传感器分类(最全总结)汇编
- 格式:docx
- 大小:10.15 KB
- 文档页数:5
各类传感器介绍目前,被人们所关注传感器的类型: 压力传感器、光电传感器、位移传感器、超声波传感器、温度传感器、湿度传感器、光纤传感器。
一、压力传感器压力传感器、压力变送器的种类及选用压力传感器及压力变送器分为表压、绝压、差压等种类。
常见0.1、0.2、0.5、1.0等精度等级。
可测量的压力范围很宽,小到几十毫米水柱,大的可达上百兆帕。
不同种类压力传感器及压力变送器的工作温度范围也不同,常分成0~70℃、-25~85℃、-40~125℃、-55~150℃几个等级,某些特种压力传感器的工作温度可达400~500℃。
压力传感器及压力变送器基于不同的材料及结构设计有着不同的防水性能及防爆等级,接液腔体由于材料、形状的差异可测量的流体介质种类也不同,常分为干燥气体、一般液体、酸碱腐蚀溶液、可燃性气液体、粘稠及特殊介质。
压力传感器及压力变送器作为一次仪表需与二次仪表或计算机配合使用,压力传感器及压力变送器常见的供电方式为:DC 5V、12V、24V、±12V等,输出方式有:0~5V、1~5V、0.5~4.5V、0~10mA、0~20mA、4~20mA等及Rs232、Rs485等与计算机的接口。
用户在选择压力传感器及压力变送器时,应充分了解压力测量系统的工况,根据需要合理选择,使系统工作在最佳状态,并可降低工程造价。
压力传感器常见精度参数及试验设备传感器静态标定设备:活塞压力计:精度优于0.05% 数字压力表: 精度优于0.05% 直流稳压电源: 精度优于0.05%。
传感器温度检验设备:高温试验箱:温度从0℃~+250℃温度控制精度为±1℃,低温试验箱:温度能从0℃~-60℃温度控制精度为±1℃传感器静态性能试验项目:零点输出、满量程输出、非线性、迟滞、重复性、零点漂移、超复荷。
传感器环境试验项目:零点温度漂移、灵敏度漂移、零点迟滞、灵敏度迟滞。
(检查产品在规定的温度范内对温度的适应能力,此项参数对精度影响极为重要)压力传感器使用注意事项压力传感器及压力变送器在安装使用前应详细阅读产品样本及使用说明书,安装时压力接口不能泄露,确保量程及接线正确。
性电路消除热电势与温度的⾮线性误差,最后放⼤转换为4~20mA电流输出信号。
为防⽌热电偶测量中由于电偶断丝⽽使控温失效造成事故,传感器中还设有断电保护电路。
当热电偶断丝或接解不良时,传感器会输出最⼤值(28mA)以使仪表切断电源。
⼀体化温度传感器具有结构简单、节省引线、输出信号⼤、抗⼲扰能⼒强、线性好、显⽰仪表简单、固体模块抗震防潮、有反接保护和限流保护、⼯作可靠等优点。
⼀体化温度传感器的输出为统⼀的 4~20mA信号;可与微机系统或其它常规仪表匹配使⽤。
也可⽤户要求做成防爆型或防⽕型测量仪表。
液位1、浮球式液位传感器浮球式液位传感器由磁性浮球、测量导管、信号单元、电⼦单元、接线盒及安装件组成。
⼀般磁性浮球的⽐重⼩于0.5,可漂于液⾯之上并沿测量导管上下移动。
导管内装有测量元件,它可以在外磁作⽤下将被测液位信号转换成正⽐于液位变化的电阻信号,并将电⼦单元转换成4~20mA或其它标准信号输出。
该传感器为模块电路,具有耐酸、防潮、防震、防腐蚀等优点,电路内部含有恒流反馈电路和内保护电路,可使输出最⼤电流不超过28mA,因⽽能够可靠地保护电源并使⼆次仪表不被损坏。
2、浮简式液位传感器浮筒式液位传感器是将磁性浮球改为浮筒,它是根据阿基⽶德浮⼒原理设计的。
浮筒式液位传感器是利⽤微⼩的⾦属膜应变传感技术来测量液体的液位、界位或密度的。
它在⼯作时可以通过现场按键来进⾏常规的设定操作。
3、静压或液位传感器该传感器利⽤液体静压⼒的测量原理⼯作。
它⼀般选⽤硅压⼒测压传感器将测量到的压⼒转换成电信号,再经放⼤电路放⼤和补偿电路补偿,最后以4~20mA或0~10mA电流⽅式输出。
真空度真空度传感器,采⽤先进的硅微机械加⼯技术⽣产,以集成硅压阻⼒敏元件作为传感器的核⼼元件制成的绝对压⼒变送器,由于采⽤硅-硅直接键合或硅-派勒克斯玻璃静电键合形成的真空参考压⼒腔,及⼀系列⽆应⼒封装技术及精密温度补偿技术,因⽽具有稳定性优良、精度⾼的突出优点,适⽤于各种情况下绝对压⼒的测量与控制。
传感器的分类及原理传感器是一种能够感知周围环境,并将感知到的信息转化为电信号、光信号或其他形式的能量输出的装置。
根据其工作原理和应用领域的不同,传感器可以分为多种分类。
下面将介绍一些常见的传感器分类及其工作原理。
1. 压力传感器压力传感器是一种能够测量和感知物体受到的压力大小的传感器。
按照测压原理的不同,压力传感器可以分为电阻式、电容式、电感式、振动式等多种类型。
其中,电阻式压力传感器是应用最广泛的一种。
