been large-scale modernization of industrial plants, skyscrapers, nuclear power plants, highways and railways, long-span bridges, and large-diameter pipelines long tunnel, the Grand Canal, the big dams, airports, port and marine engineering, etc. . For civil engineering continually modern human society to create a new physical environment, human society, modern civilization has become an important part.Civil Engineering is a very practical subjects. In the early days, through the civil engineering practice, summing up successful experience, in particular, to draw lessons from the failure of developed. From the beginning of the 17th century, with Galileo and Newton as a pilot withthe mechanics of the modern civil engineering practice, gradually formed the mechanical, structural mechanics, fluid mechanics, rock mechanics, civil engineering as the basis of theoretical subjects. This experience in civil engineering from the gradually developed into a science.In the course of the development of civil engineering, engineering practice often first experience in theory, engineering accidents often show a new unforeseen factors, triggering a new theory of the research and development. So far a number of projects dealing with the problem, is still very much rely on practical experience.Civil Engineering Technology with the main reason for the development of engineering practice and not by virtue of scientific experiments and theoretical studies, for two reasons: First, some of the objective situation is too complicated and difficult to faithfully carry out laboratory or field testing and analysis. For example, the foundation, tunnel and underground engineering and deformation of the state and its changes over time, still need to refer to an analysis of engineering experience to judge. Second, only a new engineering practice in order to reveal new problems. For example, the construction of a high-rise buildings, high-rise tower and mast-span bridges, wind and earthquake engineering problems highlighted in order to develop this new theory and technology. In the long-term civil engineering practice, it is not only building great attention to the arts, has made outstanding achievements; and otherworks, but also through the choice of different materials, such as the use of stone, steel and reinforced concrete, with natural Environmental art in the construction of a number of very beautiful, very functional and good works. Ancient Great Wall of China, the modern world, many of the television tower and the bridge ramp Zhang, are cases in point.A building is closely bound up with people,for it provides with the necessary space to work and live in .As classified by their use ,buildings are mainly of two types :industrial buildings and civil buildings .industrial buildings are used by various factories or industrial production while civil buildings are those that are used by people for dwelling ,employment ,education and other social activities .Industrial buildings are factory buildings that are available for processing and manufacturing of various kinds ,in such fields as the mining industry ,the metallurgical industry ,machine building ,the chemical industry and the textile industry . factory buildings can be classified into two types single-story ones and multi-story ones .the construction of industrial buildings is the same as that of civil buildings .however ,industrial and civil buildings differ in the materials used and in the way they are used .Civil buildings are divided into two broad categories: residential buildings and public buildings .residential buildings should suit family life .each flatshould consist of at least three necessary rooms : a living room ,a kitchen and a toilet .public buildings can be used in politics ,cultural activities ,administration work and other services ,such as schools, office buildings,parks ,hospitals ,shops ,stations ,theatres ,gymnasiums ,hotels ,exhibition halls ,bath pools ,and so on .all of them have different functions ,which in turn require different design types as well.Housing is the living quarters for human beings .the basic function of housing is to provide shelter from the elements ,but people today require much more that of their housing .a family moving into a new neighborhood will to know if the available housing meets its standards of safety ,health ,and comfort .a family will also ask how near the housing is to grain shops ,food markets ,schools ,stores ,the library ,a movie theater ,and the community center .In the mid-1960’s a most important value in housing was sufficient space both inside and out .a majority of families preferred single-family homes on about half an acre of land ,which would provide space for spare-time activities .in highly industrialized countries ,many families preferred to live as far out as possible from the center of a metropolitan area ,even if the wage earners had to travel some distance to their work .quite a large number of families preferred country housing to suburban housing because their chief aim was to get far away from noise ,crowding ,andconfusion .the accessibility of public transportation had ceased to be a decisive factor in housing because most workers drove their cars to work .peo ple we’re chiefly interested in the arrangement