天文学基础知识共92页
- 格式:ppt
- 大小:7.08 MB
- 文档页数:92
天文基础知识天文学是研究宇宙中天体和天体现象的自然科学。
它包括对恒星、行星、星系、星云、黑洞等天体的研究,以及对宇宙的起源、结构和演化的探索。
天文学的基础内容非常广泛,以下是一些关键的基础知识点。
1. 天体天体是指宇宙中的物质实体,包括恒星、行星、卫星、彗星、小行星、星系、星团等。
这些天体通过引力相互作用,形成了宇宙中的各种结构。
2. 太阳系太阳系是由太阳和围绕它运动的天体组成的天体系统。
太阳系的主要成员包括太阳、八大行星及其卫星、小行星、彗星等。
太阳是太阳系的中心,其他天体都围绕太阳运动。
3. 恒星恒星是宇宙中最常见的天体类型,它们通过核聚变过程产生能量和光。
太阳就是一颗恒星。
恒星的生命周期包括形成、主序阶段、红巨星阶段、白矮星阶段、中子星或黑洞阶段。
4. 行星行星是围绕恒星运动的天体,它们有足够的质量使其自身重力克服刚体应力,因此呈现出近似球形。
行星可以分为类地行星、气体巨星和冰巨星等类型。
5. 星系星系是由恒星、星云、行星、恒星残骸、暗物质和其他星际物质组成的巨大系统。
星系的形状和大小各异,包括螺旋星系、椭圆星系和不规则星系等。
6. 宇宙背景辐射宇宙背景辐射是宇宙大爆炸后留下的热辐射,它提供了宇宙早期状态的直接证据。
这种辐射遍布整个宇宙,是研究宇宙起源和演化的重要工具。
7. 黑洞黑洞是宇宙中的一种极端密集的天体,其引力强大到连光都无法逃逸。
黑洞通常由恒星死亡后的坍缩形成,它们在宇宙中扮演着重要的角色。
8. 暗物质和暗能量暗物质和暗能量是宇宙中不可见的物质和能量形式。
暗物质不发光也不反射光,但通过引力影响可见物质的运动。
暗能量则被认为是宇宙加速膨胀的原因。
9. 天文观测天文学的研究依赖于对天体的观测。
现代天文学使用各种望远镜,包括光学望远镜、射电望远镜和空间望远镜,来观测宇宙中的各种现象。
10. 天文单位天文学中使用特定的单位来描述天体的距离、大小和质量。
例如,光年是描述天体距离的单位,它表示光在一年内行进的距离。
天文学基础知识天文学是研究宇宙中天体、宇宙的起源、演化和性质的科学。
它包括天体物理学、宇宙学和天体测量学等分支。
本文将介绍一些天文学的基础知识,包括天体分类、星系和恒星的形成、宇宙的扩张等内容。
一、天体分类天体是宇宙中存在的各种物质,根据其性质和特征可分为恒星、行星、卫星和流星等。
恒星是宇宙中最基本的天体,它们以核聚变的方式产生能量,并通过发光和辐射能量来维持自身的稳定状态。
行星是绕太阳运行的天体,根据其距离太阳的远近,分为类地行星和巨大行星。
卫星则是绕着行星或恒星运行的天体,比如地球的月亮就是一个卫星。
流星是从太空中进入地球大气层并燃烧的小天体,也被称为陨石。
二、恒星的形成恒星的形成需要满足一定的条件,首先是有足够的物质和能量。
大多数恒星形成于分子云中,当分子云中的物质密度较高时,由于引力的作用,分子云会逐渐坍缩,形成一个致密的气体核。
随着坍缩的进行,气体核的温度和密度不断增加,最终达到足够高的水平,使得核心的温度足以引发核聚变反应,从而产生恒星光和热的主要能量。
三、星系的形成星系是宇宙中巨大的恒星聚集体,包含了数百亿颗甚至更多的恒星。
根据形状和结构的不同,星系可分为椭圆星系、螺旋星系和不规则星系等几种类型。
星系的形成与恒星的形成有着密切的联系,它们通常出现在星际物质较为密集的地方。
当分子云坍缩形成恒星时,附近的其他物质也会受到引力的影响,逐渐聚集在一起形成星系。
四、宇宙的扩张宇宙的扩张意味着整个宇宙空间在时间上的膨胀。
这一概念源于观测到的红移现象,即远离我们的星系中的光线呈现出红移的特征。