其工作原理是利用受到应力的薄膜或弹性体产生形变,进而改变电阻值,从而实现对压力的测量。
2. 温度传感器温度传感器是一种能够测量和感知物体温度变化的传感器。
常见的温度传感器有热电偶、热电阻、温度敏感电阻等。
其中,热电偶是一种利用两种不同材料的热电势差随温度变化而产生的装置。
热电阻则是利用材料电阻值随温度变化而变化的原理来测量温度。
3. 光电传感器光电传感器是一种能够感知光的存在、光强度或光波长变化的传感器。
根据应用场景的不同,光电传感器可以分为光电开关、光电二极管、光电三极管等多种类型。
以光电开关为例,其原理是利用光电效应,当光电池接收到光线时,会输出电信号,通过检测电信号的有无来感知光线的存在。
4. 气体传感器气体传感器是一种能够侦测、感知和测量空气中各种气体浓度的传感器。
根据检测原理的不同,气体传感器可以分为化学传感器、红外传感器、电化学传感器等多种类型。
以红外传感器为例,其原理是利用特定气体吸收红外辐射的特性来测量气体浓度。
5. 加速度传感器加速度传感器是一种能够感知物体加速度变化的传感器。
加速度传感器广泛应用于物体动态姿态测量、运动控制等领域。
根据工作原理的不同,加速度传感器可以分为压电式、电容式、电阻式等多种类型。
其中,压电式加速度传感器是最常见的一种。
其原理是基于压电效应,当压电谐振盘受到外力时,会产生电荷变化,从而实现对加速度的检测。
6. 湿度传感器湿度传感器是一种能够测量空气中相对湿度的传感器。
传感器的主要分类传感器是测量和检测技术中的重要组成部分,广泛应用于各个领域。
传感器按功能和工作原理可以分为多个不同的分类。
以下是传感器的主要分类:1. 基于测量类型的分类:- 温度传感器:用于测量环境或物体的温度。
常见的温度传感器包括热电偶和热敏电阻。
- 压力传感器:用于测量液体或气体的压力。
常见的压力传感器有压阻式和压电式传感器。
- 光传感器:用于检测光线的强度。
光传感器分为光敏电阻和光电二极管等类型。
- 湿度传感器:用于测量空气中的湿度。
常见的湿度传感器有电容式和电阻式传感器。
- 速度传感器:用于测量物体的速度。
其中包括激光测距传感器、超声波传感器以及旋转编码器等。
- 位移传感器:用于测量物体的位移或位置。
常见的位移传感器包括压敏电阻、光电编码器和霍尔传感器等。
2. 基于工作原理的分类:- 电阻式传感器:根据电阻值的变化来测量物理量,如温度传感器和湿度传感器。
- 压电式传感器:利用压电效应将信号转换为电荷或电压输出,如压力传感器和加速度传感器。
- 感应式传感器:利用感应原理来测量物理量,如电感传感器和磁敏传感器。
- 光电式传感器:利用光电效应来测量光的强度或光的特性,如光电二极管和光敏电阻。
- 超声波传感器:利用超声波的发射和接收来测量物体与传感器之间的距离,广泛应用于测距和避障等领域。
3. 基于应用领域的分类:- 工业自动化传感器:包括流量传感器、液位传感器和加速度传感器等。
- 环境监测传感器:如温湿度传感器、气体传感器和光照传感器等。
- 生物医学传感器:如血压传感器、血糖传感器和心率传感器等。
- 智能家居传感器:如温度传感器、门磁传感器和烟雾传感器等。
- 汽车传感器:包括转向传感器、刹车传感器和氧气传感器等。
4. 基于信号输出形式的分类:- 模拟输出传感器:通过模拟信号输出来反映测量物理量的变化。
- 数字输出传感器:通过数字信号输出来反映测量物理量的变化。
- 脉冲输出传感器:通过脉冲信号输出来反映测量物理量的变化。
传感器的分类及发展趋势传感器是指能够将非电能信号转化为电能信号的装置。
根据其工作原理、测量物理量和应用领域的不同,传感器可以分为多种类型。
一、按照工作原理的分类1.电阻传感器:通过测量电阻值的变化来获得被测物理量的信息,如电位器、应变片传感器等。
2.容抗传感器:通过测量电容值的变化来获得被测物理量的信息,如湿度传感器、触摸屏传感器等。
3.感光传感器:通过测量光的强度或波长来获得被测物理量的信息,如光电二极管、光敏电阻等。
4.磁性传感器:通过测量磁场的强度或方向来获得被测物理量的信息,如磁阻传感器、霍尔传感器等。
5.声波传感器:通过测量声波的强度、频率或相位来获得被测物理量的信息,如麦克风、声纳传感器等。
6.压力传感器:通过测量压力的大小或变化来获得被测物理量的信息,如压电传感器、压阻传感器等。
二、按照测量物理量的分类1.温度传感器:用于测量物体的温度,如热电偶、热敏电阻等。
2.湿度传感器:用于测量空气中的湿度,如湿电容传感器、湿敏电阻等。
3.压力传感器:用于测量气体或液体的压力,如压膜式压力传感器、微差压传感器等。
4.流量传感器:用于测量流体的流速或流量,如涡轮流量计、电磁流量计等。