and size of rooms and the number of bedrooms .Before any of the building can begin ,plans have to be drawn to show what the building will be like ,the exact place in which it is to go and how everything is to be done.An important point in building design is the layout of rooms ,which should provide the greatest possible convenience in relation to the purposes for which they are intended .in a dwelling house ,the layout may be considered under three categorie s : “day”, “night” ,and “services” .attention must be paid to the provision of easy communication between these areas .the “day “rooms generally include a dining-room ,sitting-room and kitchen ,but other rooms ,such as a study ,may be added ,and there may be a hall .the living-room ,which is generally the largest ,often serves as a dining-room ,too ,or the kitchen may have a dining alcove .the “night “rooms consist of the bedrooms .the “services “comprise the kitchen ,bathrooms ,larder ,and water-closets .the kitchen and larder connect the services with the day rooms .It is also essential to consider the question of outlook from the various rooms ,and those most in use should preferably face south as possible .itis ,however ,often very difficult to meet the optimum requirements ,both on account of the surroundings and the location of the roads .in resolving these complex problems ,it is also necessary to follow the local town-planning regulations which are concerned with public amenities ,density of population ,height of buildings ,proportion of green space to dwellings ,building lines ,the general appearance of new properties in relation to the neighbourhood ,and so on .There is little standardization in industrial buildings although such buildings still need to comply with local town-planning regulations .the modern trend is towards light ,airy factory buildings .generally of reinforced concrete or metal construction ,a factory can be given a “shed ”type ridge roof ,incorporating windows facing north so as to give evenly distributed natural lighting without sun-glare .最新文件---------------- 仅供参考--------------------已改成-----------word文本--------------------- 方便更改感谢您使用本店文档您的满意是我们的永恒的追求!(本句可删)------------------------------------------------------------------------------------------------------------。
土木毕设外文参考文献以下是一份土木工程毕设外文参考文献,供您参考:1.generally, construction under the traditional construction procedure is performed by contractors. (2016) "construction under the traditional construction procedure". construction management. 35(7): 46-53.2. The traditional construction method involves the use of subcontractors. (2018) "the traditional construction method". architectsdigest. 22(1): 24-29.3. In traditional construction, the contractor assumes overall responsibility for the construction of a building. (2017) "traditional construction". building design. 113(11): 82-89.4. The traditional construction process involves the use of bid pricing. (2018) "the traditional construction process". architectsdigest. 21(4): 36-41.5. In traditional construction, the contractor is responsible for all materials, equipment, power, labor, and supervision required for construction. (2017) "traditional construction". building design. 113(11): 82-89.6. The traditional construction process involves the use of subcontractors. (2018) "the traditional constructionprocess". architectsdigest. 21(4): 36-41.7. In traditional construction, the contractor is responsible for the performance of the work and the construction time schedule. (2017) "traditional construction". building design. 113(11): 82-89.8. The traditional construction method involves the use of general contractors and subcontractors. (2018) "the traditional construction method". architectsdigest. 22(1): 24-29.9. The traditional construction process involves the use of bidding. (2017) "the traditional construction process". architectsdigest. 21(4): 36-41.10. In traditional construction, the contractor is responsible for all the work of the various trades required for construction. (2018) "the traditional construction method". architectsdigest.。
土木工程毕业设计英文参考文献1. Chen, Z., & Yang, J. (2015). Study on the Application of BIM Technology in Civil Engineering. Applied Mechanics and Materials, 549, 1097-1103.2. Wang, J., & Xu, H. (2014). Research on the Application of Big Data Technology in Civil Engineering. Advances in Computer Science Research, 32, 327-334.3. Wang, X., & Li, Z. (2017). Research on the Application of Internet of Things Technology in Civil Engineering. Advances in Engineering Research, 103, 209-214.4. Zhang, Y., & Hu, H. (2016). Study on the Application of Artificial Intelligence Technology in Civil Engineering. Journal of Computational and Theoretical Nanoscience, 13(11), 8320-8324.5. Li, J., & Liu, T. (2019). Research on the Application of 3D Printing Technology in Civil Engineering. Journal of Physics: Conference Series, 1140, 012042.6. Wu, H., & Liu, Y. (2018). Study on the Application of Robotics Technology in Civil Engineering. Applied Mechanics and Materials, 878, 646-651.7. Wang, Q., & Zhang, L. (2016). Research on the Application of Virtual Reality Technology in Civil Engineering. AppliedMechanics and Materials, 864, 485-490.8. Liu, Y., & Wang, X. (2017). Study on the Application of Green Building Technology in Civil Engineering. Advanced Materials Research, 1014, 146-150.9. Zhang, L., & Li, T. (2015). Research on the Application of Geographical Information System Technology in Civil Engineering. International Journal of Environmental, Chemical, Ecological, Geological and Geophysical Engineering, 9(2), 150-154.10. Zhou, H., & Yang, W. (2019). Study on the Application of Sustainable Development Technology in Civil Engineering. Journal of Sustainable Development, 12(5), 15-20.。
