慎防石墨变为下一个稀土
- 格式:doc
- 大小:18.00 KB
- 文档页数:3
球墨铸铁铸件缩松缺陷怎样防治?球墨铸铁铸造生产中经常遇到缩松方面的质量问题,于是就学习,就在实际工作中去想办法解决。
很多时候,通过学习解决了一些问题,也有难以解决的缩松现象。
最近看见了周启明老师的文章和陈子华的报告,结合之前实际工作,汇总以下。
一.影响球铁缩松的一般规律:1.球墨铸铁铸件的模数。
铸件模数大于2.5,容易实现无冒口铸造,但有专家对此规定限制值,有疑问。
一般来讲,比较厚大铸件,由于石墨化膨胀,容易铸造无缩松铸件。
此时,碳当量控制不要大于4.5%,避免石墨漂浮。
而热节分散的薄小铸件,容易产生缩松,通过冷铁,铬矿砂或局部内冒口设置解决。
特别要注意浇冒口系统的补缩,一般来讲,冒口尽可能使用热冒口,避免冷冒口使用。
2.要充分注意砂箱的刚度和砂型的硬度。
在砂箱刚度和砂型紧实度方面,设置再充分都不为过。
3.浇冒口工艺设计的合理性。
尽可能使用热冒口加冷铁,冷冒口补缩效果很差。
4.铸型的冷却速度。
5.浇注温度和浇注速度的合理选择。
一些比较厚的铸件,可以考虑适当调高浇注温度,同时延长浇注速度来解决缩松。
同时利于二次氧化渣浮出铸件内部,增加探伤检测的合格。
6.化学成分的合理选择和适当的残余镁,稀土含量。
7.在砂型冷却条件下,争取较多的石墨球数对减少缩松有利,对提高力学性能有利。
8.比较好的原材料和好的铁水冶金质量,要特别注意铁水不要在出炉前高温下保持时间过久,同时出炉前做好增加铁水石墨结晶核心的预处理,这样可以提高石墨球数,减少缩松。
二.新的减少缩松的观点:1.埃肯陈子华总监最近报告指出:球墨铸铁因为铁水含有镁,促使状态图上共晶点右移,镁含量在0.035-0.045%时,其实际共晶点大约在4.4-4.5%。
2.球铁成分选择在共晶点附近,铁水流动性最好,则凝固时铁水容易补充收缩。
3.球铁球化前后的硫含量不要变化太大。
即原铁水硫含量不要太高。
硫含量高,石墨容易析出过早。
容易产生缩松。
4.锡柴周启明老师今年文章“防止球墨铸铁缩松缩孔方法的新进展”中指出:在不发生石墨漂浮和没有初生石墨析出前提下,尽量提高碳含量。
14种紧缺稀有小金属及相关上市公司欧盟委员会发布题为《对欧盟生死攸关的原料》的报告,提出欧盟稀有矿产原料短缺预警及对策。
报告在分析41种矿产资源对经济的影响和供应风险的基础上,将其中14种重要矿产原料列入“紧缺”名单,这14种矿产原料是:锑、铍、钴、萤石、镓、锗、石墨、铟、镁、铌、铂族金属、稀土(包括钪、钇和镧系共17种稀有金属)、钽和钨。
我国有色金属行业“十二五”规划草案,到2015年,十种有色金属(铜、铝、铅、锌、镍、锡、锑、镁。
海绵钛、汞)产量控制在4100万吨以内。
这一举措将推升稀有小金属价格。
稀有轻金属包括锂、铷、铯、铍。
比重较小,化学活性强。
稀有难熔金属包括钛、锆、铪、钒、铌、钽、钼、钨。
熔点较高,与碳、氮、硅、硼等生成的化合物熔点也较高。
稀有分散金属简称稀散金属,包括镓、铟、铊、锗、铼以及硒、碲。
大部分赋存于其他元素的矿物中。
稀有稀土金属简称稀土金属,包括钪、钇及镧系元素。
它们的化学性质非常相似,在矿物中相互伴生。
稀有放射性金属包括天然存在的钫、镭、钋和锕系金属中的锕、钍、镤、铀,以及人工制造的锝、钷、锕系其他元素和104至107号元素。
铟:我国储量居世界第一。
占全球供应量的80%。
主要用于平板显示器、合金、半导体数据传输、航天产品的制造。
主要伴生在铅锌矿中,2005年我国原生铟产量也只有410吨。
铟它是一种伴生的金属,它只是锌精矿藏面的含量都是用PPM(百万之)计算的,非常的少,不能再生。
钨:我国世界储量第一。
占全球供应量的为85%。
