含参数的二元一次方程组的解法
- 格式:doc
- 大小:96.50 KB
- 文档页数:2
第二节二元一次方程组的解法1.二元一次方程组的解法基本思路是消元,即通过运用代入法或加减法把二元一次方程组转化为一元一次方程,从而求出方程组的解. (1)代入消元法:通过等量代换,消去方程组中的一个未知数,使二元一次方程组转化为一元一次方程,从而求得一个未知数的值,然后再求出被消去未知数的值,从而确定原方程组的解的方法.代入消元法解二元一次方程组的一般步骤:①从方程组中选一个系数比较简单的方程,将这个方程组中的一个未知数例如y,用含另一个未知数如x的代数式表示出来;②将变形后的关系式代入另一个方程,消去一个未知数,得到一个一元一次方程;③解这个一元一次方程,求出x(或y)的值;④将求得的未知数的值代入变形后的关系式中,求出另一个未知数的值;⑤把求得的x、y的值用“{”联立起来,就是方程组的解.(2)加减消元法:加减法是消元法的一种,也是解二元一次方程组的基本方法之一.加减法不仅在解二元一次方程组中适用,也是今后解其它方程(组)经常用到的方法.加减消元法解二元一次方程组的一般步骤:①变换系数:方程组的两个方程中,如果同一个未知数的系数既不相等又不互为相反数,就用适当的数去乘方程的两边,使某一个未知数的系数相等或互为相反数;②加减消元:把两个方程的两边分别相减或相加,消去一个未知数,得到一个一元一次方程;③解这个一元一次方程,求得未知数的值;④回代:将求出的未知数的值代入原方程组的任意一个方程中,求出另一个未知数的值;⑤把所求得的两个未知数的值写在一起,就得到原方程组的解,需要把求得的x,y的值用“{”联立起来.2.特殊方程组的解法对于具有某些特点的二元一次方程组,如果仍按常规方法不仅运算量大,而且容易出错,则可根据题目的特点,利用整体思想来采用特殊方法简化方程组,接着再采用代入或加减消元法解出相应x,y的值即可.(1)系数轮换法:适用方程组类型:如果把方程组中的每一个未知数依次轮换后,虽然每个方程都变了,但是整个方程组仍不变,步骤:解题时,把各方程相加,即可得到x+ y=常数的形式,把各方程相减,即可得到x- y=常数的形式,这两个新的方程组成的方程组就是原方程组化简后的结果,便可以采用加减或代入消元法求得未知数的值.(2)换元法:适用方程组类型:方程组项数较多、系数较为复杂,而且会有相同的部分或者是互为相反数的部分多次出现;步骤:解题时,把方程中相同的部分或者是互为相反数的部分看成是一个整体,用另一个字母来替换,从而简化原先项数多、系数复杂的方程组,再采用常规的加减或者代入消元法来求得未知数的值.(3)倒数法:适合方程组类型:方程中出现分母是和的形式,分子是积的形式⋅+yx xy步骤:解题时,采用倒数法变换成分子是和、分母是积的形式,xyyx +然后进行拆分,利用加减或者代入或者换元法来解出x ,y 的值.1.代入消元方法的选择①运用代入法时,将一个方程变形后,必须代入另一个 方程,否则就会 得出“0=0”的形式,求不出未知数的值;②当方程组中有一个方程的一个未知数的系数是1或一1时,用代入法较简便. 2.加减消元方法的选择①一般选择系数绝对值最小的未知数消元;②当某一未知数的系数互为相反数时,用加法消元;当某一未知数的系数相 等时,用减法消元;③某一未知数系数成倍数关系时,直接使其系数互为相反数或相等,再用 加减消元求解;④当相同的未知数的系数都不相同时,找出某一个未知数的系数的最小公倍数,同时对两个方程进行变形,转化为系数的绝对值相同的方程,再用加减消元求解,例1.如果关于x ,y 的方程组⎩⎨⎧-=-=+223a y x y x 的解是负数,则a 的取值范围是( )54.<<-a A 5.>a B 4.-<a C D .无解检测1.(浙江绍兴期末)已知关于x ,y 的方程组⎩⎨⎧-=-=-,52253a y x ay x 若x ,y 的值互为相反数,则a 的值为( )5.-A 5.B 20.-C 20.D例2.(四川南江县期末)已知,0)112(|32|2=+++--y x y x 则( )⎩⎨⎧==12.y x A ⎩⎨⎧-==30.y x B ⎩⎨⎧-=-=51.y x C ⎩⎨⎧-=-=72.y x D检测2.(山东滨州期末)已知,0|72|)12(2=-++--y x y x 则=-y x 3( )3.A 1.B 6.-C 8.D例3.(湖北黄冈期末)若y x h y xb a ba -+--332243是同类项,则b a -的值是( )0.A 1.B 2.C 3.D检测3.若y x nm +243与n m y x -5是同类项,则m .n 的值分别是( ) 3,2.A 1,2.B 0,2.C 2,1.D例4.(湖南衡阳县一模)解方程组:⎩⎨⎧=+=+,604320122016604120162012y x y x 则yx yx -+值是3.A 3.-B 6.C 6.-D检测4.(1)(江苏海门市期末)如果实数x ,y 满足方程组⎩⎨⎧=+=+,4222y x y x 那么=+y x(2)(安徽泗县校级模拟)关于x ,y 的二元一次方程组⎩⎨⎧-=+-=+22132y x k y x 的解满足y x +,1=则k=例5.(河北古冶区一模)已知a ,b 满足方程组⎩⎨⎧=-=+,283b a b a 则=+b a2.A3.B4.C5.D检测5.(1)(河北模拟)已知e 、f 满足方程组⎩⎨⎧=-=--,6223e f f e 则f e +2的值为( )2.A 4.B 6.C 8.D(2)(广东广州中考)已知a .b 满足方程组⎩⎨⎧=-=+,43125b a b a 则b a +的值为第二节 二元一次方程组的解法(建议用时:35分钟)实战演练1.用加减法解方程组⎩⎨⎧-=-=+15y x y x 中,消x 用 法,消y 用 法( )A.加,加 B .加,减 C .减,加 D .减,减2.