土木工程毕业设计参考文献土木工程毕业设计参考文献在土木工程领域进行毕业设计是每个土木工程学生都要经历的一项重要任务。
毕业设计是对所学知识的综合运用和实践,是对学生综合素质的考验。
而参考文献在毕业设计中起到了至关重要的作用,它们为我们提供了理论基础、前人经验和实践指导。
本文将介绍一些常见的土木工程毕业设计参考文献,希望能为即将进行毕业设计的同学们提供一些参考。
1. 《土木工程概论》这本教材是土木工程专业的入门教材,其中包含了土木工程的基本概念、原理和方法。
在毕业设计的初期,我们需要对土木工程的整体框架有一个清晰的了解,这本教材可以帮助我们建立起一个全面的认识。
2. 《土木工程材料》土木工程中使用的材料种类繁多,对于毕业设计来说,选择适合的材料是至关重要的。
这本参考书介绍了各种土木工程常用的材料,包括混凝土、钢筋、沥青等,对于我们在设计中的材料选择提供了重要的指导。
3. 《土木工程结构力学》土木工程的设计离不开结构力学的支持。
这本参考书详细介绍了土木工程结构力学的基本原理和计算方法,对于我们进行结构设计和分析非常有帮助。
在毕业设计中,我们需要对结构力学有深入的理解,这本参考书可以为我们提供必要的知识支持。
4. 《土木工程施工技术》毕业设计不仅仅是理论上的设计,更需要考虑到实际的施工过程。
这本参考书介绍了土木工程的施工技术,包括施工方法、施工工艺和施工管理等方面的内容。
在毕业设计中,我们需要考虑到施工的可行性和效率,这本参考书可以为我们提供实际操作的指导。
5. 《土木工程项目管理》在进行毕业设计时,我们需要具备一定的项目管理能力。
这本参考书介绍了土木工程项目管理的基本理论和方法,包括项目计划、进度控制、成本控制和质量管理等方面的内容。
在毕业设计中,我们需要对项目进行全面的管理,这本参考书可以为我们提供相关的知识支持。
除了以上几本参考书,还有很多与土木工程相关的期刊文章、专业论文和工程实践报告也是我们进行毕业设计时的重要参考文献。
学校毕业设计(论文)附件外文文献翻译学号:xxxxx 姓名:xxx所在系别:xxxxx 专业班级:xxx指导教师:xxxx原文标题:Building construction concrete crack of prevention and processing2012年月日建筑施工混凝土裂缝的预防与处理1摘要混凝土的裂缝问题是一个普遍存在而又难于解决的工程实际问题,本文对混凝土工程中常见的一些裂缝问题进行了探讨分析,并针对具体情况提出了一些预防、处理措施。
关键词:混凝土裂缝预防处理前言混凝土是一种由砂石骨料、水泥、水及其他外加材料混合而形成的非均质脆性材料。
由于混凝土施工和本身变形、约束等一系列问题,硬化成型的混凝土中存在着众多的微孔隙、气穴和微裂缝,正是由于这些初始缺陷的存在才使混凝土呈现出一些非均质的特性。
微裂缝通常是一种无害裂缝,对混凝土的承重、防渗及其他一些使用功能不产生危害。
但是在混凝土受到荷载、温差等作用之后,微裂缝就会不断的扩展和连通,最终形成我们肉眼可见的宏观裂缝,也就是混凝土工程中常说的裂缝。
混凝土建筑和构件通常都是带缝工作的,由于裂缝的存在和发展通常会使内部的钢筋等材料产生腐蚀,降低钢筋混凝土材料的承载能力、耐久性及抗渗能力,影响建筑物的外观、使用寿命,严重者将会威胁到人们的生命和财产安全。
很多工程的失事都是由于裂缝的不稳定发展所致。
近代科学研究和大量的混凝土工程实践证明,在混凝土工程中裂缝问题是不可避免的,在一定的范围内也是可以接受的,只是要采取有效的措施将其危害程度控制在一定的范围之内。
钢筋混凝土规范也明确规定:有些结构在所处的不同条件下,允许存在一定宽度的裂缝。
但在施工中应尽量采取有效措施控制裂缝产生,使结构尽可能不出现裂缝或尽量减少裂缝的数量和宽度,尤其要尽量避免有害裂缝的出现,从而确保工程质量。
混凝土裂缝产生的原因很多,有变形引起的裂缝:如温度变化、收缩、膨胀、不均匀沉陷等原因引起的裂缝;有外载作用引起的裂缝;有养护环境不当和化学作用引起的裂缝等等。
土木工程专业毕业设计外文文献翻译2篇XXXXXXXXX学院学士学位毕业设计(论文)英语翻译课题名称英语翻译学号学生专业、年级所在院系指导教师选题时间Fundamental Assumptions for Reinforced ConcreteBehaviorThe chief task of the structural engineer is the design of structures. Design is the determination of the general shape and all specific dimensions of a particular structure so that it will perform the function for which it is created and will safely withstand the influences that will act on it throughout useful life. These influences are primarily the loads and other forces to which it will be subjected, as well as other detrimental agents, such as temperature fluctuations, foundation settlements, and corrosive influences, Structural mechanics is one of the main tools in this process of design. As here understood, it is the body of scientific knowledge that permits one to predict with a good degree of certainly how a structure of give shape and dimensions will behave when acted upon by known forces or other mechanical influences. The chief items of behavior that are of practical interest are (1) the strength of the structure, i. e. , that magnitude of loads of a give distribution which will cause the structure to fail, and (2) the deformations, such as deflections and extent of cracking, that the structure will undergo when loaded underservice condition.The fundamental propositions on which the mechanics of reinforced concrete is based are as follows:1.The internal forces, such as bending moments, shear forces, and normal andshear stresses, at any section of a member are in equilibrium with the effect of the external loads at that section. This proposition is not an assumption but a fact, because any body or any portion thereof can be at rest only if all forces acting on it are in equilibrium.2.The strain in an embedded reinforcing bar is the same as that of thesurrounding concrete. Expressed differently, it is assumed that perfect bonding exists between concrete and steel at the interface, so that no slip can occur between the two materials. Hence, as the one deforms, so must the other. With modern deformed bars, a high degree of mechanical interlocking is provided in addition to the natural surface adhesion, so this assumption is very close to correct.3.Cross sections that were plane prior to loading continue to be plan in themember under load. Accurate measurements have shown that when a reinforced concrete member is loaded close to failure, this assumption is not absolutely accurate. However, the deviations are usually minor.4.In view of the fact the tensile strength of concrete is only a small fraction ofits compressive strength; the concrete in that part of a member which is in tension is usually cracked. While these cracks, in well-designed members, are generally so sorrow as to behardly visible, they evidently render the cracked concrete incapable of resisting tension stress whatever. This assumption is evidently a simplification of the actual situation because, in fact, concrete prior to cracking, as well as the concrete located between cracks, does resist tension stresses of small magnitude. Later in discussions of the resistance of reinforced