5.光学传感器:用于测量光的强度、颜色或波长,如光电二极管、光纤传感器等。
6.位置传感器:用于测量物体的位置或位移,如编码器、位移传感器等。
7.加速度传感器:用于测量物体的加速度或振动,如加速度计、振动传感器等。
三、按照应用领域的分类1.工业传感器:广泛应用于工业自动化控制领域,如液位传感器、测力传感器等。
2.医疗传感器:用于医疗设备和医学监测领域,如心率传感器、体温传感器等。
3.环境传感器:用于环境监测和保护领域,如大气传感器、水质传感器等。
4.交通传感器:用于车辆和交通系统的控制和监测,如车速传感器、停车传感器等。
5.安全传感器:用于安全保护和警报系统,如烟雾传感器、可燃气体传感器等。
6.生物传感器:用于生物医学、生态环境和食品安全领域,如DNA传感器、酶传感器等。
传感器分类及20种常见传感器目录1.常用传感器的分类 (1)1.1.按被测物理量分类 (1)1.2.按工作的物理基础分类 (2)2. 20种常见的传感器 (2)2. 1. 温度传感器(TemPeratUreSenSor): (2)2. 2. 湿度传感器(HUmidity Sensor) : (2)2. 3. 光敏传感器(Light Sensor): (2)2. 4. 声音传感器(SoUnd Sensor) : (3)2. 5. 压力传感器(PreSSUre Sensor): (3)2. 6. 位移传感器(PoSition Sensor): (3)2. 7.加速度传感器(ACCelerometer): (3)2. 8. 磁感应传感器(MagnetiC Sensor) : (4)2. 9. 接近传感器(ProXirnity Sensor) : (4)2. 10. 电容传感器(CaPaCitiVe Sensor): (4)2. 11. 气体传感器(GaSSenSor): (5)2. 12. 颜色传感器(ColOrSenSor): (6)2. 13. 生物传感器(BiOIogiCaISenSor): (7)2. 14. 速度传感器(SPeedSenSor): (8)2. 15. 重量传感器(WeightSenSor): (9)2. 16. 红外传感器(InfraredSenSor): (9)2. 17. 压敏传感器(PreSSUre-SenSitiVeSenSOr): (10)2. 18.射频识别传感器(RFlD): (11)2. 19. 光电传感器(PhotOdeteCtOr): (13)2. 20.位角传感器(AngUIar Position Sensor): (14)1.常用传感器的分类Ll.按被测物理量分类机械量:长度、厚度、位移、速度、加速度、转数、质量,重量、力、压力、力矩;声:声压、噪声;温度:温度、热量、比热;磁:磁通、磁场;光:亮度、色彩。
传感器的十种类型
传感器是一种用于检测和测量物理量的设备,常用于自动化控制、工业生产、医疗诊断和科学研究等领域。
传感器可以根据其检测的物理量和原理分类为以下十种类型:
1. 压力传感器:用于测量流体和气体的压力,常用于汽车、工业生产等领域。
2. 温度传感器:用于测量物体的温度,常用于空调、冰箱、汽车等领域。
3. 光学传感器:用于测量光的强度、颜色、位置等信息,常用于相机、传感器网络等领域。
4. 加速度传感器:用于测量物体的加速度,常用于汽车、手机、运动传感器等领域。
5. 重力传感器:用于测量物体受到的重力作用,常用于游戏手柄、手机等领域。
6. 声音传感器:用于测量声音的声压级、频率等,常用于音频设备、语音识别等领域。
7. 气体传感器:用于检测空气中的各种气体成分,常用于煤气检测、室内空气质量检测等领域。
8. 电流传感器:用于测量电路中通过的电流,常用于电力监测、电子设备等领域。
9. 磁力传感器:用于测量磁场的强度和方向,常用于指南针、传感器网络等领域。
10. 湿度传感器:用于测量空气中的相对湿度,常用于气象观测、室内环境监测等领域。
综上所述,传感器的种类繁多,涉及到物理、化学、声学等多个领域。
随着技术的不断发展,传感器的应用领域也将更加广泛和多样化。
传感器的十种类型传感器是一种能够感知和检测环境中各种物理量并将其转化为可供人类理解的信号的装置。
它们被广泛应用于工业、医疗、军事、交通等领域,起到了至关重要的作用。
本文将介绍十种常见的传感器类型,并从人类的视角出发,以生动的语言描述它们的工作原理和应用场景。
1. 温度传感器温度传感器可以测量环境的温度并将其转化为电信号。
它们在各个领域都有广泛的应用,如气象预报、温控设备、医疗仪器等。
例如,在农业领域,温度传感器可以帮助农民监测土壤温度,以确定植物的生长状态。
2. 湿度传感器湿度传感器用于测量和监测环境的湿度。