主要用于硬质合金、特种钢等产品,并被广泛用于国防工业、航空航天、信息产业,被称为“工业的牙齿”。
如果一个国家没有钨的话,在目前技术条件下的金属加工能力就会出现极大的缺失,直接导致机械行业的瘫痪,所以称之为战略金属。
此外在照明领域也必须使用钨做为灯丝。
钼:我国储量居世界第二。
占全球供应量的24%。
用于炼制各类合金钢、不锈钢、耐热钢、超级合金,在军事工业中应用广泛,被称作“战争金属”。
考虑其他因素的情况下硬度越高耐磨性也就好,铸铁的耐磨性好是因为灰铸铁内含有片状石墨的,我们知道石墨具有润滑性能.所以铸铁虽然硬度低但是耐磨性好就是因为石墨的减磨.还有就是表面的光洁度,表面光洁度越高,摩擦越小相对来说同种材料根据表面处理不同,硬度跟耐磨性是成正比的.材料的硬度越高,耐磨性越好,故常将硬度值作为衡量材料耐磨性的重要指标之一。
但是耐磨性最好的材料不一定硬度高.最常用的耐磨材料比如铸铁硬度就不高,发动机的凸轮轴就常用铸铁.更典型的还有滑动轴承里的耐磨层是巴氏合金硬度也不高.还有蜗杆蜗轮减速器里为了增强耐磨性,一般用硬度低青铜合金做蜗轮. 耐磨,要求的是嵌入性和摩擦顺应性.就是材料磨过后能最快的形成两摩擦面的凹凸相配合的磨擦面.如果单纯追求表面硬度.过硬的材料不容易磨合.反而会降低摩擦面的耐磨性.根据磨损的机理:如果是切入式磨损,则提高表面硬度可以较好的提高耐磨性;而如果是冲击性磨损,则提高的效果会差一些。
高锰钢大家应该很熟悉,有很好的抗冲击耐磨性。
韧性好的奥氏体,在冲击时发生强烈的加工硬化,提高表面硬度,达到硬度和韧性的很好结合,耐磨效果很好。
如果材料中含有如石墨、六方氮化硼、硫化铁等具有片层状结构的物质,在摩擦中这些物质起固体润滑剂的作用,可以提高耐磨性。
常见的铸铁,飞机发动机里的封严涂层等。
塑料与金属对磨时,塑料有很好的适应性,而且还可在金属表面形成薄薄的一层转移膜,改善耐磨性能。
往复式压缩机的采用PEEK阀片代替金属阀片,就是一个很好的例子。
巴氏合金则是有油润化条件下的一个非常经典的合金。
它的结构是硬质点分布在软相上,摩擦中,硬质点起支持作用,软相被稍微多磨掉一些,形成的空隙正好容纳润滑油,改善润滑条件。
总体说来,俺觉得摩擦是两个东西间的事,就跟爱情一样,鲜花插错地方效果肯定不好。
硬度高不等于耐磨性好。
硬度高耐磨好,作为一个经验性的初步判断,还是有用的。
我的理解:磨损其实应该是接触表面应力范畴也就是在一定的压力下,运动的两种金属相互作用,材料消耗的比例。
抑制石墨化的元素
石墨化是一种常见的材料缺陷,主要发生在钢铁、镍基超级合金等材料中。
石墨化会使材料的机械性能显著下降,因此需要对其进行抑制。
以下是一些能够抑制石墨化的元素:
1.铬:铬是一种常见的添加元素,在高温下能够与碳形成碳化物,从而阻止碳原子形成石墨结构,进而防止石墨化。
2.铝和硅:这两种元素在高温下可以与碳形成碳化物,并且能够与镍或铁形成稳定的金属间化合物,从而阻止碳原子形成石墨结构。
3.稀土元素:铈、镧等稀土元素可以与碳形成稀土碳化物,这种碳化物具有很高的熔点,可以在高温下稳定存在。
同时,这些元素还可以改善合金的高温蠕变性,进而提高其抗石墨化能力。
4.钨:钨是一种难以石墨化的元素,将钨添加到合金中可以提高其抗石墨化能力。
5.碳化物形成元素:钛、锆、铪等元素可以形成稳定的碳化物,从而阻止碳原子形成石墨结构。
总之,在高温下使用合金时,需要添加一些元素来抑制石墨化的发生。
这些元素可以阻止碳原子形成石墨结构或者改善合金的高温性能,从而提高其抗石墨化能力。