根据观测数据和理论模型,科学家发现宇宙早期经历了一次叫做“大爆炸”的事件,而接下来的演化过程中,宇宙不断膨胀扩大。
宇宙的扩张速度也受到暗物质和暗能量等未知物质的影响,这些未知物质构成了宇宙的大部分物质和能量,并推动着宇宙的持续扩张。
总结:天文学基础知识包括天体分类、恒星的形成、星系的形成和宇宙的扩张等内容。
天文学基础知识入门天文学是研究宇宙及其内部物质、能量、结构和发展等方面的科学。
它是自然科学的一个分支,涉及到天体物理学、天体测量学和天体力学等领域。
天文学的发展可以追溯到古代的天文观测和天文学的理论化。
本文将介绍天文学的基础知识。
天文学研究的对象包括太阳、行星、恒星、星系以及宇宙背景辐射等。
太阳是我们的太阳系的中心星体,它向外释放出巨大的能量,在地球上形成了恒温环境。
行星是绕太阳运行的天体,包括地球、火星、木星等。
恒星是由氢气等物质组成的巨大星体,它们通过核聚变反应释放出巨大的能量,形成了太空中的光和热。
星系是由恒星、气体和尘埃等组成的庞大集合体,包括螺旋星系、椭圆星系和不规则星系等。
宇宙背景辐射是宇宙形成初期辐射的余留,它是宇宙学研究的重要依据之一。
天文学的基础知识主要包括天体测量学、天体力学和天体物理学。
天体测量学是研究测量天体位置、距离、大小和亮度等的科学。
通过观测天体的位置和运动,可以了解宇宙的结构和演化。
天体力学是研究天体运动和相互作用的科学,它利用万有引力定律等物理原理,描述和预测天体的轨道和相对位置。
天体物理学是研究天体内部和宇宙间物质和能量的性质和过程的科学。
通过研究天体的辐射和物质组成,可以了解宇宙的物理过程和结构。
天文学的发展离不开观测和实验。
观测是天文学的基础,它通过使用望远镜和探测器等工具,观测天体的辐射和运动。
观测数据对于验证和改进天文学理论是至关重要的。
实验是指在控制条件下重复观测和测量,以检验理论和模型的可靠性和准确性。
天文学的实验通常涉及使用人造探测器和航天器,对宇宙进行直接观测和测量。
天文学的发展也推动了技术的进步。
望远镜是天文学观测的主要工具之一。
从人眼观测到科学望远镜的发展,望远镜逐渐提高了观测的分辨率和灵敏度,拓展了我们对宇宙的认识。
现代天文学还运用了射电望远镜、X射线望远镜和伽玛射线望远镜等不同波段的观测器,获得了更全面和深入的天文数据。
超高性能计算机的发展也为天体物理模拟和对大数据的处理提供了强大的计算能力。
天文学基础知识简介:天文学是研究宇宙、星体、星系和宇宙现象的科学领域。
本文将介绍一些天文学的基础知识,包括天体的分类、太阳系的组成和星体运动的基本原理。
第一节:天体的分类天文学根据天体的性质和特征将其分类。
主要的天体包括星星、行星、卫星、恒星、星系和星云。
1. 星星星星是由氢气和其他元素通过核聚变反应产生能量的大型气体球体。
它们通过核反应产生的能量持续辐射和照亮宇宙。
2. 行星行星是围绕太阳或其他恒星运行的天体。
行星通常分为内行星(如地球、金星和火星)和外行星(如木星、土星和天王星)两类。
行星有自身的重力,并且能够固定轨道上运行。
3. 卫星卫星是围绕行星或其他天体运行的较小的天体。
例如,月球是围绕地球运行的卫星。
卫星有时也被称为“自然卫星”,以区分于人造卫星。
4. 恒星恒星是天空中明亮的点状物体,它们通过核聚变反应产生强烈的光和热。
恒星的大小和亮度不同,有些恒星比太阳还要大几百倍。
5. 星系星系是由恒星、气体、尘埃和其他物质组成的巨大结构。
银河系是我们所在的星系,它包含了数以千亿计的恒星。
6. 星云星云是由气体和尘埃组成的大型云状结构。
星云通常是恒星形成的地方。
有些星云非常庞大,可以观察到它们的光芒。
第二节:太阳系的组成太阳系是我们所在的星系,它由太阳、行星、卫星、小行星和彗星等天体组成。