它们常用于气象观测、农业、建筑等领域。
例如,湿度传感器可以帮助农民判断土壤的湿度,从而合理灌溉农作物。
3. 光传感器光传感器可以感知光线的强度和频率。
它们广泛应用于照明控制、光敏仪器等领域。
例如,在智能家居中,光传感器可以根据环境光线的强度自动调节灯光亮度。
4. 压力传感器压力传感器用于测量和监测物体的压力。
它们在工业、医疗、汽车等领域有着重要的应用。
例如,在汽车中,压力传感器可以监测轮胎的气压,提醒驾驶员及时充气。
5. 位移传感器位移传感器可以测量和监测物体的位移和位置变化。
它们常用于机械工程、自动化控制等领域。
例如,在工业生产线上,位移传感器可以帮助监测机器人的位置,确保精准的操作。
6. 加速度传感器加速度传感器可以测量物体的加速度和振动。
它们在运动控制、安全监测等领域得到广泛应用。
例如,在智能手机中,加速度传感器可以感知手机的倾斜和摇晃,实现屏幕自动旋转和晃动控制等功能。
7. 气体传感器气体传感器可以检测环境中的气体浓度和成分。
它们在环境监测、工业安全等领域发挥着重要作用。
例如,在室内空气质量监测中,气体传感器可以检测二氧化碳和有害气体的浓度,保障人们的健康。
8. 液位传感器液位传感器可以测量和监测液体的高度和容量。
它们广泛应用于化工、水处理、油田开发等领域。
例如,在储罐中,液位传感器可以实时监测液体的高度,避免溢出或过度放空。
传感器的分类及特点传感器是用于将感知到的信息转化成可供人和机器理解的信号或者用于探微仪器、感知器、研究装置、计量器及其他设备上的核心部件。
根据其工作原理和应用领域不同,传感器可以分为多种类型,并具有各自独特的特点。
1.分类1.1根据感知物理量的种类按照传感器所感知的物理量的种类,传感器可以分为以下几类:(1)温度传感器:用于感知环境的温度变化,常用的有热敏电阻、热电偶和红外温度传感器等。
(2)压力传感器:用于感知物体所受外力的大小,常见的有压力电阻、压电传感器和电容式压力传感器等。
(3)湿度传感器:用于感知环境的湿度变化,常见的有电容湿度传感器和电导湿度传感器等。
(4)光电传感器:用于感知光的强度和光的频率,常见的有光敏电阻、光敏二极管和光敏三极管等。
(5)气体传感器:用于感知气体浓度和成分,常见的有化学传感器和电化学传感器等。
(6)加速度传感器:用于感知物体的加速度和震动,常见的有压电加速度传感器和惯性式加速度传感器等。
(7)位置传感器:用于感知物体的位置和位移,常见的有旋转编码器、线性位移传感器和倾角传感器等。
(8)流量传感器:用于感知流体的流量,常见的有电磁流量传感器和热式流量传感器等。
(9)生物传感器:用于感知生物体的生理特征,常见的有心率传感器和脑电传感器等。
(10)运动传感器:用于感知人体的运动特征,常见的有加速度计和陀螺仪等。
(11)声音传感器:用于感知声波的压力、振动或声级,常见的有麦克风和声强传感器等。
(12)化学传感器:用于感知化学物质的浓度和成分,常见的有气敏电阻和化学发光传感器等。
1.2根据工作原理的不同按照传感器的工作原理不同,传感器可以分为以下几类:(1)电阻型传感器:根据电阻值的变化来感知物理量的变化,常见的有热敏电阻和力敏电阻等。
(2)电容型传感器:根据电容值的变化来感知物理量的变化,常见的有电容湿度传感器和电容位移传感器等。
(3)电感型传感器:根据电感值的变化来感知物理量的变化,常见的有磁感应式流量传感器和接近开关等。
传感器种类大全传感器是一种能够感知、检测和测量某种特定物理量并将其转化为可识别的信号输出的装置。
随着科技的不断发展,传感器的种类也日益丰富。
本文将为大家介绍一些常见的传感器种类,希望能够帮助大家更好地了解传感器的应用领域和特点。
1. 光学传感器。
光学传感器是利用光学原理来检测物体的存在、位置、形状、颜色等特征的传感器。
常见的光学传感器包括光电开关、光电传感器、光栅编码器等。
光学传感器广泛应用于工业自动化、机器人技术、光学测量等领域。
2. 声学传感器。
声学传感器是利用声波原理来检测声音信号的传感器。
常见的声学传感器包括麦克风、声纳、超声波传感器等。
声学传感器在声音识别、通信、医学影像等领域有着重要的应用。
3. 温度传感器。
温度传感器是用来测量物体温度的传感器。
常见的温度传感器包括热电偶、热敏电阻、红外线温度传感器等。
温度传感器在工业控制、医疗诊断、气象预报等方面有着广泛的应用。
4. 湿度传感器。
湿度传感器是用来测量空气中湿度水分含量的传感器。
常见的湿度传感器包括电容式湿度传感器、电阻式湿度传感器、湿度传感模块等。
湿度传感器在农业、气象、仓储等领域有着重要的作用。
5. 压力传感器。
压力传感器是用来测量物体压力的传感器。