稀土基本知识目录1. 什么是稀土 (2)1.1 稀土元素的定义 (3)1.2 稀土元素的化学性质 (3)1.3 稀土元素的物理性质 (4)1.4 稀土元素的分布和来源 (6)2. 稀土元素的分类 (7)2.1 扫描dium期的稀土元素 (7)2.2 十六种稀土元素 (8)2.3 其他与稀土元素相关的元素 (9)3. 稀土元素的用途 (11)3.1 电子工业 (12)3.2 磁性材料 (13)3.3 催化剂 (14)3.4 玻璃和陶瓷 (16)4. 稀土元素的开采和加工 (17)4.1 稀土矿的种类和分布 (18)4.2 稀土元素的提取工艺 (19)4.3 稀土元素的精炼工艺 (20)5. 稀土元素的环保问题 (21)5.1 开采和加工过程的污染问题 (23)5.2 稀土元素在环境中的蓄积和迁移 (24)5.3 稀土元素的资源利用和回收利用 (26)6. 稀土元素的未来发展 (26)6.1 新兴应用领域 (27)6.2 资源利用的创新和技术发展 (29)1. 什么是稀土全称是非常稀有土元素,是一种用于各个高科技领域至关重要的资源。
它们是元素周期表上17种金属元素中的一类,包括镧、铈、镨、钕、钷、钐、铕、钆、铽、镝、钬、铒、铥、镱、镥和锕系元素钍和钚。
由于它们的化学特性相似,这些元素通常一起加工和利用。
稀土之所以得名略具误导性,是因为它们在自然界中并不完全稀缺。
其名称来源于它们最初被发现的难以提取的特性,随着科技的进步和提取技术的优化,稀土元素的供应变得相对丰富。
它们在工业上也扮演着关键角色,尤其是在现代化技术中,如光电、永磁、储能、显示技术以及电子、汽车和航空航天等领域。
在环境和技术领域,稀土也因其对地球生态系统的潜在影响而备受关注。
商业生产稀土通常涉及高耗能流程和可能导致环境污染的活动,这促使研发者和制造商寻找更加可持续和环保的稀土提取与处理方式。
稀土不但是现代工业和技术的核心材料,也是可持续发展和环境保护工作中需要考虑的一个关键因素。
铸铁件经常会发生各种不同的铸造缺陷,如何防止这些缺陷发生,一直是铸件生产厂关注的问题。
本文介绍了笔者在这方面的一些认识和实践经验。
1 气孔特征:铸件中的气孔是指在铸件内部,表面或接近表面处存在的大小不等的光滑孔洞。
孔壁往往还带有氧化色泽,由于气体的来源和形成原因不同,气孔的表现形式也各不相同,有侵入性气孔,析出性气孔,皮下气孔等。
1.1 侵入性气孔这种气孔的数量较少,尺寸较大,多产生在铸件外表面某些部位,呈梨形或圆球形。
主要是由于铸型或砂芯产生的气体侵入金属液的未能逸出而造成。
防止措施:(1)减少发气量:控制型砂或芯砂中发气物质的含量,湿型砂的含水量不能过高,造型与修模时脱模剂和水用量不宜过多。
砂芯要保证烘干,烘干后的砂芯不宜存放太长时间,隔天使用的砂芯在使用前要回炉烘干,以防砂芯吸潮,不使用受潮、生锈的冷铁和芯撑等。
(2)改善型砂的透气性,选择合适的型空紧实度,合理安排出气眼位置以利排气,确保砂芯通气孔道畅通。
(3)适当提高浇注温度,开排气孔和排气冒口等,以利于侵入金属液的气体上浮排出。
1.2 析出性气孔这种气孔多而分散,一般位于铸件表面往往同批浇注的铸件大部分都发现有。
这种气孔主要是由于在熔炼过程中,金属液吸收的气体在凝固前未能全部析出,便在铸件中形成许多分散的小气孔。
防止措施:(1)采用洁净干燥的炉料,限制含气量较多的炉料使用。
(2)确保“三干”:即出铁槽、出铁口、过桥要彻底烘干。
(3)浇包要烘干,使用前最好用铁液烫过,包中有铁液,一定要在铁液表面放覆盖剂。
(4)各种添加剂(球化剂、孕育剂、覆盖剂)一不定期要保持干燥,湿度高的时候,要烘干后才能使用。
1.3 皮下气孔这种气孔主要出现在铸件的表层皮下2~3mm处,直径为1~3mm左右。
而且数量较多,铸件经热处理或粗加工去除外皮后,就会清晰地显露出来。
防止措施;(1)适当提高浇注温度,严格控制各种添加剂的加入量,尽可能缩短浇注时间。