1. 太阳太阳是太阳系的中心星体,它是一个巨大的恒星,占据太阳系中大部分的质量。
太阳通过核聚变反应产生能量,并向太阳系中的其他天体提供光和热。
2. 行星太阳系中有八个行星,按照距离太阳的远近可以分为内行星和外行星。
内行星是靠近太阳的行星,包括水金火球、金星、地球和火星。
外行星则包括木土天王冥。
3. 卫星太阳系中的行星都有自己的卫星。
例如,地球有一个卫星——月球。
卫星围绕行星运行,由于受到行星的引力影响,保持着稳定的轨道。
4. 小行星小行星是太阳系中未成为行星的天体。
它们主要分布在火星和木星之间,形成一个被称为小行星带的区域。
天文学基础知识天文学是研究宇宙中天体的形成、演化和相互作用的科学。
它涵盖了广泛的领域,包括星系、恒星、行星、星际介质以及宇宙的起源和演化等。
在本文中,我们将介绍天文学的基础知识,帮助读者了解宇宙的奥秘。
一、宇宙的起源和演化宇宙的起源和演化是天文学研究的基本问题之一。
根据大爆炸理论,宇宙起源于138亿年前的一次巨大爆炸,初始物质和能量在此后的演化过程中逐渐形成了星系、恒星和行星等天体。
宇宙的膨胀速度在过去的几十年里被广泛研究,科学家发现宇宙正在以加速度膨胀,这也被称为暗能量的存在。
二、恒星和行星系统恒星是宇宙中最常见的天体之一。
它们由巨大的氢气云塌缩而成,核心温度达到一定程度时,恒星开始核聚变反应,释放出巨大的能量,并通过辐射照亮周围的空间。
我们的太阳就是一个典型的恒星。
行星是围绕恒星运行的天体,如地球就是太阳系中的一颗行星。
行星分为内行星和外行星两类。
内行星主要由岩石和金属构成,表面较为坚硬。
外行星由气体和冰构成,体积较大,没有固体表面。
三、星系和宇宙结构星系是由大量恒星、星际介质和暗物质组成的天体系统。
根据形状和结构的不同,星系可以分为椭圆形星系、螺旋形星系和不规则星系等。
最著名的星系是我们所处的银河系,它是一个巨大的螺旋形星系。
宇宙的结构以星系群、星系团和超星系团为单位。
星系群是由多个星系组成的较小结构,而星系团是由多个星系群相互吸引形成的更大结构。
超星系团是宇宙中最大的结构,包含了数千个星系团。
四、天文观测和仪器天文观测是研究宇宙的基础,科学家通过观测和记录天体的相关数据,推测宇宙中的规律。
天文学家使用各种观测仪器,如望远镜、射电望远镜和空间探测器等,来观测和分析宇宙中的天体。
望远镜是天文学家的重要工具,它可以放大远处天体的图像。
望远镜可以分为地面望远镜和空间望远镜两类。
射电望远镜则是用于观测射电波段的天体。
空间探测器可以在地球轨道上或离开地球进入宇宙深处进行观测。
五、天文学的应用天文学的研究不仅仅是为了满足人类对宇宙的好奇心,还有许多实际的应用。
天文学基础知识入门天文学基础知识入门天文学是研究天体和宇宙现象的科学,它涉及了对星体、行星、星系、宇宙膨胀等各个方面的研究。
本文将带您入门天文学的基础知识,包括宇宙的起源和演化、星体的分类、行星的形成以及天文观测等内容。
一、宇宙的起源和演化关于宇宙的起源和演化,科学家目前普遍接受的理论是大爆炸理论。
大爆炸理论认为,宇宙起源于约138亿年前的一次巨大爆炸,这个时刻被称为大爆炸。
在大爆炸之后,宇宙开始膨胀,物质不断扩散,星体和星系逐渐形成。
随着时间的推移,宇宙膨胀的速度逐渐加快,这被称为宇宙的加速膨胀。
关于宇宙加速膨胀的原因,科学家提出了暗能量的假设。
暗能量是一种未知的能量形式,它存在于宇宙的各个角落,并且对宇宙的膨胀有巨大的影响。
二、星体的分类星体是宇宙中的各种天体,包括恒星、行星、卫星、彗星等。
根据在宇宙中的位置和性质,星体可以分为不同的类型。
1. 恒星:恒星是宇宙中的光源,它们通过核聚变反应产生能量。
恒星的大小和质量不同,可以分为超巨星、巨星、主序星、白矮星和中子星等。