常见的压力传感器包括压阻式传感器、压电式传感器、电容式传感器等。
压力传感器在工业自动化、汽车制造、航空航天等领域有着广泛的应用。
6. 加速度传感器。
加速度传感器是用来测量物体加速度的传感器。
常见的加速度传感器包括压电加速度传感器、电容式加速度传感器、MEMS加速度传感器等。
加速度传感器在运动控制、智能手机、汽车安全等方面有着重要的应用。
7. 角度传感器。
角度传感器是用来测量物体角度变化的传感器。
常见的角度传感器包括旋转编码器、陀螺仪、倾斜传感器等。
角度传感器在航空航天、导航系统、工程测量等领域有着广泛的应用。
8. 气体传感器。
气体传感器是用来检测空气中气体成分的传感器。
常见的气体传感器包括气敏传感器、红外气体传感器、电化学气体传感器等。
传感器的分类传感器的种类繁多,功能各异。
同一种被测量可以用不同的传感器来测量,利用同一种物理法则、化学反应或生物效应可设计制作出检测不同被测量的传感器,而功能大同小异的同一类传感器可用于不同的技术领域,故传感器有不同的分类法。
1、按感知外界信息所依据的基本效应分类按感知外界信息所依据的基本效应,分成物理、化学、生物传感器三大类。
基于物理效应,如光、电、声、磁、热等效应进行工作的物理传感器;基于化学效应,如化学吸附、离子化学效应等进行工作的化学传感器;基于酶、抗体、激素等分子识别功能的生物传感器。
2、按传感器的构成原理分类按传感器的构成原理,物理传感器分为结构型与物性型两大类,两者组合兼有两者特征的传感器称为复合型传感器。
结构型传感器是利用物理学中场的定律构成的,场的定律是关于物质作用的定律,如动力场的运动定律、电磁场的感应定律、光的干涉现象等。
利用场的定律制作成的传感器,如电动式传感器、电容式传感器、激光检测器等。
物理学中的定律一般是以方程式给出的,特点是传感器的工作原理是以传感器中元件相对位置变化引起场的变化为基础,而不是以材料特性变化为基础。
物性型传感器是利用物质定律构成的,物质的定律是指物质本身内在性质的规律,定律、法则大多数是以物质本身的常数形式给出。
这些常数的大小,决定了传感器的主要性能,如弹性体的胡克定律、晶体的压电性与半导体材料的压阻、热阻、光阻、湿阻、霍尔效应等。
利用物质的定律制作成的传感器,如压电式传感器、热敏电阻、光敏电阻、光电管等。
因此,物性型传感器的性能随材料的不同而异。
例如,光电管,它利用了物质法则中的外光电效应。
显然,其特性与涂覆在电极上的材料有着密切的关系。
3、按作用原理分类按作用原理可分为应变式、电容式、电感式、电磁式、压电式、热电式等传感器,如下图所示。
▲测量压力的电位器式压力传感器4、按能量关系分类按能量关系可分为能量控制型和能量转换型两大类。
能量控制型是指其变换的能量是由外部电源供给的,而外界的变化(即传感器输入量的变化)只起到控制的作用,如应变电阻效应、磁阻效应、热阻效应等电桥。
传感器类型及原理一、引言传感器是现代工业生产和科学技术的重要组成部分,广泛应用于自动化控制、环境监测、医疗卫生、军事等领域。
传感器的种类繁多,本文将从传感器类型及原理两个方面进行介绍。
二、传感器类型1. 按照测量物理量分类(1)力敏传感器:用于测量物体受力情况,如压力传感器、扭力传感器等。
(2)位移传感器:用于测量物体位置变化情况,如线性位移传感器、旋转位移传感器等。
(3)速度传感器:用于测量物体速度情况,如霍尔元件速度传感器、光电编码器速度传感器等。
(4)温度传感器:用于测量物体温度情况,如热电偶温度传感器、热敏电阻温度传感器等。
(5)湿度/气压/流量/液位/光强等其他类型的传感器。
2. 按照工作原理分类(1)电容式传感器:利用被检测物体与电极之间的电容变化来实现信号转换,如振动传感器、压力传感器等。
(2)电阻式传感器:利用被检测物体与电极之间的电阻变化来实现信号转换,如热敏电阻温度传感器、应变计等。
(3)电磁式传感器:利用被检测物体与线圈之间的电磁作用来实现信号转换,如霍尔元件速度传感器、涡流传感器等。
(4)光学式传感器:利用光学原理来实现信号转换,如光电开关、激光测距仪等。
(5)声学式传感器:利用声波原理来实现信号转换,如麦克风、压力麦克风等。
三、常见传感器原理介绍1. 振动传感器振动传感器是一种测量机械或结构振动的设备。
其工作原理基于质量弹性系统的振动特性。
当被检测物体发生振动时,振动会通过加速度计或位移计等装置将机械运动转化为电信号输出。
2. 压力传感器压力传感器是一种测量压力的设备。
其工作原理基于杨氏模量的变化。
当被检测物体受到外力作用时,其形变会导致杨氏模量的变化,从而改变电容、电阻、电感等参数,实现信号转换。
3. 热敏电阻温度传感器热敏电阻温度传感器是一种测量温度的设备。