concrete beams to shear, it will become apparent that under certain conditions this particular assumption is dispensed with and advantage is taken of the modest tensile strength that concrete can develop.5.The theory is based on the actual stress-strain relation ships and strengthproperties of the two constituent materials or some reasonable equivalent simplifications thereof. The fact that novelistic behavior is reflected in modern theory, that concrete is assumed to be ineffective in tension, and that the joint action of the two materials is taken into consideration results in analytical methods which are considerably more complex and also more challenging, than those that are adequate for members made of a single, substantially elastic material.These five assumptions permit one to predict by calculation the performance of reinforced concrete members only for some simple situations. Actually, the joint action of two materials as dissimilar and complicated as concrete and steel is so complex that it has not yet lent itself to purely analytical treatment. For this reason, methods of design and analysis, while using these assumptions, are very largely based on the results of extensive and continuing experimental research. They are modified and improved as additional test evidence becomes available.钢筋混凝土的基本假设作为结构工程师的主要任务是结构设计。
学校毕业设计(论文)附件外文文献翻译学号: xxxxx 姓名: xxx所在系别: xxxxx 专业班级: xxx指导教师: xxxx原文标题: Building construction concrete crack of prevention and processing2012年月日建筑施工混凝土裂缝的预防与处理1摘要混凝土的裂缝问题是一个普遍存在而又难于解决的工程实际问题,本文对混凝土工程中常见的一些裂缝问题进行了探讨分析,并针对具体情况提出了一些预防、处理措施。
关键词:混凝土裂缝预防处理前言混凝土是一种由砂石骨料、水泥、水及其他外加材料混合而形成的非均质脆性材料。
由于混凝土施工和本身变形、约束等一系列问题,硬化成型的混凝土中存在着众多的微孔隙、气穴和微裂缝,正是由于这些初始缺陷的存在才使混凝土呈现出一些非均质的特性。
微裂缝通常是一种无害裂缝,对混凝土的承重、防渗及其他一些使用功能不产生危害。
但是在混凝土受到荷载、温差等作用之后,微裂缝就会不断的扩展和连通,最终形成我们肉眼可见的宏观裂缝,也就是混凝土工程中常说的裂缝。
混凝土建筑和构件通常都是带缝工作的,由于裂缝的存在和发展通常会使内部的钢筋等材料产生腐蚀,降低钢筋混凝土材料的承载能力、耐久性及抗渗能力,影响建筑物的外观、使用寿命,严重者将会威胁到人们的生命和财产安全。
很多工程的失事都是由于裂缝的不稳定发展所致。
近代科学研究和大量的混凝土工程实践证明,在混凝土工程中裂缝问题是不可避免的,在一定的范围内也是可以接受的,只是要采取有效的措施将其危害程度控制在一定的范围之内。
钢筋混凝土规范也明确规定:有些结构在所处的不同条件下,允许存在一定宽度的裂缝。
但在施工中应尽量采取有效措施控制裂缝产生,使结构尽可能不出现裂缝或尽量减少裂缝的数量和宽度,尤其要尽量避免有害裂缝的出现,从而确保工程质量。
混凝土裂缝产生的原因很多,有变形引起的裂缝:如温度变化、收缩、膨胀、不均匀沉陷等原因引起的裂缝;有外载作用引起的裂缝;有养护环境不当和化学作用引起的裂缝等等。
英文原文:Rehabilitation of rectangular simply supported RC beams with shear deficiencies using CFRP compositesAhmed Khalifa a,*, Antonio Nanni ba Department of Structural Engineering,University of Alexandria, Alexandria 21544, Egyptb Department of Civil Engineering,University of Missouri at Rolla,Rolla,MO 65409,USAReceived 28 April 1999; received in revised form 30 October 2001; accepted 10 January 2002AbstractThe present study examines the shear performance and modes of failure of rectangular simply supported reinforced concrete(RC)beams designed with shear deficiencies. These members were strengthened with externally bonded carbon fiber reinforced polymer (CFRP) sheets and evaluated in the laboratory. The experimental program consisted of twelve full-scale RC beams tested to fail in shear. The variables investigated within this program included steel stirrups, and the shear span—to—effective depth ratio, as well as amount and distribution of CFRP. The experimental results indicated that the contribution of externally bonded CFRP to the shear capacity was significant。
【关键字】设计土木工程毕业设计英语论文及翻译篇一:土木工程毕业设计外文文献翻译外文文献翻译Reinforced ConcreteConcrete and reinforced concrete are used as building materials in every country. In many, including the United States and Canada, reinforced concrete is a dominant structural material in engineered construction. The universal nature of reinforced concrete construction stems from the wide availability of reinforcing bars and the constituents of concrete, gravel, sand, and cement, the relatively simple skills required in concrete construction, and the economy of reinforced concrete compared to other forms of construction. Concrete and reinforced concrete are used in bridges, buildings of all sorts underground structures, water tanks, television towers, offshore oil exploration and production structures, dams, and even in ships.Reinforced concrete structures may be cast-in-place concrete, constructed in their final location, or they may be precast concrete produced in a factory and erected at the construction site. Concrete structures may be severe and functional in design, or the shape and layout and be whimsical and artistic. Few other building materials off the architect and engineer such versatility and scope.Concrete is strong in compression but weak in tension. As a result, cracks develop whenever loads, or restrained shrinkage of temperature changes, give rise to tensile stresses in excess of the tensile strength of the concrete. In a plain concrete beam, the moments about the neutral axis due to applied loads are resisted by an internal tension-compression couple involving tension in the concrete. Such a beam fails very suddenly and completely when the first crack forms. In a reinforced concrete beam, steel bars are embedded in the concrete in such a way that the tension forces needed for moment equilibrium after the concrete cracks can be developed in the bars.The construction of a reinforced concrete member involves building a from of mold in the shape of the member being built. The form must be strong enough to