若用代入法解方程组⎩⎨⎧+==,12332y x yx 以下各式代入正确的是( )1)32(23.+=x x A 1)32(23.+=y x B1)23(23.+=x x C 1623.+⋅=x x x D3.若,0|52||12|=--+--y x y x 则x+y 的值为( )4.A5.B6.C7.D4.已知:|32|++y x 与2)2(y x +互为相反数,则=-y x ( )7.A 5.B 3.C 1.D5.(山东临清市期末)已知方程组⎩⎨⎧=+=-my x y x 24中x ,y 相加为0,则m 的值为( )2.A 2.-B 0.C 4.D6.(河北石家庄校级模拟)若方程组⎩⎨⎧=++=+my x m y x 32253的解x 与y 互为相反数,则m 的值为( )2.-A 0.B 2.C 4.D7.若方程组⎩⎨⎧=+=+16156653y x y x &的解也是方程103=+ky x 的解,则( )6.=k A 10.=k B 9.=k C 101.=k D 8.若3243y x b a +与ba y x -634的和是单项式,则=+b a ( ) 3.-A 0.B 3.C 6.D9.按如图8 -2—1所示的运算程序,能使输出结果为3的x ,y 的值是( )128--2,5.-==y x A ⋅-==3,3.y x B 2,.4.=-=y x C 9,3.-=-=y x D10.(山东临沂中考)已知x ,y 满足方程组⎩⎨⎧=+=+,4252y x y x 则y x -的值为( )⎩⎨⎧==12.11y x 是方程组⎩⎨⎧=-=+04by ax by ax 的解,那么=+-))((b a b a 12.已知方程组⎩⎨⎧-=+=-123225m y x my x 的解x ,y 互为相反数,则m=13.(江苏常州期末)若关于x ,y ,的二元一次方程组⎩⎨⎧=+-=+22132y x a y x 的解满足x+ y=l ,则a 的值为14.三个同学对问题“若方程组⎪⎩⎪⎨⎧=+=+222111c y b x a c y b x a 的解是⎩⎨⎧==,43y x 求方程组⎪⎩⎪⎨⎧=+=+222111523523c y b x a c y b x a 的解.”提出各自的想法.甲说:“这个题目好像条件不够,不能求解”;乙说:“它们的系数有一定的规律,可以试试”;丙说:“能不能把第二个方程组的两个方程的两边都除以5,通过换元替换的方法来解决”,参考他们的讨论,你认为这个题目的解应该是 .15.(“信利杯”竞赛题)已知:a ,b ,c 三个数满足,31=+b a ab ,41=+c b bc ,51=+a c ca 则ca bc ab abc++的值为 16.(重庆校级自主招生)解方程组:⎩⎨⎧=+=+200320042005200620052004y x y x17.解方程组:⎪⎩⎪⎨⎧-=-=-+-421621y x y x18.已知方程组⎩⎨⎧+=---=+ay x ay x 317的解中,x 为非正数,y 为负数.(1)求a 的取值范围; (2)化简.|2||3|++-a a19.(江苏张家港市期末)已知关于x ,y 的方程组⎩⎨⎧+=+=+12242m y x my x (实数m 是常数).(1)若x+y=1,求实数m 的值;(2)若,51≤-≤-y x 求m 的取值范围; (3)在(2)的条件下,化简:.|32||2|-++m m20.(黑龙江讷河市校级期末)已知二元一次方程组⎩⎨⎧+=-+=+1593a y x a y x 的解x ,y 均是正数.(1)求a 的取值范围; (2)化简.|4||54|--+a a拓展创新21.解方程组:⎩⎨⎧==+44y -3x 23y x 2拓展1.解方程组:⎪⎪⎩⎪⎪⎨⎧=-=+443232y x y x 拓展2.解方程组:⎪⎪⎩⎪⎪⎨⎧=-=+41432132x y xy x y xy极限挑战22.(全国初中数学竞赛)若,0634=--z y x ),0(072=/=-+xyz z y x 则式子222222103225z y x z y x ---+的值等于( )21.-A219.-B 15.-C 13.-D课堂答案培优答案。
掌握带有参数的二元一次方程组的解法带有参数的二元一次方程组是指方程组中含有参数的二元一次方程。
解决这类方程组的关键在于求出参数的取值范围,并找到满足方程组的解。
下面将详细介绍带有参数的二元一次方程组的解法。
一、带有参数的二元一次方程组的表示形式带有参数的二元一次方程组一般可以表示为:方程组1:$a_1x + b_1y = c_1$$a_2x + b_2y = c_2$其中,$a_1, b_1, c_1, a_2, b_2, c_2$为已知系数,$x, y$为未知数。
二、参数的取值范围为了求解方程组,首先需要确定参数的取值范围。
通常可以通过观察方程来判断参数取值的范围。
例如,如果方程组中含有分母,并要求分母不等于零,那么就需要确定参数不能为使分母为零的值。
三、带有参数的二元一次方程组的解法带有参数的二元一次方程组的解法可以分为以下几种情况:情况一:参数取某个特定值当参数取某个特定值时,方程组就变成了具有确定解的普通二元一次方程组。
根据二元一次方程的解法,解出该方程组,得到解的具体数值。
情况二:参数存在范围当参数存在范围时,需要根据参数的取值范围进行分类讨论。
具体步骤如下:1. 将方程组化简为标准形式,即求出每个方程的标准形式表达式;2. 根据参数的取值范围,将方程组分为不同的情况;3. 分别针对每种情况,解决方程组,并得到解的范围或具体解。
情况三:参数无限制当参数没有明确的取值范围时,需要利用一些性质和技巧,通过代数运算推导出解的性质。
常用的技巧包括代入法、消元法、矩阵法等。
根据具体问题和方程组的特点,选择合适的方法求解。
总之,掌握带有参数的二元一次方程组的解法,首先要明确参数的取值范围,然后根据具体情况选择合适的解法进行求解。
通过逐步分析和计算,可以得出解的范围或具体解。