2. 行星:行星是围绕恒星运行的天体,它们不发光,依靠恒星的光来反射出自己的光。
行星可以分为地球类行星(内行星)和巨大气态行星(外行星)两大类。
3. 卫星:卫星是围绕行星或其他天体旋转的天体,例如月球是地球的卫星,木卫二是木星的卫星。
4. 彗星:彗星是由冰和岩石组成的天体,它们绕太阳运行,并在靠近太阳的时候释放出尾巴。
三、行星的形成行星的形成与恒星的形成有着密切关系。
根据目前的科学理论,行星形成的过程主要包括原行星盘的形成、凝聚和形成行星的过程。
首先,在恒星形成的过程中,原恒星云会形成一个巨大的盘状结构,称为原恒星盘。
原恒星盘主要由氢气、氦气和微尘组成。
接着,微尘颗粒在原恒星盘中逐渐聚集成更大的块状物质,这个过程被称为凝聚。
当这些块状物质增长到一定的大小时,它们之间的引力相互作用使它们逐渐聚集成行星。
最后,行星形成后会继续围绕恒星运行,成为行星系统的一部分。
天文学基础知识:探索浩瀚宇宙的奥秘1.引言:宇宙的魅力亲爱的新入学的天文学本科生们,欢迎你们踏上探索宇宙奥秘的激动人心的旅程。
天文学是一门古老而又充满活力的学科,它不仅能满足我们对宇宙的好奇心,还能帮助我们理解我们在宇宙中的位置。
在这份文档中,我们将共同探讨天文学的核心概念、最新发现和研究方法。
2.天体物理学基础2.1 恒星的生命周期恒星是宇宙中最基本也是最引人入胜的天体之一。
它们的生命周期犹如宇宙中的"生态系统",从诞生到死亡,经历着复杂而壮观的过程。
恒星的诞生始于巨大的分子云。
在引力的作用下,这些气体和尘埃逐渐收缩,形成原恒星。
当核心温度达到足够高时,氢开始聚变成氦,恒星正式"点亮"。
在主序阶段,恒星会稳定地燃烧数百万年到数十亿年不等。
随着核心氢燃料的耗尽,恒星进入演化的后期阶段。
质量较小的恒星(如我们的太阳)会膨胀成红巨星,最终形成行星状星云,留下一个白矮星。
而更大质量的恒星则会经历更剧烈的演化,可能最终爆发成超新星,留下中子星或黑洞。
案例研究:太阳系的未来我们的太阳目前正处于主序阶段的中期。
大约50亿年后,太阳将开始膨胀成红巨星。
在这个过程中,水星和金星可能会被吞噬,地球可能会变得不适合生命存在。
这个案例让我们意识到,了解恒星演化不仅对理解宇宙很重要,对预测我们自己星球的命运也至关重要。
2.2 行星科学随着系外行星的不断发现,行星科学已成为天文学中最活跃的研究领域之一。
我们不仅要研究太阳系中的行星,还要探索遥远恒星周围的行星系统。
行星的形成通常发生在恒星形成的同时。
在原行星盘中,尘埃颗粒逐渐聚集,形成更大的天体,最终形成行星。
行星的性质受到多种因素的影响,包括其距离母恒星的远近、形成时的物质组成等。
在研究行星时,我们关注的问题包括:行星的大气组成、表面地质特征、内部结构、磁场特性,以及是否具备维持生命的条件。
案例研究:系外行星TRAPPIST-1系统2017年,科学家们在距离地球约40光年的地方发现了TRAPPIST-1系统。
天文学基础知识天文学基础知识1.什么是宇宙?宇宙是天地万物,是广漠空间和其中存在的各种天体以及弥漫物质的总称。
辨证唯物主义哲学认为,世界的本质是物质的,物质可以转换不同的存在形式,但在本质上是永久存在,永久不灭的。
宇宙是普遍永恒的物质世界,在空间和时间上都是无限的。
从空间看宇宙是无边无际,它没有边界,没有形状,也没有中心,如果承认宇宙以外还有什么东西,就否认了世界的物质本性;从时间看宇宙无始无终,它没有起源,没有年龄,也不会终结,如果承认宇宙有起源,就会导致创世说,实际上也否认了世界的物质本性。
但具体事物的有限性也不能否认。
宇宙的无限与具体事物的有限并不矛盾,因为只有无数具体的有限才能构成全部的无限。
人类观察到的宇宙是动态的,随着科学技术的进步,人类所知的宇宙在不断扩大。