其工作原理基于热敏效应。
当被检测物体受到温度变化时,其电阻值也会随之发生变化,从而实现信号转换。
4. 霍尔元件速度传感器霍尔元件速度传感器是一种测量转速的设备。
按传感器的工作原理分类分类一: 光学传感器光学传感器是基于光的反射、吸收、透射等特性来测量和检测光信号的传感器。
根据工作原理的不同,光学传感器可以分为以下几类:1. 光电传感器: 利用光电效应来测量光的强度或者频率变化。
常见的有光敏电阻、光敏二极管和光电二极管等。
2. 光电导传感器: 利用光照射时的导电性变化来检测光信号。
例如光敏电阻和光敏电容等。
3. 光电效应传感器: 利用光照射物体时电子释放和捕获的效应测量光的强度。
例如光电二极管和光电倍增管等。
4. 光电开关: 利用光源和光敏元件的组合,感受到物体存在与否的信息,实现开关的功能。
常见的有光电障碍开关和光电编码器等。
分类二: 声学传感器声学传感器是通过检测声波信号来实现测量和检测的传感器。
根据工作原理的不同,声学传感器可以分为以下几类:1. 麦克风: 利用声压波的作用,将声音信号转化为电信号。
常见的有碳颗粒麦克风、电容麦克风和压电麦克风等。
2. 声呐传感器: 利用超声波或者声波在介质中传播的特性来测量距离、速度等信息。
常见的有超声波传感器和声导纳传感器等。
3. 声学传感器阵列: 利用多个声学传感器的组合,实现对声波信号的定位和识别等功能。
例如麦克风阵列和声呐阵列等。
分类三: 磁学传感器磁学传感器是通过检测磁场变化来实现测量和检测的传感器。
根据工作原理的不同,磁学传感器可以分为以下几类:1. 磁阻传感器: 利用磁场对材料电阻率的影响,实现对磁场强度的测量。
常见的有电阻式磁传感器和差动磁阻传感器等。
2. 磁感应传感器: 利用磁场对材料感应电动势的影响,实现对磁场强度的测量。
例如霍尔传感器和磁致伸缩传感器等。
3. 磁强计: 利用磁场对磁性材料力的影响,实现对磁场强度的测量。
常见的有永磁式磁强计和电感式磁强计等。
分类四: 气体传感器气体传感器是通过检测气体成分或者气体特性变化来实现测量和检测的传感器。
根据检测原理的不同,气体传感器可以分为以下几类:1. 电化学传感器: 利用气体与电极间化学反应的特性来测量气体浓度。
简述传感器种类
传感器的种类繁多,可以根据不同的标准进行分类。
1.按用途:可以分为压力敏和力敏传感器、位置传感器、液位传感器、能耗传感器、速度传感器、加速度传感器、射线辐射传感器、热敏传感器等。
2.按原理:可以分为振动传感器、湿敏传感器、磁敏传感器、气敏传感器、真空度传感器等。
3.按输出信号:可以分为模拟传感器、数字传感器、膺数字传感器、开关传感器等。
4.按其制造工艺:可以分为集成传感器、薄膜传感器、厚膜传感器、陶瓷传感器等。
5.按测量目的:可以分为物理型传感器、化学型传感器、生物型传感器等。
6.按其构成:可以分为基本型传感器、组合型传感器、应用型传感器等。
7.按作用形式:可以分为主动型和被动型传感器。
此外,还可以根据测量对象的不同,分为接触式和非接触式传感器;根据测量温度范围的不同,分为高温、常温、低温传感器;根据输出信号的性质,分为开关型和模拟型等。
传感器按用途分类总结第一篇:传感器按用途分类总结传感器总结力:压电(动、静)、应变(动、静)(1Mn~10^8N)、电容式差压(微小压力、压强0—0.75Pa)位移:电涡流(0—5mm)、电感(三段式:小位移;二段式:大位移)、电容速度:磁电式加速度:压电(0—2000g、测频:1—22KHz)、应变、压阻扭矩:磁电式(测扭转角)、应变(测切应力)转速:电涡流、霍尔、磁电式(不能测低转速)振动:电涡流(位移)、磁电式(速度)、压电(加速度)电阻式应变(应变/压阻效应):力、力矩、压力、位移应用:应变式力/压力/扭矩传感器热电阻:温度电位计:线、角位移应用:电位计式压力传感器电容(差动式结构):变极距:微加速度(振动)、电容式差压(微小压差)变面积:微加速度(振动)、大位移(容栅式)变介电常数:液位高度应用:电容式差压、电容式微加速度、容栅式位移传感器电感:自感(变磁阻:1变隙式灵敏度高、2变面积):小位移、速度、互感(差动变压器):位移(接触式)电涡流(非接触式):位移、厚度、振动、表面温度、材料损伤、转速应用:自感型压力传感器、互感型轴向电感测微计(接触、工件外形尺寸)、电涡流电阻、电容、电感可测静态、准静态压电式(静、动):力、力矩、加速度(0—2000g、测频:1—22KHz)【分剪切式(测高频振动)、弯曲式(测低频)】、振动应用:压电式压力传感器、压电加速度计磁电式:速度、转速(不能测低转速)、扭矩分动圈式:振动速度、相对运动速度变磁阻式:角速度、转轴速度应用:磁电式速度、转速、扭矩传感器光电式:旋转机械转速测量、光电耦合器件应用:光电式转速传感器、光电耦合器(光电隔离器、光电开关)、表面粗糙度光电传感器、透射式光电测孔传感器(工件孔径、狭缝宽度)固态图像:霍尔传感器:转速(单位时间内脉冲数)、损伤检测第二篇:小班数学教案按用途分类数学《按用途分类》活动目标:1、启发幼儿说出卡片上物品的名称及用途。