在实际问题中,带有参数的二元一次方程组的解法能够帮助我们解决更为复杂的数学和实际应用问题。
专题8.1 二元一次方程组及其解法【九大题型】【人教版】【题型1 二元一次方程(组)的概念】...............................................................................................................1【题型2 已知二元一次方程(组)的解求参数】...............................................................................................2【题型3 二元一次方程(组)的解的情况】.......................................................................................................2【题型4 二元一次方程组的一般解法】...............................................................................................................3【题型5 整体换元求解二元一次方程组的解】...................................................................................................3【题型6 构建二元一次方程组】...........................................................................................................................4【题型7 二元一次方程组与二元一次方程的综合求值】...................................................................................5【题型8 根据两个二元一次方程组解的情况求值】...........................................................................................5【题型9 二元一次方程组的错解复原问题】. (6)【例1】(2022·山东·胶州市第七中学八年级阶段练习)下列万程中,是二元一次方程组的是( )①{x ―2y =3y +2z =7②{1x+y =4y ―2x=―1③{3(x ―4)―2x =1x ―y =5④{x 2―y3=12x +3y =12A .①②③B .②③C .③④D .①②【变式1-1】(2022·黑龙江·哈尔滨市松雷中学校七年级阶段练习)关于x 、y 的方程(m ﹣2)x +y |m﹣1|=2是二元一次方程,则m 的值为 _____.【变式1-2】(2022·四川·仁寿县文宫镇古佛九年制学校七年级期中)下列方程:①2x ―y3=1;②x2+3y =3;③x 2―y 2=4;④5(x +y )=7(x ―y );⑤2x 2=3;⑥x +1y=1,其中是二元一次方程的有( )A .1个B .2个C .3个D .4个4、二元一次方程组的解二元一次方程组中各个方程的公共解,叫做这个二元一次方程组的解。
二元一次方程组,掌握下面四种方法,类似题目解答无困难二元一次方程组的解:使二元一次方程组的两个方程都成立的一对未知数的值,叫做方程组的解,即其解是一对数。
一般地,使二元一次方程组的两个方程左、右两边的值都相等的两个未知数的值,叫做二元一次方程组的解。
求方程组的解的过程,叫做解方程组。
一般来说,一个二元一次方程有无数个解,而二元一次方程组的解有以下三种情况,下面就为大家说说:1、有一组解。
如方程组:x+y=5①6x+13y=89②x=-24/7y=59/7 为方程组的解2、有无数组解。
如方程组:x+y=6①2x+2y=12②因为这两个方程实际上是一个方程(亦称作“方程有两个相等的实数根”),所以此类方程组有无数组解。
3、无解。
如方程组:x+y=4①2x+2y=10②,因为方程②化简后为x+y=5这与方程①相矛盾,所以此类方程组无解。
可以通过系数之比来判断二元一次方程组的解的情况,如下列关于x,y的二元一次方程组:ax+by=cdx+ey=f当a/d≠b/e 时,该方程组有一组解。
当a/d=b/e=c/f 时,该方程组有无数组解。
当a/d=b/e≠c/f 时,该方程组无解。
下面为大家介绍二元一次方程组的解法:解方程的依据—等式性质1.a=b←→a+c=b+c2.a=b←→ac=bc (c0)一、消元法1)代入消元法用代入消元法的一般步骤是:①选一个系数比较简单的方程进行变形,变成y = ax +b 或x = ay + b的形式;②将y = ax + b 或x = ay + b代入另一个方程,消去一个未知数,从而将另一个方程变成一元一次方程;③解这个一元一次方程,求出x 或y 值;④将已求出的x 或y 值代入方程组中的任意一个方程(y = ax +b 或x = ay + b),求出另一个未知数;⑤把求得的两个未知数的值用大括号联立起来,这就是二元一次方程的解。
例:解方程组:x+y=5①6x+13y=89②解:由①得x=5-y③把③代入②,得6(5-y)+13y=89即y=59/7把y=59/7代入③,得x=5-59/7即x=-24/7∴x=-24/7,y=59/7 为方程组的解我们把这种通过“代入”消去一个未知数,从而求出方程组的解的方法叫做代入消元法,简称代入法。
二元一次方程组的定义及解法知识集结知识元二元一次方程(组)的定义知识讲解1. 二元一次方程的定义:含有两个未知数,且含有未知数的项的次数为1的整式方程叫二元一次方程。