18世纪以前人类认识宇宙的范围只限于太阳系,随后认识到太阳系以外还有千亿个恒星,它们组成了银河系。
19世纪人类又发现了河外星系,发现银河系在宇宙大家庭中只不过是相当渺小的一员。
20世纪50年代的光学望远镜、60年代的射电天文望远镜把人类对宇宙的探测距离猛增,人类可以永远扩大自己对物质世界的观察视野,不会停留于某一固定的边界上,这有力证明宇宙是无限的。
天文学上通常将天文观测所及的整个时空范围称为“可观测宇宙”,有时又叫“我们的宇宙”,或简称“宇宙”。
现代科学的基本观念之一,就是可观测宇宙也像其他事物一样,有它诞生发展的历史。
据现代宇宙学说估算,宇宙年龄是极其漫长的,约为150亿岁;可观测的全部宇宙空间是极为庞大的,已观测到的最远的星系距离我们大约150亿光年。
宇宙既有统一性又有多样性。
宇宙的统一性在于它的物质性,宇宙的多样性在于物质的表现形式千差万别,组成宇宙的物质在存在状态、质量和性质上有着极大的差异。
宇宙是由各类天体和弥漫物质组成的。
宇宙中有形形色色的天体,恒星、星云、行星、卫星、彗星、流星等天体都是宇宙物质的存在形式。
2.什么是恒星和星云?宇宙中最主要的天体是恒星和星云,因为它们拥有巨大的质量。
1.太阳是距离地球最近的恒星,是太阳系的中心天体。
太阳系质量的99.87%都集中在太阳。
太阳系中的八大行星、小行星、流星、彗星、外海王星天体以及星际尘埃等,都围绕着太阳运行(公转)。
2.太阳从中心向外可分为核反应区、辐射区和对流区、太阳大气。
太阳的大气层,像地球的大气层一样,可按不同的高度和不同的性质分成各个圈层,即从内向外分为光球、色球和日冕三层。
我们平常看到的太阳表面,是太阳大气的最底层,温度约是6000开3.太阳寿命:约50亿年左右太阳位于银道面之北的猎户座旋臂上,距离银河系中心约30000光年4.在色球上人们还能够看到许多腾起的火焰,这就是天文上所谓的“日珥”。
5.日冕还会有向外膨胀运动,并使得冷电离气体粒子连续地从太阳向外流出而形成太阳风。
6.太阳耀斑是一种剧烈的太阳活动。
一般认为发生在色球层中,所以也叫“色球爆发”。
其主要观测特征是,日面上(常在黑子群上空)突然出现迅速发展的亮斑闪耀,其寿命仅在几分钟到几十分钟之间,亮度上升迅速,下降较慢. 耀斑爆发时,发出大量的高能粒子到达地球轨道附近时,将会严重危及宇宙飞行器内的宇航员和仪器的安全。
当耀斑辐射来到地球附近时,与大气分子发生剧烈碰撞,破坏电离层,使它失去反射无线电电波的功能。
无线电通信尤其是短波通信,以及电视台、电台广播,会受到干扰甚至中断。
耀斑发射的高能带电粒子流与地球高层大气作用,产生极光,并干扰地球磁场而引起磁暴。
7.米粒组织是太阳光球层上的一种日面结构。
呈多角形小颗粒形状,得用天文望远镜才能观测到。
米粒组织的温度比米粒间区域的温度约高300℃明亮的米粒组织很可能是从对流层上升到光球的热气团,不随时间变化且均匀分布,且呈现激烈的起伏运动.8.奥本海默极限稳定中子星的质量上限存在一个临界质量M ≒0.75M﹐M 表示太阳质量。
当星体的质量小于M 时﹐存在稳定的平衡解9.钱德拉塞卡极限;白矮星的一种极限质量。
当白矮星的质量超过此值时,它的核心电子简并压不能支撑外层负荷。
天文学基础知识天文学是一门研究宇宙中恒星、行星、银河系及其结构、演化和相互作用的学科。
它不仅仅是对夜空中的宇宙现象的观察和解释,还涉及更深层次的物理、化学和数学等自然科学领域。
本文将介绍一些天文学的基础知识,帮助读者对宇宙的奥秘有更全面的了解。
一、天文观测与仪器天文学的观测是基于天文现象的观察和记录。
现代天文学采用各种先进的观测仪器来获取数据,比如望远镜、天文相机、射电望远镜等。
望远镜是最基本的观测仪器,通过聚集和聚焦远处的光线来放大天体,使其可以被观测和研究。