【广州兰瑟电子】内部培训资料杨工传感器分类,传感器有哪些类型???一、按用途压力敏和力敏传感器、位置传感器、液位传感器、能耗传感器、速度传感器、加速度传感器、射线辐射传感器、热敏传感器。
二、按原理振动传感器、湿敏传感器、磁敏传感器、气敏传感器、真空度传感器、生物传感器等;三、按输出信号1、模拟传感器:将被测量的非电学量转换成模拟电信号;2、数字传感器:将被测量的非电学量转换成数字输出信号(包括直接和间接转换);3、膺数字传感器:将被测量的信号量转换成频率信号或短周期信号的输出(包括直接或间接转换);4、开关传感器:当一个被测量的信号达到某个特定的阈值时,传感器相应地输出一个设定的低电平或高电平信号。
四、按其制造工艺1、集成传感器是用标准的生产硅基半导体集成电路的工艺技术制造的,通常还将用于初步处理被测信号的部分电路也集成在同一芯片上;2、薄膜传感器则是通过沉积在介质衬底(基板)上的,相应敏感材料的薄膜形成的。
使用混合工艺时,同样可将部分电路制造在此基板上;3、厚膜传感器是利用相应材料的浆料,涂覆在陶瓷基片上制成的,基片通常是Al2O3制成的,然后进行热处理,使厚膜成形;4、陶瓷传感器采用标准的陶瓷工艺或其某种变种工艺(溶胶、凝胶等)生产,完成适当的预备性操作之后,已成形的元件在高温中进行烧结。
五、按测量目分类1、物理型传感器是利用被测量物质的某些物理性质发生明显变化的特性制成的;2、化学型传感器是利用能把化学物质的成分、浓度等化学量转化成电学量的敏感元件制成的;3、生物型传感器是利用各种生物或生物物质的特性做成的,用以检测与识别生物体内化学成分的传感器。
六、按其构成分类1、基本型传感器:是一种最基本的单个变换装置;2、组合型传感器:是由不同单个变换装置组合而构成的传感器;3、应用型传感器:是基本型传感器或组合型传感器与其他机构组合而构成的传感器。
七、按作用形式1、主动型传感器又有作用型和反作用型,此种传感器对被测对象能发出一定探测信号,能检测探测信号在被测对象中所产生的变化,或者由探测信号在被测对象中产生某种效应而形成信号,检测探测信号变化方式的称为作用型,检测产生响应而形成信号方式的称为反作用型,雷达与无线电频率范围探测器是作用型实例,而光声效应分析装置与激光分析器是反作用型实例;2、被动型传感器只是接收被测对象本身产生的信号,如红外辐射温度计、红外摄像装置等。
由于被测参量种类繁多,其工作原理和使用条件又各不相同,因此传感器的种类和规格十分繁杂,分类方法也很多。
现将常采用的分类方法归纳如下:
1、按输入量即测量对象的不同分:
如输入量分别为:温度、压力、位移、速度、湿度、光线、气体等非电量时,则相应的传感器称为温度传感器、压力传感器、称重传感器等。
这种分类方法明确地说明了传感器的用途,给使用者提供了方便,容易根据测量对象来选择
所需要的传感器,缺点是这种分类方法是将原理互不相同的传感器归为一类,很难找出每种
传感器在转换机理上有何共性和差异,因此,对掌握传感器的一些基本原理及分析方法是不
利的。
因为同一种型式的传感器,如压电式传感器,它可以用来测量机械振动中的加速度、速度和振幅等,也可以用来测量冲击和力,但其工作原理是一样的。
这种分类方法把种类最多的物理量分为:基本量和派生量两大类. 例如力可视为基本物理量,
从力可派生出压力、重量,应力、力矩等派生物理量•当我们需要测量上述物理量时,只要采用力传感器就可以了。
所以了解基本物理量和派生物理量的关系,对于系统使用何种传感
器是很有帮助的。
2、按工作(检测)原理分类
检测原理指传感器工作时所依据的物理效应、化学效应和生物效应等机理。
有电阻式、电容式、电感式、压电式、电磁式、磁阻式、光电式、压阻式、热电式、核辐射式、半导体式传
^器等O
如根据变电阻原理,相应的有电位器式、应变片式、压阻式等传感器;如根据电磁感应原理,
相应的有电感式、差压变送器、电涡流式、电磁式、磁阻式等传感器;如根据半导体有关理
论,则相应的有半导体力敏、热敏、光敏、气敏、磁敏等固态传感器。
这种分类方法的优点是便于传感器专业工作者从原理与设计上作归纳性的分析研究,避免了传感器的名目过于繁多,故最常采用。
缺点是用户选用传感器时会感到不够方便。
有时也常把用途和原理结合起来命名,如电感式位移传感器,压电式力传感器等,以避免传
感器名目过于繁多.