所以满足三个条件:①方程中有且只有两个未知数;②方程中含有未知数的项的次数为1;③方程为整式方程,就是二元一次方程。
注意:主要考查未知数的项的次数为1,方程必须为整式,不能为分式。
例:x=2y.2.二元一次方程组的定义:由几个一次方程组成并且含有两个未知数的方程组,叫二元一次方程组。
注意三条:①方程组中有且只有两个未知数。
②方程组中含有未知数的项的次数为1。
③方程组中每个方程均为整式方程。
注意:二元一次方程组不一定由两个二元一次方程合在一起:①方程可以超过两个;②有的方程可以只有一元。
例题精讲二元一次方程(组)的定义例1.下列方程中,是二元一次方程的是().A.8x2+1=y B.y=8x+1C.y=D.xy=1例2.下列方程组中,是二元一次方程组的是().C.D.A.B.例3.有下列方程组:(1)(2)(3)(4),其中说法正确的是().A.只有(1)、(3)是二元一次方程组B.只有(3)、(4)是二元一次方程组C.只有(4)是二元一次方程组D.只有(2)不是二元一次方程组根据定义求字母的值知识讲解含有参数的二元一次方程组,根据二元一次方程的定义:1.二元的系数不为零。
2.未知数的次数为1。
注意:出现在选择填空题时,可以不用解出方程,可以直接将m,n的值代入验证即可。
例题精讲根据定义求字母的值例1.已知3 =y是二元一次方程,那么k的值是().A.2B.3C.1D.0例2.若﹣8 =10是关于x,y的二元一次方程,则m+n=.例3.'若(a-3)x+=9是关于x,y的二元一次方程,求a的值。
'由实际问题抽象出二元一次方程组知识讲解分析实际问题,找出等量关系,列出实际问题.例题精讲由实际问题抽象出二元一次方程组例1.4辆板车和5辆卡车一次能运27吨货,10辆板车和3车卡车一次能运货20吨,设每辆板车每次可运x吨货,每辆卡车每次能运y吨货,则可列方程组().A.B.C.D.例2.元旦期间,某服装商场按标价打折销售,小王去该商场买了两件衣服,第一件打6折,第二件打5折,共记230元,付款后,收银员发现两件衣服的标价牌换错了,又找给小王20元,请问两件衣服的原标价各是多少?解:设第一件衣服的原标价为x元,第二件衣服的原标价为y元;由题意可得方程组__________。
公式法解二元一次方程教案六篇教案一:用公式法解简单的二元一次方程一、教学目标1、理解并掌握二元一次方程的求根公式。
2、能够熟练运用公式法解二元一次方程。
二、教学重难点1、重点(1)求根公式的推导过程。
(2)运用求根公式解二元一次方程。
2、难点求根公式的推导。
三、教学方法讲授法、练习法四、教学过程1、复习导入(1)回顾一元二次方程的一般形式:$ax^2 + bx + c =0$($a≠0$)。
(2)提问一元二次方程的配方法。
2、公式推导(1)将一元二次方程$ax^2 + bx + c = 0$($a≠0$)进行配方:\\begin{align}ax^2 + bx + c &= 0\\ax^2 + bx &= c\\x^2 +\frac{b}{a}x &=\frac{c}{a}\\x^2 +\frac{b}{a}x +(\frac{b}{2a})^2 &=(\frac{b}{2a})^2 \frac{c}{a}\\(x +\frac{b}{2a})^2 &=\frac{b^2 4ac}{4a^2}\end{align}\(2)当$b^2 4ac≥0$时,开方得到求根公式:$x =\frac{b ±\sqrt{b^2 4ac}}{2a}$3、公式讲解(1)强调公式中$a$、$b$、$c$的含义。
(2)说明判别式$b^2 4ac$的作用:判断方程根的情况。
4、例题讲解例 1:用公式法解方程$x^2 4x 5 = 0$(1)分析:$a = 1$,$b =-4$,$c =-5$(2)计算判别式:$b^2 4ac =(-4)^2 4×1×(-5) = 36 > 0$,方程有两个不相等的实数根。
(3)代入求根公式:$x =\frac{4 ±\sqrt{36}}{2×1} =\frac{4 ± 6}{2}$,解得$x_1 = 5$,$x_2 =-1$5、课堂练习让学生练习用公式法解下列方程:(1)$x^2 + 2x 3 = 0$(2)$2x^2 5x + 1 = 0$6、课堂小结(1)总结公式法解二元一次方程的步骤。
二元一次方程组及其解法(培优)二元一次方程组及其解法在研究二元一次方程组之前,需要先了解二元一次方程的概念。
二元一次方程必须同时具备三个条件:(1)这个方程中有且只有两个未知数;(2)含未知数的次数是1;(3)对未知数而言,构成方程的代数式是整式。
解二元一次方程的解和二元一次方程组的解的意义是相同的,都是指方程的解集。
熟练掌握二元一次方程组的解法,可以用来解决许多实际问题。
例如,已知下列方程2xm1+3yn3=5是二元一次方程,则m+n=0.根据二元一次方程的概念可知:m-1=1,n+3=1,解得m=2,n=-2,故m+n=0.除了解二元一次方程组的基本方法外,还有加减消元法、代入法等解法。
在解题时需要根据具体情况选择最合适的方法。
变式题组:01.请判断下列各方程中,哪些是二元一次方程,哪些不是,并说明理由。
⑴2x+5y=16 - 是二元一次方程,符合三个条件。
⑵2x+y+z=3 - 不是二元一次方程,因为含有三个未知数z。
02.若方程2xa1+3=y2b+(-5/1)+y=21(4)x2+2x+1=(5)2x+10xy=5x是二元一次方程,则a=,b=。
根据二元一次方程的定义,2xa1+3=y2b+(-5/1)+y=21(4)x2+2x+1=(5)2x+10xy=5x不是二元一次方程,因为含有x的二次项。
03.在下列四个方程组①{4x+3y=10.2x-4y=9},②{4x+y=12.7xy=29},③{1/x-2y=-45.2x+3y=4},④{7x+8y=5.x-4y=1}中,是二元一次方程组的有()只有①和③是二元一次方程组,因为它们都符合三个条件。