support both the weight and hydrostatic pressure of the wet concrete, and any forces applied to it by workers, concrete buggies, wind, and so on. The reinforcement is placed in this form and held in place during the concreting operation. After the concrete has hardened, the forms are removed. As the forms are removed, props of shores are installed to support the weight of the concrete until it has reached sufficient strength to support the loads by itself.The designer must proportion a concrete member for adequate strength to resist the loads and adequate stiffness to prevent excessive deflections. In beam must be proportioned so that it can be constructed. For example, the reinforcement must be detailed so that it can be assembled in the field, and since the concrete is placed in the form after the reinforcement is in place, theconcrete must be able to flow around, between, and past the reinforcement to fill all parts of the form completely.The choice of whether a structure should be built of concrete, steel, masoy, or timber depends on the availability of materials and on a number of value decisions. The choice of structural system is made by the architect of engineer early in the design, based on the following considerations:1. Economy. Frequently, the foremost consideration is the overall const of the structure. This is, of course, a function of the costs of the materials and the labor necessary to erect them. Frequently, however, the overall cost is affected as much or more by the overall construction time since the contractor and owner must borrow or otherwise allocate money to carry out the construction and will not receive a return on this investment until the building is ready for occupancy. In a typical large apartment of commercial project, the cost of construction financing will be a significant fraction of the total cost. As a result, financial savings due to rapid construction may more than offset increased material costs. For this reason, any measures the designer can take to standardize the design and forming will generally pay off in reduced overall costs.In many cases the long-term economy of the structure may be more important than the first cost. As a result, maintenance and durability are important consideration.2. Suitability of material for architectural and structural function.A reinforced concrete system frequently allows the designer to combine the architectural and structural functions. Concrete has the advantage that it is placed in a plastic condition and is given the desired shapeand texture by means of the forms and the finishing techniques. This allows such elements ad flat plates or other types of slabs to serve as load-bearing elements while providing the finished floor and / or ceiling surfaces. Similarly, reinforced concrete walls can provide architecturally attractive surfaces in addition to having the ability to resist gravity, wind, or seismic loads. Finally, the choice of size of shape is governed by the designer and not by the availability of standard manufactured members.3. Fire resistance. The structure in a building must withstand the effects of a fire and remain standing while the building is evacuated and the fire is extinguished. A concrete building inherently has a 1- to 3-hour fire rating without special fireproofing or other details. Structural steel or timber buildings must be fireproofed to attain similar fire ratings.4. Low maintenance. Concrete members inherently require less maintenance than do structural steel or timber members. This is particularly true if dense, air-entrained concrete has been used for surfaces exposed to the atmosphere, and if care has been taken in the design to provide adequate drainage off and away from the structure. Special precautions must be taken for concrete exposed to salts such as deicing chemicals.5. Availability of materials. Sand, gravel, cement, and concrete mixing facilities are verywidely available, and reinforcing steel can be transported to most job sites more easily than can structural steel. As a result, reinforced concrete is frequently used in remote areas.On the other hand, there are a number of factors that may cause one to select a material other than reinforced concrete. These include:1. Low tensile strength. The tensile strength concrete is much lower than its compressive strength ( about 1/10 ), and hence concrete is subject to cracking. In structural uses this is overcome by using reinforcement to carry tensile forces and limit crack widths to within acceptable values. Unless care is taken in design and construction, however, these cracks may be unsightly or may allow penetration of water. When this occurs, water or chemicals such as road deicing salts may cause deterioration or staining of the concrete. Special design details are required in such cases. In the case of water-retaining structures, special details and / of prestressing are required to prevent leakage.2. Forms and shoring. The construction of a cast-in-place structure involves three steps not encountered in the construction of steel or timber structures. These are ( a ) the construction of the forms, ( b ) the removal of these forms, and (c) propping or shoring the new concrete to support its weight until its strength is adequate. Each of these