(2)孕育剂的加入量最好控制在(质量分数)0.4%~0.6%,同时要严格控制孕育剂中A1的质量分数,w(Al)偏高容易和型腔表面的水分发生反应:2Al+3H2O=Al2O3+3H2↑,一般情况下孕育剂含Al量不宜超过1.5%。
大型工程技术风险控制要点住房城乡建设部2018年2月为加强城市建设风险管理,提高对大型工程技术风险的管理水平,推动建立大型工程技术风险控制机制,住房和城乡建设部工程质量安全监管司组织国内建筑行业专家编制了《大型工程技术风险控制要点》。
主编单位:上海市建设工程安全质量监督总站上海建科工程咨询有限公司参编单位(按章节排序):上海岩土工程勘察设计研究院有限公司华东建筑集团股份有限公司上海市隧道工程轨道交通设计研究院中国建筑第八工程局有限公司上海建工七建集团有限公司上海隧道工程股份有限公司上海市建设工程设计文件审查管理事务中心中国太平洋财产保险股份有限公司上海分公司主要起草人:黄忠辉、金磊铭、周红波、曹丽莉、高惕非、夏群、高承勇、朱晓泉、李冬梅、李浩、崔晓强、尤雪春、朱雁飞、陆荣欣、朱骏、唐亮、陈华、田惠文、梁昊庆、刘爽、周翔宇、张渝、李伟东、邵斐豪1总则 (1)2术语 (2)3基本规定 (4)3.1风险管理范围 (4)3.2风险管理目标 (4)3.3 风险管理阶段 (4)3.4 风险等级 (4)3.4.1 概率等级 (4)3.4.2 损失等级 (5)3.4.3 风险等级确定 (6)3.4.4 风险接受准则 (6)3.5 风险控制职责 (7)3.5.1 建设单位职责 (7)3.5.2 勘察单位职责 (8)3.5.3 设计单位职责 (8)3.5.4 施工单位职责 (8)3.5.5 监理单位职责 (8)4风险控制方法 (9)4.1 风险识别与分析 (9)4.1.1风险识别与分析工作内容 (9)4.1.2风险识别与分析工作流程 (10)4.1.3风险识别与分析工作方法 (10)4.2 风险评估与预控 (11)4.2.1风险评估与预控工作内容 (11)4.2.2风险评估与预控工作流程 (11)4.2.3风险评估与预控工作方法 (12)4.2.4风险评估报告格式 (13)4.3 风险跟踪与监测 (13)4.3.1风险跟踪与监测工作内容 (13)4.3.2风险跟踪与监测工作流程 (14)4.3.3风险跟踪与监测工作方法 (14)4.4 风险预警与应急 (14)4.4.1风险预警与应急工作内容 (15)4.4.2风险预警与应急工作流程 (15)4.4.3风险预警与应急工作方法 (16)5勘察阶段的风险控制要点 (17)5.1 建设场址 (17)5.1.1地质灾害风险 (17)5.1.2地震安全性风险 (18)5.2 地基基础 (18)5.2.1地基强度不足和变形超限风险 (18)5.2.2基坑失稳坍塌和流砂突涌风险 (19)5.2.3地下结构上浮风险 (20)5.3 地铁隧道 (21)5.3.1盾构隧道掘进涌水、流砂和坍塌风险 (21)5.3.2盾构隧道掘进遭遇障碍物风险 (21)5.3.3盾构隧道掘进遭遇地下浅层气害风险 (22)5.3.4矿山法施工隧道涌水塌方风险 (22)6设计阶段的风险控制要点 (23)6.1 地基基础 (23)6.1.1基坑坍塌风险 (23)6.1.2坑底突涌风险 (24)6.1.3坑底隆起风险 (24)6.1.4基桩断裂风险 (25)6.1.5地下结构上浮和受浮力破坏风险 (25)6.1.6高切坡工程风险 (26)6.1.7高填方工程风险 (28)6.2 大跨度结构 (29)6.2.1大跨钢结构屋盖坍塌风险 (29)6.2.2雨棚坍塌风险 (30)6.3 超高层结构 (30)6.3.1超长、超大截面混凝土结构裂缝风险 (30)6.3.2结构大面积漏水风险 (31)6.4 地铁隧道 (31)6.4.1盾构始发/到达时发生涌水涌砂、隧道破坏、地面沉降风险 (31)6.4.2盾构隧道掘进过程中地面沉降、塌方风险 (32)6.4.3区间隧道联络通道集水井涌水并引发塌陷风险 (32)6.4.4联络通道开挖过程中发生塌方引起地面坍塌风险 (32)6.4.5矿山法塌方事故风险 (33)7施工阶段的风险控制要点 (34)7.1 地基基础 (34)7.1.1桩基断裂风险 (34)7.1.2高填方土基滑塌风险 (34)7.1.3高切坡失稳风险 (35)7.1.4深基坑边坡坍塌风险 (35)7.1.5坑底突涌风险 (37)7.1.6地下结构上浮风险 (37)7.2 大跨度结构 (38)7.2.1结构整体倾覆风险 (38)7.2.2超长、超大截面混凝土结构裂缝风险 (39)7.2.3超长预应力张拉断裂风险 (39)7.2.4大跨钢结构屋盖坍塌风险 (40)7.2.5大跨钢结构屋面板被大风破坏风险 (40)7.2.6钢结构支撑架垮塌风险 (41)7.2.7大跨度钢结构滑移(顶升)安装坍塌风险 (41)7.3 超高层结构 (43)7.3.1核心筒模架系统垮塌与坠落风险 (43)7.3.2核心筒外挂内爬塔吊机体失稳倾翻、坠落风险 (47)7.3.3超高层建筑钢结构桁架垮塌、坠落风险 (49)7.3.4施工期间火灾风险 (52)7.4 盾构法隧道 (54)7.4.1盾构始发/到达风险 (54)7.4.2盾构机刀盘刀具出现故障风险 (54)7.4.3盾构开仓风险 (55)7.4.4盾构机吊装风险 (55)7.4.5盾构空推风险 (56)7.4.6盾构施工过程中穿越风险地质或复杂环境风险 (56)7.4.7泥水排送系统故障风险 (57)7.4.8在上软下硬地层中掘进中土体流失风险 (57)7.4.9盾尾注浆时发生错台、涌水、涌砂风险 (58)7.4.10管片安装机构出现故障风险 (58)7.4.11敞开式盾构在硬岩掘进中发生岩爆风险 (58)7.5 暗挖法隧道 (59)7.5.1马头门开挖风险 (59)7.5.2多导洞施工扣拱开挖风险 (60)7.5.3大断面临时支护拆除风险 (60)7.5.4扩大段施工风险 (60)7.5.5仰挖施工风险 (61)7.5.6钻爆法开挖风险 (61)7.5.7穿越风险地质或复杂环境风险 (61)7.5.8塌方事故风险 (61)7.5.9涌水、涌砂事故风险 (63)7.5.10地下管线破坏事故风险 (63)附录A 风险评估报告格式 (64)附录B 动态风险跟踪表 (65)附录C 风险管理工作月报 (67)附录D 风险管理总结报告格式 (69)附录E 风险分析方法 (70)附录F 风险评估方法 (71)1总则1.0.1 为了指导我国大型工程建设技术风险的控制,有效减少风险事故的发生,降低工程经济损失、人员伤亡和环境影响,保障工程建设和城市运行安全,特制定本控制要点。
考虑其他因素的情况下硬度越高耐磨性也就好,铸铁的耐磨性好是因为灰铸铁内含有片状石墨的,我们知道石墨具有润滑性能.所以铸铁虽然硬度低但是耐磨性好就是因为石墨的减磨.还有就是表面的光洁度,表面光洁度越高,摩擦越小相对来说同种材料根据表面处理不同,硬度跟耐磨性是成正比的.材料的硬度越高,耐磨性越好,故常将硬度值作为衡量材料耐磨性的重要指标之一。
但是耐磨性最好的材料不一定硬度高.最常用的耐磨材料比如铸铁硬度就不高,发动机的凸轮轴就常用铸铁.更典型的还有滑动轴承里的耐磨层是巴氏合金硬度也不高.还有蜗杆蜗轮减速器里为了增强耐磨性,一般用硬度低青铜合金做蜗轮. 耐磨,要求的是嵌入性和摩擦顺应性.就是材料磨过后能最快的形成两摩擦面的凹凸相配合的磨擦面.如果单纯追求表面硬度.过硬的材料不容易磨合.反而会降低摩擦面的耐磨性.根据磨损的机理:如果是切入式磨损,则提高表面硬度可以较好的提高耐磨性;而如果是冲击性磨损,则提高的效果会差一些。
高锰钢大家应该很熟悉,有很好的抗冲击耐磨性。