例2:(十堰中考)二元一次方程组{3x-2y=7.x+2y=5}的解是()解法:二元一次方程组的解,就是它的两个方程的公共解。
根据此概念,此类题有两种解法:(1)若方程组较难解,则将每个解中的两未知数分别带入方程组,若使方程组都成立,则为该方程组的解,若使其中任一方程不成立,则不是该方程组的解;(2)若方程组较易解,则直接解方程组可得答案。
专题07 二元一次方程组【专题目录】技巧1:二元一次方程组的五种特殊解法技巧2:二元一次方程组中六种类型数学思想的应用 技巧3:二元一次方程(组)的解的五种常见应用 【题型】一、二元一次方程组的有关概念 【题型】二、用代入法解二元一次方程组 【题型】三、用加减法解二元一次方程组 【题型】四、用整体消元法解二元一次方程组 【题型】五、同解方程组 【题型】六、列二元一次方程组 【考纲要求】1、了解二元一次方程的概念,能把二元一次方程化为用一个未知数的代数式表示另一个未知数的形式,能举例说明二元一次方程及其中的已知数和未知数;2、理解二元一次方程组和它的解等概念,会检验一对数值是不是某个二元一次方程组的解。
【考点总结】一、二元一次方程组(1)概念:具有相同未知数的两个二元一次方程合在一起,就组成了一个二元一次方程组.(2)一般形式:⎩⎪⎨⎪⎧a 1x +b 1y =c 1,a 2x +b 2y =c 2(a 1,a 2,b 1,b 2均不为零).(3)二元一次方程组的解一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的解.【注意】1.解二元一次方程组的步骤(1)代入消元法① 变:将其一个方程化为y=ax+b或者为x=ay+b的形式① 代:将y=ax+b或者为x=ay+b代入另一个方程① 解:解消元后的一元一次方程① 求:将求得的未知数值代入y=ax+b或x=ay+b,求另一个未知数的值① 答:写出答案(2)加减消元法① 化:将原方程组化成有一个未知数的系数相等(互为相反数)的形式,① 加减:将变形后的方程组通过加减消去一个未知数① 解:解消元后的一元一次方程① 求:将求得的知数的值代入方程组中任意一个方程求另一个未知数的值2.解二元一次方程组的方法选择(1)当方程组中某一个未知数的系数是1或者-1时,选用代入消元法;(2)当方程组中某一个方程的常数项为0时,选用代入消元法;(3)方程组中同一个知数的数相同或互为相反数时,选用加减消无法(4)当两个方程中同一个未知数的系数成整数倍关系时,选用加减消元法 【技巧归纳】技巧1:二元一次方程组的五种特殊解法 【类型】一、引入参数法解二元一次方程组 1.用代入法解方程组: ⎩⎪⎨⎪⎧x 5+y 6=0,①3(x -y )-4(3y +x )=85.①【类型】二、特殊消元法解二元一次方程组 题型1:方程组中两未知数系数之差的绝对值相等2.解方程组:⎩⎪⎨⎪⎧2 015x +2 016y =2 017,①2 016x +2 017y =2 018.①题型2:方程组中两未知数系数之和的绝对值相等3.解方程组:⎩⎪⎨⎪⎧13x +14y =40,①14x +13y =41.②【类型】三、利用换元法解二元一次方程组 4.解方程组⎩⎪⎨⎪⎧3(x +y )+4(x -y )=20,x +y 4-x -y 2=0.【类型】四、同解交换法解二元一次方程组5.已知关于x ,y 的方程组⎩⎪⎨⎪⎧ax -by =4,3x -y =5与方程组⎩⎪⎨⎪⎧ax +by =16,4x -7y =1的解相同,求(a -b)2 018的值. 【类型】五、运用主元法解二元一次方程组6.已知⎩⎪⎨⎪⎧4x -3y -3z =0,x -3y -z =0(x ,y ,z 均不为0),求xy +2yzx 2+y 2-z 2的值.技巧2:二元一次方程组中六种类型数学思想的应用 【类型】一、整体思想 1.先阅读,然后解方程组.解方程组⎩⎪⎨⎪⎧x -y -1=0,①4(x -y )-y =5②时,由①,得x -y =1,③然后再将③代入②,得4×1-y =5,解得y =-1,从而进一步求得x =0.所以方程组的解为⎩⎪⎨⎪⎧x =0,y =-1.这种方法被称为“整体代入法”.请用这样的方法解下面的方程组:⎩⎪⎨⎪⎧2x -3y -2=0,2x -3y +57+2y =9. 2.若x +2y +3z =10,4x +3y +2z =15,求x +y +z 的值. 【类型】二、化繁为简思想3.阅读下面解方程组的方法,然后解决问题:解方程组⎩⎪⎨⎪⎧19x +18y =17,①17x +16y =15②时,我们如果直接考虑消元,会很繁琐,而采用下面的解法则是轻而易举的.解:①-②,得2x +2y =2,所以x +y =1.③ ③×16,得16x +16y =16,④②-④,得x =-1,将x =-1代入③,得y =2.所以原方程组的解是⎩⎪⎨⎪⎧x =-1,y =2.请用上述方法解方程组⎩⎪⎨⎪⎧2 018x +2 017y =2 016,2 016x +2 015y =2 014.【类型】三、方程思想4.已知(5x -2y -3)2+|2x -3y +1|=0,求x +y 的值. 5.若3x 2m+5n +9+4y 4m-2n -7=2是二元一次方程,求(n +1)m+2 018的值.【类型】四、换元思想6.解方程组⎩⎪⎨⎪⎧x +y 2+x -y 3=6,4(x +y )-5(x -y )=2.【类型】五、数形结合思想7.如图,母亲节那天,很多同学给妈妈准备了鲜花和礼盒,从图中信息可知,买5束鲜花和5个礼盒共需多少元?【类型】六、分类组合思想8.若方程组⎩⎪⎨⎪⎧4x -y =5,ax +by =-1与⎩⎪⎨⎪⎧3x +y =9,3ax -4by =18有公共解,求a ,b 的值.技巧3:二元一次方程(组)的解的五种常见应用 【类型】一、已知方程(组)的解求字母的值1.