二、天体测量与坐标系统天文学中常用的天体测量包括距离测量、质量测量和亮度测量等。
其中,天体的位置是最基本的参数,通常使用天球坐标系来表示。
天球坐标系以地球为中心,将天空划分为赤道、赤经、赤纬等坐标。
天文学家利用这些坐标可以准确地标定天体的位置。
三、星系和银河星系是由恒星、行星、气体和尘埃等组成的巨大结构,它们通过引力相互吸引并保持稳定状态。
银河系是我们所在的星系,它是一个螺旋状的旋转星系。
银河系包含了数十亿颗恒星和巨大的星云区域,这些星云是新星和行星的诞生地。
四、恒星的演化恒星是宇宙中最基本的天体,通过核聚变反应将氢转变为氦,并释放出巨大的能量。
恒星的演化经历了各个阶段,从星云到凝聚核心再到主序星和末期演化的巨星。
恒星的质量决定了它的寿命和后续演化的路径。
五、行星和太阳系行星是围绕着恒星运行的天体,包括地球在内的太阳系行星共有8颗。
太阳系是我们所在的行星系统,它由恒星太阳以及绕其运行的行星、卫星、小行星等组成。
太阳系中的行星分为内行星和外行星,内行星包括水金火木和地球,外行星包括土星、天王星和海王星。
六、宇宙的起源和演化宇宙的起源和演化是天文学研究的核心问题之一。
据宇宙大爆炸理论,宇宙在约138亿年前的一次巨大爆炸中诞生。
随着时间的推移和宇宙的膨胀,星系和恒星的形成以及宇宙射线背景辐射的产生,宇宙逐渐演化成今天的样子。
七、黑洞和暗能量黑洞是宇宙中极为密集的天体,其引力场极强,甚至连光都无法逃离。
天文学的基础知识(一)宇宙是如何形成的?1.科学家认为它起源为137亿年前之间的一次难以置信的大爆炸。
这是一次不可想像的能量大爆炸,宇宙边缘的光到达地球要花120亿年到150亿年的时间。
大爆炸散发的物质在太空中漂游,由许多恒星组成的巨大的星系就是由这些物质构成的,我们的太阳就是这无数恒星中的一颗。
原本人们想象宇宙会因引力而不在膨胀,但是,科学家已发现宇宙中有一种“暗能量”会产生一种斥力而加速宇宙的膨胀。
2.宇宙学说认为,我们所观察到的宇宙,在其孕育的初期,集中于一个体积极小、温度极高、密度极大的奇点。
在141亿年前左右,奇点产生后发生大爆炸,从此开始了我们所在的宇宙的诞生史。
3.宇宙大爆炸后0.01秒,宇宙的温度大约为1000亿度。
物质存在的主要形式是电子、光子、中微子。
以后,物质迅速扩散,温度迅速降低。
大爆炸后1秒钟,下降到100亿度。
大爆炸后14秒,温度约30亿度。
35秒后,为3亿度,化学元素开始形成。
温度不断下降,原子不断形成。
宇宙间弥漫着气体云。
他们在引力的作用下,形成恒星系统,恒星系统又经过漫长的演化,成为今天的宇宙。
宇宙是什么?宇宙有多大?宇宙年龄是多少?宇宙是万物的总称,是时间和空间的统一。
从最新的观测资料看,人们已观测到的离我们最远的星系是130亿光年。
也就是说,如果有一束光以每秒30万千米的速度从该星系发出,那么要经过130亿年才能到达地球。
根据大爆炸宇宙模型推算,宇宙年龄大约200亿年。
宇宙有多少个星系?每个星系有多少颗恒星?在这个以130亿光年为半径的球形空间里,目前已被人们发现和观测到的星系大约有1250亿个,而每个星系又拥有像太阳这样的恒星几百亿到几万亿颗。
因此只要做一道简单的数学题,你就不难了解到,在我们已经观测到的宇宙中拥有多少星星。
地球在如此浩瀚的宇宙中,真如沧海一粟,渺小得微不足道。
太阳和地球的年龄?据估计太阳的年龄比地球大1000万-2000年年,而通过放射性计年,地球的年龄是45亿年,因此太阳的年龄是45.1亿年。
`第一讲天文学概念一、天文学概念天文学属自然科学的基础学科。
主要研究天体的分布、运动、位置、状态、结构、组成、性质及起源和演化。
在古代,天文学还与历法的制定有不可分割的关系。