韧性好的奥氏体,在冲击时发生强烈的加工硬化,提高表面硬度,达到硬度和韧性的很好结合,耐磨效果很好。
如果材料中含有如石墨、六方氮化硼、硫化铁等具有片层状结构的物质,在摩擦中这些物质起固体润滑剂的作用,可以提高耐磨性。
常见的铸铁,飞机发动机里的封严涂层等。
塑料与金属对磨时,塑料有很好的适应性,而且还可在金属表面形成薄薄的一层转移膜,改善耐磨性能。
往复式压缩机的采用PEEK阀片代替金属阀片,就是一个很好的例子。
巴氏合金则是有油润化条件下的一个非常经典的合金。
它的结构是硬质点分布在软相上,摩擦中,硬质点起支持作用,软相被稍微多磨掉一些,形成的空隙正好容纳润滑油,改善润滑条件。
总体说来,俺觉得摩擦是两个东西间的事,就跟爱情一样,鲜花插错地方效果肯定不好。
硬度高不等于耐磨性好。
硬度高耐磨好,作为一个经验性的初步判断,还是有用的。
我的理解:磨损其实应该是接触表面应力范畴也就是在一定的压力下,运动的两种金属相互作用,材料消耗的比例。
常见铸件缺陷及其预防措施常见铸件缺陷及其预防措施(序+缺陷名称+缺陷特征+预防措施)1 气孔在铸件内部、表面或近于表面处,有大小不等的光滑孔眼,形状有圆的、长的及不规则的,有单个的,也有聚集成片的。
颜色有白色的或带一层暗色,有时覆有一层氧化皮。
降低熔炼时流言蜚语金属的吸气量。
减少砂型在浇注过程中的发气量,改进铸件结构,提高砂型和型芯的透气性,使型内气体能顺利排出。
2 缩孔在铸件厚断面内部、两交界面的内部及厚断面和薄断面交接处的内部或表面,形状不规则,孔内粗糙不平,晶粒粗大。
壁厚小且均匀的铸件要采用同时凝固,壁厚大且不均匀的铸件采用由薄向厚的顺序凝固,合理放置冒口的冷铁。
3 缩松在铸件内部微小而不连贯的缩孔,聚集在一处或多处,晶粒粗大,各晶粒间存在很小的孔眼,水压试验时渗水。
壁间连接处尽量减小热节,尽量降低浇注温度和浇注速度。
4 渣气孔在铸件内部或表面形状不规则的孔眼。
孔眼不光滑,里面全部或部分充塞着熔渣。
提高铁液温度。
降低熔渣粘性。
提高浇注系统的挡渣能力。
增大铸件内圆角。
5 砂眼在铸件内部或表面有充塞着型砂的孔眼。
严格控制型砂性能和造型操作,合型前注意打扫型腔。
6 热裂在铸件上有穿透或不穿透的裂纹(注要是弯曲形的),开裂处金属表皮氧化。
严格控制铁液中的 S、P含量。
铸件壁厚尽量均匀。
提高型砂和型芯的退让性。
浇冒口不应阻碍铸件收缩。
避免壁厚的突然改变。
开型不能过早。
不能激冷铸件。
7 冷裂在铸件上有穿透或不穿透的裂纹(主要是直的),开裂处金属表皮氧化。
8 粘砂在铸件表面上,全部或部分覆盖着一层金属(或金属氧化物)与砂(或涂料)的混(化)合物或一层烧结构的型砂,致使铸件表面粗糙。
减少砂粒间隙。
适当降低金属的浇注温度。
提高型砂、芯砂的耐火度。
9 夹砂在铸件表面上,有一层金属瘤状物或片状物,在金属瘤片和铸件之间夹有一层型砂。
严格控制型砂、芯砂性能。
改善浇注系统,使金属液流动平稳。
大平面铸件要倾斜浇注。
10 冷隔在铸件上有一种未完全融合的缝隙或洼坑,其交界边缘是圆滑的。
球铁铸件缩孔、缩松的成因与防止球铁铸件缩孔、缩松的成因与防止摘要:球墨铸铁大多数是共晶或过共晶成分,其糊状凝固方式使铸件外壳没有抵抗石墨化膨胀能力,因而铸型产生型壁迁移,增大铸件体积,极易产生内部缩孔、缩松。
球墨铸铁凝固时,在枝晶和共晶团间的最后凝固区域,收缩的体积得不到完全补充,留下的空洞形成宏观及微观缩松。
La 有助于消除缩松倾向。
分析缩孔缩松形成原因并提出相应的防止办法,有助于减少由此产生的废品损失。
关键词:球墨铸铁、收缩、缩孔、缩松1 前言1.1 缺陷形成原因球墨铸铁生产技术日臻完善,多年技术服务的实践表明,生产中出现的铸造缺陷,完全可以用成熟的经验予以消除。
据介绍:工业发达国家的铸造废品率可以控制在1%以下[1],国内先进水平也在2%左右,提高企业铸造技术水平,对减少废品十分重要。