若关于x ,y 的方程组⎩⎪⎨⎪⎧2x -y =m ,x +my =n 的解是⎩⎪⎨⎪⎧x =2,y =1,则|m -n|的值为( ) A .1 B .3 C .5 D .22.已知⎩⎪⎨⎪⎧x =2,y =3和⎩⎪⎨⎪⎧x =-4,y =2是关于x ,y 的二元一次方程2ax -by =2的两组解,求a ,b 的值.【类型】二、已知二元一次方程组与二元一次方程同解求字母的值3.已知关于x ,y 的方程组⎩⎪⎨⎪⎧x +2y =3m ,x -y =9m 的解也是方程3x +2y =17的解,求m 的值.【类型】三、已知二元一次方程组的解满足某一关系求字母的值4.已知m ,n 互为相反数,关于x ,y 的方程组⎩⎪⎨⎪⎧mx +ny =60,3x -y =8的解也互为相反数,求m ,n 的值.【类型】四、已知两个二元一次方程组共解求字母的值5.关于x ,y 的方程组⎩⎪⎨⎪⎧2x +5y =-6,ax -by =-4与⎩⎪⎨⎪⎧3x -5y =16,bx +ay =-8有相同的解,求(2a +b)2 018的值.【类型】五、已知二元一次方程组的误解求字母的值6.在解方程组⎩⎪⎨⎪⎧2ax +y =5,2x -by =13时,由于粗心,甲看错了方程组中的a ,得解为⎩⎪⎨⎪⎧x =72,y =-2;乙看错了方程组中的b ,得解为⎩⎪⎨⎪⎧x =3,y =-7.(1)甲把a 错看成了什么?乙把b 错看成了什么? (2)求出原方程组的正解. 【题型讲解】【题型】一、二元一次方程组的有关概念例1、若21a b =⎧⎨=⎩是二元一次方程组3522ax by ax by ⎧+=⎪⎨⎪-=⎩的解,则x +2y 的算术平方根为( )A .3B .3,-3CD【题型】二、用代入法解二元一次方程组例2、二元一次方程组224x yx y+=⎧⎨-=⎩的解是()A.2xy=⎧⎨=⎩B.2xy=⎧⎨=⎩C.31xy=⎧⎨=-⎩D.11xy=⎧⎨=⎩【题型】三、用加减法解二元一次方程组例3、由方程组+=43x my m⎧⎨-=⎩可得出x与y之间的关系是().A.x+y=1B.x+y=-1C.x+y=7D.x+y=-7【题型】四、用整体消元法解二元一次方程组例4、若方程组237351m nm n-=⎧⎨+=⎩的解是21mn=⎧⎨=-⎩,则方程组()()()()2132731521x yx y⎧+--=⎪⎨++-=⎪⎩的解是()A.11xy=⎧⎨=⎩B.11xy=⎧⎨=-⎩C.31xy=⎧⎨=⎩D.33xy=⎧⎨=-⎩【题型】五、同解方程组例5、已知关于x①y的方程组2342x yax by-=⎧⎨+=⎩,与3564x ybx ay-=⎧⎨+=-⎩,有相同的解,则a①b的值为① ①A.21ab=-⎧⎨=⎩B.12ab=⎧⎨=-⎩C.12ab=⎧⎨=⎩D.12ab=-⎧⎨=-⎩【题型】六、列二元一次方程组例6、《孙子算经》是中国古代重要的数学著作,纸书大约在一千五百年前,其中一道题,原文是:“今三人共车,两车空;二人共车,九人步.问人与车各几何?”意思是:现有若干人和车,若每辆车乘坐3人,则空余两辆车:若每辆车乘坐2人,则有9人步行,问人与车各多少?设有x人,y辆车,可列方程组为()A.2392xyxy⎧=+⎪⎪⎨⎪+=⎪⎩B.2392xyxy⎧=-⎪⎪⎨-⎪=⎪⎩C.2392xyxy⎧=+⎪⎪⎨-⎪=⎪⎩D.2392xyxy⎧=-⎪⎪⎨⎪-=⎪⎩二元一次方程组(达标训练)一、单选题1.(2022·广东·深圳外国语学校模拟预测)“绿水青山就是金山银山”,某地准备购买一些松树和柏树绿化荒山,已知购买2棵松树和3棵柏树需要120元,购买2棵松树比1棵柏树多20元,设每棵松树x 元,每棵柏树y 元,则列出的方程组正确的是( )A .23120220x y x y +=⎧⎨-=⎩B .23120220x y x y +=⎧⎨+=⎩C .23120220x y y x +=⎧⎨-=⎩D .32120220x y x y +=⎧⎨+=⎩2.(2022·天津河北·一模)方程组282x y x y+=⎧⎨=⎩的解是( )A .21x y =⎧⎨=⎩B .42x y =⎧⎨=⎩C .12x y =⎧⎨=⎩D .24x y =⎧⎨=⎩3.(2022·天津红桥·三模)方程组21230x y y x +=-⎧⎨+=⎩的解是( ).A .11x y =-⎧⎨=⎩B .12x y =-⎧⎨=-⎩C .23x y =-⎧⎨=⎩D .23x y =⎧⎨=-⎩4.(2022·上海杨浦·二模)下列方程中,二元一次方程的是( ) A .1xy =B .210x -=C .1x y -=D .11x y+= 5.(2022·山东威海·一模)已知关于x ,y 的二元一次方程组231ax by ax by +=⎧⎨-=⎩的解为11x y =⎧⎨=-⎩,则2a b-的值是( ) A .2- B .2C .3D .3-二、填空题6.(2022·湖南娄底·二模)我国明代数学读本《算法统宗》一书中有这样道题:一支竿子一条索,索比竿子长一托,对折索子来量竿,却比竿子短一托.如果一托为5尺,那么索长与竿子长之和为______尺.7.(2022·江苏无锡·二模)已知方程组26221x y x y +=⎧⎨+=⎩,则x y +的值为______.三、解答题8.(2022·广东·广州市第一二三中学模拟预测)阅读材料:善于思考的小军在解方程组()1045x y x y y --=⎧⎪⎨--=⎪⎩①②时,采用了一种“整体代入”的解法: 解:由①得x ﹣y =1①将①代入①得:4×1﹣y =5,即y =﹣1把y=﹣1代入①得x=0,①方程组的解为1 xy=⎧⎨=-⎩请你模仿小军的“整体代入”法解方程组,解方程232235297x yx yy-=⎧⎪-+⎨+=⎪⎩.二元一次方程组(提升测评)一、单选题1.(2022·广东·江门市新会东方红中学模拟预测)若最简二次根式3a则a、b的值分别是()A.2和1B.1和2C.2和2D.1和12.