天文学与其他自然科学不同之处在于,天文学的实验方法是观测,通过观测来收集天体的各种信息。
因而对观测方法和观测手段的研究,是天文学家努力研究的一个方向。
物理学和数学对天文学的影响非常大,他们是现代进行天文学研究不可或缺的理论辅助。
二、天文学研究的特点天文研究工作不同于其它学科的研究,具有以下四个特点:1.被动性天文研究的手段主要是观测──被动地观测,它不能像其它学科那样,人为地设计实验,“主动”地去影响或变革所研究的对象,只能“被动”地去观测,根据已经存在的事实来进行分析。
天文研究的过程可以用来简单地概括:观测─→积累资料─→分析资料─→理论2.粗略性由于天文观测的被动性,不可避免地带来了天文观测的粗略性,我们不妨作一个比较。
在地球上要证明一个理论是否正确,可以采用不同的方法,可以设计很多不同的方案或实验,达到理论要求的精度,而在宏观世界中,由于观测仪器的分辨度,灵敏度等的限制,以及观测手段的单一性──单靠望远镜,所以,在一定时期内,为了研究一个问题,只能依靠仅有的几种方法,或是仅有的几个不太准确的数据来粗略估计。
这与在地球上的实验对比起来,表现出单一性和粗略性。
而且,越是深远的天体,越是前沿的课题其粗略性就越严重。
因此从某种意义上来说,天文学的发展与天文仪器(或更准确地说是观测手段)的发展直接相关。
3.瞬时性让我们来比较下面三组数据:天体的年龄几百万年——百多亿年人类文明几千年人的一生几十年——百年左右从比较中我们不难看出,人类研究天体的演化仅是短短地一瞬间,就像是在人类文明诞生的时候对宇宙拍了一张极高精度的照片,而人类文明发展和延续的过程,就是用不同倍数(越来越大)的放大镜来观察这张照片一样,人类为了征服自然获得自由,而不断研究周围的宇宙。
天文学基础知识资料天文学基础知识1.星座中星星的命名规则星座中星星的命名规则是这样的:按照每颗星星的亮度,从明到暗,每颗星各由一个希腊字母代表。
当所有二十四个希腊字母用完后,接着再用阿拉伯数字表示。
2.“星等”的概念“星等”是天文学上对星星明暗程度的一种表示方法,记为m。
天文学上规定,星的明暗一律用星等来表示,星等数越小,说明星越亮,星等数每相差1,星的亮度大约相差2.5倍。
我们肉眼能够看到的最暗的星是6等星(6m星)。
天空中亮度在6等以上(即星等数小于6),也就是我们可以看到的星有6000多颗。
当然,每个晚上我们只能看到其中的一半,3000多颗。
满月时月亮的亮度相当于-12.6等(在天文学上写作-12.6m);太阳是我们看到的最亮的天体,它的亮度可达-26.7m;而当今世界上最大的天文望远镜能看到暗至24m的天体。
我们在这里说的“星等”,事实上反映的是从地球上“看到的”天体的明暗程度,在天文学上称为“视星等”。
太阳看上去比所有的星星都亮,它的视星等比所有的星星都小得多,这只是沾了它离地球近的光。
更有甚者,象月亮,自己根本不发光,只不过反射些太阳光,就俨然成了人们眼中第二亮的天体。
天文学上还有个“绝对星等”的概念,这个数值才真正反映了星星们的实际发光本领。
3.“天球”的概念天文学上为了与人们的直观感觉相适应,把天空假想成一个巨大的球面,这便是天球。
天球的中心自然就是我们地球,它的半径无穷大。
天球只是人们的一种假设,是一种“理想模型”,引入天球这一概念,只是为了确定天体位置等方面的需要。
4.“天赤道”和“天极”的概念天文学上,确定天体位置的方法与地球表面非常相似,也是通过经纬坐标系来实现。
最常用而且最重要的天球坐标系,就是赤道坐标系。
地球赤道所在平面与天球的交线是一个大圆,这个大圆就称为“天赤道”,它就是赤道在天球上的投影;向南北两个方向无限延长地球自转轴所在的直线,与天球形成两个交点,分别叫作北天极和南天极。