1。
显微缩松显微镜观察微细连续缺失空间多角形疏松枝晶间、共晶团边界间众所周知,灰铸铁是逐层凝固方式,球墨铸铁是糊状凝固方式。
逐层凝固可以使铸件凝固时形成一个坚实的封闭外壳,铸件全封闭外壳的体积收缩可以减小壳体内的缩孔容积。
糊状凝固的特点是金属凝固时晶粒在金属液内部整个容积内形核、生长,固相与液相混合存在有如粥糊。
大多数球墨铸铁是共晶或过共晶成分,其糊状凝固方式使铸件外壳没有抵抗石墨化膨胀的能力,铸型产生型壁迁移,增大铸件体积,极易产生内部缩孔、缩松缺陷。
铸型冷却能力强,有利于铸件的容积凝固转变成逐层凝固,使铸件的分散缩松转变成集中缩孔。
然而,批量生产中湿砂型铸造很难被金属型或干砂型取代。
球墨铸铁凝固有以下三个特点,决定球墨铸铁是糊状凝固方式:①球化和孕育处理显著增加异质核心,核心存在于整个熔体,有利于全截面同时结晶。
②石墨球在奥氏体壳包围下生长,生长速度慢,延缓铸件表层形成坚实外壳;而片状石墨的端部始终与铁液接触,生长速度快,凝固时间短,促使灰铁铸件快速形成坚实外壳。
③球墨铸铁比灰铸铁导热率小 20%-30%,散热慢,外壳生长速度降低[3]。
球墨铸铁件缺陷产生的原因与预防措施球墨铸铁件缺陷产生的原因与预防措施球墨铸铁是20世纪五十年代发展起来的一种高强度铸铁材料,其综合性能接近于钢,正是基于其优异的性能,已成功地用于铸造一些受力复杂,强度、韧性、耐磨性要求较高的零件。
球墨铸铁已迅速发展为仅次于灰铸铁的、应用十分广泛的铸铁材料。
所谓“以铁代钢”,主要指球墨铸铁。
下面跟着店铺来看看球墨铸铁件缺陷产生的原因与预防措施吧!希望对你有所帮助。
球墨铸铁件缺陷产生的原因与预防措施11、球墨铸铁管件产生夹渣缺陷的原因有:(1)硅:硅的氧化物也是夹渣的主要组成部门,因此尽可能降低含硅量。
(2)硫:铁液中的硫化物是球铁件形成夹渣缺陷的主要原因之一。
硫化物的熔点比铁液熔点低,在铁液凝固过程中,硫化物将从铁液中析出,增大了铁液的粘度,使铁液中的熔渣或金属氧化物等不易上浮。
因而铁液中硫含量太高时,铸件易产生夹渣。
球墨铸铁原铁液含硫量应控制在006%以下,当它在009%~0135%时,铸铁夹渣缺陷会急剧增加。
(3)稀土和镁:近年来研究认为夹渣主要是因为镁、稀土等元素氧化而致,因此残余镁和稀土不应太高。
(4)浇注系统:浇注系统设计应合理,具有挡渣功能,使金属液能平稳地充填铸型,力求避免飞溅及紊流。
(5)浇注温度:浇注温度太低时,金属液内的金属氧化物等因金属液的粘度太高,不易上浮至表面而残留在金属液内;温度太高时,金属液表面的熔渣变得太稀薄,不易自液体表面往除,往往随金属液流进型内。
而实际出产中,浇注温度太低是引起夹渣的主要原因之一。
此外,浇注温度的选取还应考虑碳、硅含量的关系。
(6)型砂:若型砂表面粘附有多余的砂子或涂料,它们可与金属液中的氧化物合成熔渣,导致夹渣产生;砂型的紧实度不平均,紧实度低的型壁表面等闲被金属液侵蚀和形成低熔点的化合物,导致铸件产生夹渣。
2、防止措施:(1)控制铁液成分:尽量降低铁液中的含硫量(<006%),适量加进稀土合金(01%~02%)以净化铁液,尽可能降低含硅量和残镁量。
【关键字】精品灰铸铁、球墨铸铁渗碳体的成因与防止化学元素Ti 球墨铸铁张文和,丁俊,聂富荣(铸峰特殊合金有限公司销售公司,南京210002)摘要:灰铸铁、球墨铸铁铸件生产过程中,往往出现游离渗碳体。
本文从铸铁的常规化学成分;反石墨化元素;O、N、H气体元素;共晶团数;冷却速度;铸铁的熔炼;炉料遗传性;共晶最后阶段凝固特点等方面,阐述铸铁渗碳体出现的原因,并提出相应的防止措施。