(2022·福建·平潭翰英中学一模)已知12xy=⎧⎨=⎩是二元一次方程组{mx−ny=8nx+my=1的解,则43m n+的立方根为()A.±1BC.±D.1-3.(2022··二模)我们知道二元一次方程组233345x yx y-=⎧⎨-=⎩的解是31xy=⎧⎨=⎩.现给出另一个二元一次方程组2(21)3(31)33(21)4(31)5x yx y+--=⎧⎨+--=⎩,它的解是()A.123xy=-⎧⎪⎨=⎪⎩B.123xy=-⎧⎪⎨=-⎪⎩C.123xy=⎧⎪⎨=⎪⎩D.123xy=⎧⎪⎨=-⎪⎩4.(2022·福建宁德·二模)《九章算术》是人类科学史上应用数学的“算经之首”,书中记载:今有二人共车九人步;三人共车,二车空.问:人与车各几何?译文:若每辆车都坐2人,则9需要步行:若每辆车都坐3人,则两辆车是空的,问:车与人各多少?设有x辆车,y人,根据题意,列方程组是()A.2932y xy x=+⎧⎨=-⎩B.293(2)y xy x=+⎧⎨=-⎩C.2932y xy x=-⎧⎨=-⎩D.()2932y xy x=-⎧⎨=-⎩5.(2022·广东·揭阳市实验中学模拟预测)如果关于x,y的方程组436626x yx my-=⎧⎨+=⎩的解是整数,那么整数m的值为()A .4,4-,5-,13B .4,4-,5-,13-C .4,4-,5,13D .4-,5,5-,13二、填空题6.(2022·江苏南通·二模)我国古代数学名著《孙子算经》中记载了一道题,原文:今有人盗库绢,不知所失几何.但闻草中分绢,人得六匹,盈六匹;人得七匹,不足七匹.问人、绢各几何?注释:(娟)纺织品的统称;(人得)每人分得;(匹)量词,用于纺织品等,(盈):剩下.若设贼有x 人,库绢有y 匹,则可列方程组为______.三、解答题7.(2022·广东·华南师大附中三模)解下列方程组: (1)1223334m nm n ⎧+=⎪⎪⎨⎪-=⎪⎩;(2)6234()5()2x y x yx y x y +-⎧+=⎪⎨⎪+--=⎩; (3)0.10.3 1.3123x y x y+=⎧⎪⎨-=⎪⎩; (4)23433x y x y ⎧=⎪⎨⎪-=⎩. 8.(2022·浙江温州·二模)为促进学生体育活动,学校计划采购一批球类器材,当每班购进5个排球和6个篮球时花费360元;购进10个排球和2个篮球时花费270元. (1)求排球和篮球的单价.(2)为扩充器材室储备,现还需购买120个排球和篮球,其中排球的数量不少于篮球数量的23,如何购买总费用最少.(3)经调查,为满足不同学生的需要,学校准备新增购进进价为每个60元的足球,篮球和排球的仍按需购进,进价不变,排球是篮球的4倍,共花费9000元,则学校至少可以购进多少个球类器材?。
二元一次方程组的常见解法二元一次方程组中含有两个未知数,所以解二元一次方程组的主要思路就是消元,即消去一个未知数,使其转化为一元一次方程,这样就可以先解出一个未知数,然后设法求另一个未知数.常见的消元方法有两种:代入消元法和加减消元法.一、代入法即由二元一次方程中的一个方程变形,将一个未知数用含另一个未知数的式子表示出来,再代入另一个方程中,实现消元,进而求解.一般情况下用代入法解方程组时,选择变形的方程要尽可能的简单,表示的代数式也要尽可能的简单,以利于计算.2x+5y=-21①例1、解方程组x+3y=8 ②解由②得:x=8-3y ③把③代入①得2(8-3y)+5y=-21解得:y=37把y=37代入③得:x=8-3×37=-103x=-103所以这个方程组的解是y=37二、整体代入法当方程组中的两个方程存在整数倍数关系时,用代入法解可将整数倍数关系数中较小的一个变形,用另一个字母代数式表示它后代入另一个方程.3x-4y=9①例2、解方程组9x-10y=3②解由①得3x=4y+9 ③把③代入②得3(4y+9)-10y=3解得y=-12把y=-12代入③得3x=4×(-12)+9解得x=-13x=-13所以方程组的解是y=-12三、加减消元法即方程组中两个二元一次方程中的同一个未知数的系数相等时,让两个方程相减.如果方程组中两个二元一次方程中的同一个未知数的系数互为相反数时则让两个方程相减.消去一个未知数,得到一个一元一次方程,这种方法叫加减消元法.2x+3y=14 ①例3、解方程组4x-5y=6②解由①×2得4x+6y=28 ③③-②得:11y=22解得y=2把y=2代入②得4x-5×2=6解得x=4x=4所以方程组的解为y=2四、整体运用加减法即当两个二元一次方程中的某一部分完全相同或符号相反时,可以把这两个方程两边相加或相减,把相同的部分整体消去.3(x+2)+(y-1)=4 ①例4 解方程组3(x+2)+(1-y)=2 ②解①-②得(y-1)-(1-y)=4-2整理得2y=4解得y=2把y=2 代入①得3(x+2)+(2-1)=4整理得3x+7=4解得x=-1x=-1所以方程组的解为y=2解二元一次方程组的主要方法有代入法和消元法,因为方程的形式是多种多样的.所以在解方程中一定要仔细观察方程中各部分以及各个未知数和它们的系数之间的关系的找到最简便的解题方法.。
1 /2 含参数二元一次方程组解法二元一次方程组是方程组基础,是学习一次函数基础,是中考和竞赛常见题目,所以这一部分知识非常重要。
现选取几道题略作讲解,供同学们参考。
一、两个二元一次方程组有相同解,求参数值。
例:已知方程 及 有相同解,则a 、b 值为 。
略解:由(1)和(3)组成方程组 解是 把它代入(2)得 a=14;把它代入(4)得b=2。
方法:是找每个方程组中都是已知数方程组成新方程组,得到解,即是相同解,再代入另一个方程,从而求出参数解。
二、根据方程组解性质,求参数值。
例2:m 取什么整数时,方程组解是正整数?略解:由②得x=3y2×3y-my=6 y= 因为y 是正整数,x 也是正整数所以6-m 值为1、2、3、6;m 值为0、3、4、5。