steps involves labor and / or materials, which are not necessary with other forms of construction.3. Relatively low strength per unit of weight for volume. The compressive strength of concrete is roughly 5 to 10% that of steel, while its unit density is roughly 30% that of steel. As a result, a concrete structure requires a larger volume and a greater weight of material than does a comparable steel structure. As a result, long-span structures are often built from steel.4. Time-dependent volume changes. Both concrete and steel undergo-approximately the same amount of thermal expansion and contraction. Because there is less mass of steel to be heated or cooled, and because steel is a better concrete, a steel structure is generally affected by temperature changes to a greater extent than is a concrete structure. On the other hand, concrete undergoes frying shrinkage, which, if restrained, may cause deflections or cracking. Furthermore, deflections will tend to increase with time, possibly doubling, due to creep of the concrete under sustained loads.In almost every branch of civil engineering and architecture extensive use is made of reinforced concrete for structures and foundations. Engineers and architects requires basic knowledge of reinforced concrete design throughout their professional careers. Much of this text is directly concerned with the behavior and proportioning of components that make up typical reinforced concrete structures-beams, columns, and slabs. Once the behavior of these individual elements is understood, the designer will have the background to analyze and design a wide range of complex structures, such as foundations, buildings, and bridges, composed of these elements.Since reinforced concrete is a no homogeneous material that creeps, shrinks, and cracks, its stresses cannot be accurately predicted by the traditional equations derived in a course instrength of materials forhomogeneous elastic materials. Much of reinforced concrete design in therefore empirical, i.e., design equations and design methods are based on experimental and time-proved results instead of being derived exclusively from theoretical formulations.A thorough understanding of the behavior of reinforced concrete will allow the designer to convert an otherwise brittle material into tough ductile structural elements and thereby take advantage of concrete’s desirable characteristics, its high compressive strength, its fire resistance, and its durability.Concrete, a stone like material, is made by mixing cement, water, fine aggregate ( often sand ), coarse aggregate, and frequently other additives ( that modify properties ) into a workable mixture. In its unhardened or plastic state, concrete can be placed in forms to produce a large variety of structural elements. Although the hardened concrete by itself, i.e., without any reinforcement, is strong in compression, it lacks tensile strength and therefore cracks easily. Because ueinforced concrete is brittle, it cannot undergo large deformations under load and fails suddenly-without warning. The addition fo steel reinforcement to the concrete reduces the negative effects of its two principal inherent weaknesses, its susceptibility to cracking and its brittleness. When the reinforcement is strongly bonded to the concrete, a strong, stiff, and ductile construction material is produced. This material, called reinforced concrete, is used extensively to construct foundations, structural frames, storage takes, shell roofs, highways, walls, dams, canals, and innumerable other structures and building products. Two other characteristics of concrete that are present even when concrete is reinforced are shrinkage and creep, but the negative effects of these properties can be mitigated by careful design.A code is a set technical specifications and standards that control important details of design and construction. The purpose of codes it produce structures so that the public will be protected from poor of inadequate and construction.Two types f coeds exist. One type, called a structural code, is originated and controlled by specialists who are concerned with the proper use of a specific material or who are involved with the safe design of a particular class of structures.篇二:土木工程毕业设计中英文翻译附录:中英文翻译英文部分:LOADSLoads that act on structures are usually classified as dead loads or live loads.Dead loads are fixed in location and constant in magnitude throughout the life of the ually the self-weight of a structure is the most important part of the structure and the unit weight of the material.Concrete density varies from about 90 to 120 pcf (14 to 19 KN/m2)for lightweight concrete,and is about 145 pcf (23 KN/mKN/m2)for normal concrete.In calculating the dead load of structural concrete,usually a 5pcf (1 )increment is included with the weight of the concrete to account for the presence of the 2 reinforcement.Live loads are loads such as occupancy,snow,wind,or traffic loads,or seismic forces.They may be either fully or partially in place,or not present at all.They may also change in location.Althought it is the responsibility of the engineer to calculate dead loads,live loads are usually specified by local,regional,or national codes and specifications.Typical sources are the publications of the American