3、按照传感器的结构参数在信号变换过程中是否发生变化可分为:
a、物性型传感器:在实现信号的变换过程中,结构参数基本不变,而是利用某些物质材料
(敏感元件)本身的物理或化学性质的变化而实现信号变换的。
这种传感器一般没有可动结构部分,易小型化,故也被称作固态传感器,它是以半导体、电
介质、铁电体等作为敏感材料的固态器件。
如:热电偶、压电石英晶体、热电阻以及各种半导体传感器如力敏、热敏、湿敏、气敏、光敏元件等。
b、结构型传感器:依靠传感器机械结构的几何形状或尺寸(即结构参数)的变化而将外界被
测参数转换成相应的电阻、电感、电容等物理量的变化,实现信号变换,从而检测出被测信号。
如:电容式、电感式、应变片式、电位差计式等。
4、根据敏感元件与被测对象之间的能量关系(或按是否需外加能源)来分: a、能量转换型(有源式、自源式、发电式):在进行信号转换时不需要另外提供能量,直接
由被测对象输入能量,把输入信号能量变换为另一种形式的能量输出使其工作。
有源传感器
类似一台微型发电机,它能将输入的非电能量转换成电能输出,传感器本身勿需外加电源,信号能量直接从被测对象取得。
因此只要配上必要的放大器就能推动显示记录仪表。
如:压电式、压磁式、电磁式、电动式、热电偶、光电池、霍尔元件、磁致伸缩式、电致伸缩式、静电式等传感器。
这类传感器中,有一部分能量的变换是可逆的,也可以将电能转换为机械能或其它非电量。
如压电式、压磁式、电动式传感器等。
b、能量控制型(无源式、他源式、参量式):在进行信号转换时,需要先供给能量即从外部供给辅助能源使传感器工作,并且由被测量来控制外部供给能量的变化等。
对于无源传感器,
被测非电量只是对传感器中的能量起控制或调制作用,得通过测量电路将它变为电压或电流
量,然后进行转换、放大,以推动指示或记录仪表。
配用测量电路通常是电桥电路或谐振电路。
如:电阻式、电容式、电感式、差动变压器式、涡流式、热敏电阻、光电管、光敏电阻、湿
敏电阻、磁敏电阻等。
|
5、按输出信号的性质分:
a、模拟式传感器:将被测非电量转换成连续变化的电压或电流,如要求配合数字显示器或数字计算机,需要配备模/数(A/D)转换装置。
上面提到的传感器基本上属于模拟传感器。
b、数字式传感器:能直接将非电量转换为数字量,可以直接用于数字显示和计算,可直接
配合计算机,具有抗干扰能力强,适宜距离传输等优点。
目前这类传感器可分为脉冲、频率和数码输出三类。
如光栅传感器等。
6、按照传感器与被测对象的关联方式(是否接触)可分为:
a、接触式:如:电位差计式、应变式、电容式、电感式等;
b、非接触式:接触式的优点是传感器与被测对象视为一体,传感器的标定无须在使用现场
进行,缺点是传感器与被测对象接触会对被测对象的状态或特性不可避免地产生或多或少的
影响。
非接触式则没有这种影响;
非接触化测量可以消除传感器介入而使被测量受到的影响,提高测量的准确性,同时,可使
传感器的使用寿命增加。
但是非接触式传感器的输出会受到被测对象与传感器之间介质或环
境的影响。
因此传感器标定必须在使用现场进行。
7、按传感器构成来分:
a、基本型传感器:是一种最基本的单个变换装置。
b、组合型传感器:是由不同单个变换装置组合而构成的传感器。
c、应用型传感器:是基本型传感器或组合型传感器与其他机构组合而构成的传感器。
例如:热电偶是基本型传感器,把它与红外线辐射转为热量的热吸收体组合成红外线辐射传
感器,即一种组合传感器;把这种组合传感器应用于红外线扫描设备中,就是一种应用型传
感器。
有其他技术温度请联系广州迪川仪器仪表有限公司
&按作用形式来分:
按作用形式可分为主动型和被动型传感器。
主动型传感器又有作用型和反作用型,此种传感器对被测对象能发出一定探测信号,能检测
探测信号在被测对象中所产生的变化,或者由探测信号在被测对象中产生某种效应而形成信号。
检测探测信号变化方式的称为作用型,检测产生响应而形成信号方式的称为反作用型。
雷达与无线电频率范围探测器是作用型实例,而光声效应分析装置与激光分析器是反作用型实例。
被动型传感器只是接收被测对象本身产生的信号,如红外辐射温度计、红外摄像装置等
9、按传感器的特殊性来分:
上面介绍的分类是传感器的基本类型,按特殊性可分以下类型:
按检测功能可分为检测温度、压力、温度、流量计、流速、加速度、磁场、光通量等的传感
器;
按传感器工作的物理基础可分为机械式、电气式、光学式、液体式等;
按转换现象的范围可分为化学传感器、电磁学传感器、力学传感器和光学传感器;
按材料可分为金属、陶瓷、有机高分子材料、半导体传感器等;
按应用领域分为工业,民用、科研、医疗,农用,军用等传感器;
按功能用途分为计测用、监视用、检查用,诊断用、控制用,分析用等传感器。