方法:是把参数当作已知数求出方程解,再根据已知条件求出参数值。
三、由方程组错解问题,示参数值。
例3:解方程组 时,本应解出 由于看错了系数c,从而得到解 试求a+b+c 值。
方法:是正确解代入任何一个方程当中都对,再把看错解代入没有看错方程中去从而,求出参数值。
8273=-⨯-⨯)(c 2-=c把和代入到ax+by=2中,得到一个关于a 、b 方程组。
,解得所以7254=-+=++c b a四、根据所给不定方程组,求比值。
例4:求适合方程组 求 值。
略解:把z 看作已知数。
解之得所以 132528528==--=+-++z z z y x z y x 方法:把某个未知数,看做已知数,其它未知数都用这个字母表示,代入所求关(1) (2)(3)(4) ① ②2 / 2 系式,从而达到求解目。
五、据所给作件,求方程组解。
例5:已知解方程组略解:因为所以 03=-b 2=a 3=b 原方程组 解得 方法:根据所给予条件,求得参数值,从而求出参数方程组解。
含参二元一次方程组解法、同解、错解问题含参问题类型类型题1:含参问题构建二元一次方程组解方程例题1.若0)532(54=-++-+n m n m ,求()2n m -的值。
2.已知方程3)5()2()24(12=+----b a y b x a 是关于x、y的二元一次方程,求a与b的值。
3.已知与互为相反数,则=______,=________.4.已知2a y+5b 3x 与b 2-4y a 2x 是同类项,那么x,y的值是().学生/课程年级学科授课教师日期时段核心内容含参二元一次方程组解法、同解、错解问题教学目标1.掌握含参的二元一次方程组的同解、错解的解题方法2.掌握复杂的二元一次方程组的解法2.了解二元一次方程组的解有无数组解、唯一解与无解,会进行简单的求解二元一次方程组的灵活应用针对练习1.若|x-2|+(3y+2x)2=0,则的值是.2.若x a+1y-2b与-x2-b y2的和是单项式,则a、b的值分别的()A.a=2,b=-1B.a=2,b=1C.a=-2,b=1D.a=-2,b=-13.若单项式与是同类项,则,的值分别是多少4..若|x-y-1|+(2x-3y+4)2=0,则x=,y=.5.若是关于,的二元一次方程,则()A.,B.,C.,D.,类型题2:恒成立问题构建二元一次方程组解方程例题1.在方程(x+2y-8)+m(4x+3y-7)=0中,找出一对x,y值,使得m无论取何值,方程恒成立.2.在方程(a+6)x-6+(2a-3)y=0中,找出一对x,y值,使得a无论取何值,方程恒成立.类型题3:(新题型)含有三个未知数的方程组求比例例题1.已知满足方程组,求【学有所获】1)口述:2个未知数需要几个方程,3个未知数需要几个方程,n个未知数需要几个方程2)整体思想一般运用在哪些方面,试着自己归类总结。
针对练习1.已知4x-3y-6z=0,x+2y-7z=0,且xyz≠0.(1)请用含z的代数式表示x、y,并求出x:y:z的值(2)你能求出的值。
含参数的二元一次方程组的解法
二元一次方程组是方程组的基础,是学习一次函数的基础,是中考和竞赛的常见的题目,所以这一部分知识非常重要。
现选取几道题略作讲解,供同学们参考。
一、两个二元一次方程组有相同的解,求参数值。
例:已知方程 与 有相同的解,
则a 、b 的值为 。
略解:由(1)和(3)组成的方程组⎩
⎨⎧=-=+5235y x y x 的解是 ⎩
⎨⎧-=+=21y x 把它代入(2)得 a=14;把它代入(4)得b=2。
方法:是找每个方程组中都是已知数的方程组成新的方程组,得到的解,即是相同的解,再代入另一个方程,从而求出参数的解。
二、根据方程组解的性质,求参数的值。
例2:m 取什么整数时,方程组的解是正整数?
略解:由②得x=3y
2×3y-my=6 y=m
-66 因为y 是正整数,x 也是正整数所以6-m 的值为1、2、3、6;m 的值为0、3、4、5。
方法:是把参数当作已知数求出方程的解,再根据已知条件求出参数的值。
三、由方程组的错解问题,示参数的值。
例3:解方程组⎩⎨⎧=-=+872y cx by ax 时,本应解出⎩⎨⎧-==2
3y x 由于看错了系数c,
从而得到解⎩
⎨⎧=-=22y x 试求a+b+c 的值。
方法:是正确的解代入任何一个方程当中都对,再把看错的解代入没有看错的方程中去从而,求出参数的值。
8273=-⨯-⨯)(c 2-=c
把⎩⎨⎧-==23y x 和⎩⎨⎧=-=2
2y x 代入到ax+by=2中,得到一个关于a 、b 的方程组。
(1) (2) ⎩⎨⎧=+=+4535y ax y x (3) (4) ⎩⎨⎧=+=-1552by x y x ① ② ⎩⎨⎧=-=-0362y x my x
322222a b a b -=⎧⎨-+=⎩,解得45a b =⎧⎨=⎩
所以7254=-+=++c b a
四、根据所给的不定方程组,求比值。
例4:求适合方程组⎩⎨⎧=++=-+0
5430432z y x z y x 求 z y x z y x +-++ 的值。
略解:把z 看作已知数。
⎩⎨⎧-=+=+z y x z y x 543432 解之得 ⎩⎨⎧=-=z
y z x 2231 所以 13
2528528==--=+-++z z z y x z y x 方法:把某个未知数,看做已知数,其它的未知数都用这个字母表示,代入所求的关系式,从而达到求解的目的。
五、据所给的作件,求方程组的解。
例5:已知 0)3(12
12=-+-b a 解方程组⎩
⎨⎧=+=-513by x y ax 略解:因为
0)3(1212=-+-b a 012
1=-a 03=-b 2=a 3=b 所以原方程组 解得 ⎩⎨⎧==1
2y x
方法:根据所给予的条件,求得参数的值,从而求出参数方程组的解。
⎩⎨⎧=+=-513by x y ax。