National Standards Institute,the American Association of State Highway and Transportation Officials and,for wind loads,the recommendations of the ASCE Task Committee on Wind Forces.Specified live the loads usually include some allowance for overload,and may include measures such as posting of maximum loads will not be exceeded.It is oftern important to distinguish between the specified load,and what is termed the characteristic load,that is,the load that actually is in effect under normal conditions of service,which may be significantly less.In estimating the long-term deflection of a structure,for example,it is the characteristic load that is important,not the specified load.The sum of the calculated dead load and the specified live load is called the service load,because this is the maximum load which may reasonably be expected to act during the service resisting is a multiple of the service load.StrengthThe strength of a structure depends on the strength of the materials from which it is made.Minimum material strengths are specified in certain standardized ways.The properties of concrete and its components,the methods of mixing,placing,and curing to obtain the required quality,and the methods for testing,are specified by the American Concrete Insititue(ACI).Included by refrence in the same documentare standards of the American Society for Testing Materials(ASTM)pertaining to reinforcing and prestressing steels and concrete.Strength also depends on the care with which the structure is built.Member sizes may differ from specified dimensions,reinforcement may be out of position,or poor placement of concrete may result in voids.An important part of the job of the ergineer is to provide proper supervision of construction.Slighting of this responsibility has had disastrous consequences in more than one instance.Structural SafetySafety requires that the strength of a structure be adequate for all loads that may conceivably act on it.If strength could be predicted accurately and if loads were known with equal certainty,then safely could be assured by providing strength just barely in excess of the requirements of the loads.But there are many sources of uncertainty in the estimation of loads as well as in analysis,design,and construction.These uncertainties require a safety margin.In recent years engineers have come to realize that the matter of structural safety isprobabilistic in nature,and the safety provisions of many current specifications reflect this view.Separate consideration is given to loads and strength.Load factors,larger than unity,are applied to the calculated dead loads and estimated or specified service live loads,to obtain factorde loads that the member must just be capable of sustaining at incipient failure.Load factors pertaining to different types of loads vary,depending on the degree of uncertainty associated with loads of various types,and with the likelihood of simultaneous occurrence of different loads.Early in the development of prestressed concrete,the goal of prestressing was the complete elimination of concrete ternsile stress at service loads.The concept was that of an entirely new,homogeneous material that woukd remain uncracked and respond elastically up to the maximum anticipated loading.This kind of design,where the limiting tensile stressing,while an alternative approach,in which a certain amount of tensile amount of tensile stress is permitted in the concrete at full service load,is called partial prestressing.There are cases in which it is necessary to avoid all risk of cracking and in which full prestressing is required.Such cases include tanks or reservious where leaks must be avoided,submerged structures or those subject to a highly corrosive envionment where maximum protection of reinforcement must be insured,and structures subject to high frequency repetition of load where faatigue of the reinforcement may be a consideration.However,there are many cses where substantially improved performance,reduced cost,or both may be obtained through the use of a lesser amount of prestress.Full predtressed beams may exhibit an undesirable amount of upward camber because of the eccentric prestressing force,a displacement that is only partially counteracted by the gravity loads producing downward deflection.This tendency is aggrabated by creep in the concrete,which magnigies the upward displacement due to the prestress force,but has little influence on the should heavily prestressed members be overloaded and fail,they may do so in a brittle way,rather than gradually as do beams with a smaller amount of prestress.This is important from the point of view of safety,because suddenfailure without warning is dangeroud,and gives no opportunity for corrective measures to be taken.Furthermore,experience indicates that in many cases improved economy results from the use of a combination of unstressed bar steel and high strength prestressed steel tendons.While tensile stress and possible cracking may be allowed at full service load,it is also recognized that such full service load may be infrequently applied.The typical,or characteristic,load acting is likely to be the dead load plus a small fraction of the specified live load.Thus a partially predtressed beam may not be subject to tensile stress under the usual conditions of loading.Cracks may from occasionally,when the maximum load is applied,but these will close completely when that load is removed.They may be no more objectionable in prestressed structures than in ordinary reinforced.They may be no more objectionable in prestressed structures than in ordinary reinforced concrete,in which flexural cracks alwaysform.They may be considered a small price for the improvements in performance and economy that are obtained.It has been observed that reinforced concrete is but a special case of prestressed concrete in which the prestressing force is zero.The behavior of reinforced and prestressed concrete beams,as the failure load is approached,is essentially the same.The Joint European Committee on Concrete establishes threee classes of prestressed beams.Class 1:Fully prestressed,in which no tensile stress is allowed in the concrete at service load.Class 2:Partially prestressed, in which occasional temporary cracking is permitted under infrequent high loads.Class 3:Partially prestressed,in which there may be permanent cracks provided that their width is suitably limited.The choise of a suitable amount of prestress is governed by a variety of factors.These include thenature of the loading (for exmaple,highway or railroad bridged,storage,ect.),the ratio of live to dead load,the frequency of occurrence of loading may be reversed,such as in transmission poles,a high uniform prestress would result ultimate strength and in brittle failure.In such a case,partial prestressing provides the only satifactory solution.The advantages of partial prestressing are important.A smaller prestress force will be required,permitting reduction in the number of tendons and anchorages.The necessary flexural strength may be provided in such cases either by a combination of prestressed tendons and non-prestressed reinforcing bars,or by an adequate number of high-tensile tendons prestredded to level lower than the prestressing force is less,the size of the bottom flange,which is requied mainly to resist the compression when a beam is in the unloaded stage,can be reduced or eliminated altogether.This leads in turn to significant simplification and cost reduction in the construction of forms,as well as resulting in structures that are mor pleasing esthetically.Furthermore,by relaxing the requirement for low service load tension in the concrete,a significant improvement can be made in the deflection characteristics of a beam.Troublesome upward camber of the member in the unloaded stage fan be avoeded,and the prestress force selected primarily to produce the desired deflection for a particular loading condition.The behavior of partially prestressed beamsm,should they be overloaded to failure,is apt to be superior to that of fully prestressed beams,because the improved ductility provides ample warning of distress.英译汉:荷载作用在结构上的荷载通常分为恒载或活载。
安徽工程大学毕业设计某高校土木综和楼设计摘要依据课题任务书以及《建筑防火规范》、《建筑结构荷载规范》和《混凝土结构设计规范》等国家现行规范,规程完成了该课题建筑,结构,施工三个方面的设计,首先从总体出发,综合考虑和组织室内外的空间完成建筑平面,立面,以及剖面的设计;其次完成了一榀框架各结构构件的配筋设计,手绘结构施工图。
并进行pkpm软件进行检验,绘制CAD图,整个设计方案在建筑、结构方面满足国家现行规范要求。
本设计对一榀框架,从结构选型入手,计算分析了该框架的荷载,利用分层法和D 值法分别对框架结构在竖向荷载、水平风荷载作用下产生的内力进行了计算,通过内力组合,得出框架的控制内力,最后完成框架各构件的配筋计算并绘制了该框架的施工图。
设计书中同时选算了框架的一个基础、楼梯,给出了基础、楼梯的配筋计算并绘制了施工图。
关键词:结构设计框架结构结构配筋基础I周星星:某高校土木综合楼设计The design of Civil integrated buildingAbstractThe design is mainly on three parts of the subject,the building part, the structure part,and the construction part ,which based on the mission statement , "Building code for fire protection, ""building structures norms ","Design of Concrete Structures"and other existing national norms.Firstly,I departured from the general, having taken indoor and outdoor space and organization into consideration,I completed the construction plan, elevation design and profile design; followed the calculation of the reinforcement on structural members of each designed framework.Construction drawing was finished by hand. The design of the building meets the existing national specification.In the design,I chose a framework, starting from the structure selection, when it came to the calculation load of the framework, the stratification method and D value method were both introduced, respectively for the calculation of the vertical load, internal forces produced by horizontal wind loads .Through the combination of internal forces, the internal control forces of the framework were obtained , and finally the framework of the reinforcement calculation of each component were completed and construction drawings of the framework was drawn.In the design book, the reinforcement was calculated and construction drawings was drawn in both the foundation and the stairs selected.Key words:Structural design Framework Reinforcement Foundation安徽工程大学毕业设计目录第1章绪论····························································错误!未定义书签。
1.1 结构绪论····························································错误!未定义书签。
1.2 基本概况····························································错误!未定义书签。
1.3 结构选型····························································错误!未定义书签。
1.4 结构布置····························································错误!未定义书签。
1.5 设计题目已知条件····················································错误!未定义书签。
第2章建筑结构布置与荷载计算············································错误!未定义书签。