关键词:渗碳体;石墨化;白口倾向;共晶团;孕育铸铁凝固时,铁液按稳定系结晶,碳原子以石墨状态析出,铸铁断口呈灰色,得到灰铸铁;铁液按介稳定系结晶,碳原子与铁原子结合成碳化铁,断口呈白色,得到白口铸铁;介于两者之间,得到麻口铸铁。
铸铁中碳原子聚合成石墨的过程,称石墨化。
灰铸铁共晶阶段冷却曲线如图1,TE1——稳定系共晶转变开始温度TE——介稳定系共晶转变开始温度TETEN——共晶生核开始温度TEU——大量形核温度TER——共晶回升温度最高值TS——共晶转变终了温度如果TEU>TE、TS>TE则得到全部灰口组织;如果TEN<TE< SPAN>、TER<TE< SPAN>则得到全部白口组织。
若TEU>TE,Ts<TE< SPAN>,则凝固后出现游离渗碳体;TS略低于TE时,会在最后凝固区域或共晶团间出现少量游离渗碳体。
TER<TE< SPAN>,TEU<TE< SPAN>则出现莱氏体。
铁液中生核能力强,则生核开始温度TEN高,基晶团数量增加,共晶阶段冷却曲线上移减少共晶转变过冷度,使TS>TE促进形成灰口组织。
因此强化孕育增加生核能力,提高共晶团数量,必然减少白口倾向。
影响铸铁共晶阶段冷却曲线的因素有:①是化学元素(合金元素);②冷却速度;③结晶核心;④生铁的遗传性。
例如:石墨化过程在TE一TE共晶区间进行,Cr、V、Ti缩小TE1一TE共晶区间,石墨尚未析出就下降到介稳定共晶转变温度TE以下,碳原子来不及扩散与聚合成石墨,铸铁凝固成白口或麻口。
稀土冶炼复习资料选择题1、下列物质中( A )是常见的稀土离子交换淋洗剂。
A、EDTAB、HCLC、NH4HCO3D、NH3H2O2、下列( A )元素常用作激活剂。
A、 EuB、AlC、 YD、 La3、下列( D )元素是稀土发光材料中的猝灭剂。
A、NaB、 BC、 YD、 Fe4、常用作延缓离子的有( A )。
A、Cu2+B、Ce3+C、Ca2+D、Na+5、EDTA回收的主要方法有石灰法、甲醛法、( C )A、高锰酸钾法B、乙醇法C、水合肼法D、双氧水法6、下列( D )属于有机稀土化合物。
A、氯化稀土B、稀土氧化物C、碳酸稀土D、草酸稀土7、用P204-盐酸体系萃取分离稀土时,可将稀土元素分成三组,其中镝属于( C )组。
A、轻稀土B、中稀土C、重稀土D、中重稀土8、钕、镨、铈、铒等稀土氧化物可用作玻璃着色剂,其中以( A )着色能力最强。
A、 Nd2O3B、 Pr6O11C、 CeO2D、 Er2O39、制备氯化铈产品一般用( B )作原料较好。
A、Ce (NO3)3B、Ce2(CO3)3C、CeO2D、 Ce2(C2O4)310、稀土元素铽的元素符号表示为( C )。
A、TeB、 DyC、TbD、 Tm11、工业上储存大量的硝酸用( A )材质的储罐。
A、铝B、铁C、铜D、不锈钢12、放射线物质进入人体后在体内滞留期间所放出的射线对人体的照射多为内照射,内照射防护的基本原则是( C )稀释、冲洗。
A、半封闭B、敞开C、封闭D、裸露13、下列稀土矿中属于完全配分型的有( B )。
A、独居石B、钇萤石C、氟碳铈矿D、磷钇矿14、目前工业上除去氯化稀土溶液中的镭使用(B )共沉淀法。
A、硫酸钙B、硫酸钡C、硫酸钠D、硫酸铁15、一般工业盐酸含量为30%,若配制10%的盐酸溶液,需加入(B )倍体积的水。
A、1B、2C、3D、2.516、稀土氧化物可以通过高温灼烧稀土的氢氧化物、草酸盐、碳酸盐等而获得,其中镨生成的氧化物的化学式为( B )。
慎防石墨成为下一个稀土产业
字号:大中小时间:2014-03-17 09:28:07 来源:科技日报
天然石墨是战略性矿产资源
1.石墨及制品已成为高技术产业的基础性材料
天然石墨与稀土一样,有“工业味精”的称号,石墨新材料已成为新兴产业的重要组成部分,产业关联性极强,膨胀石墨、各向同性石墨、氟化石墨、锂离子电池石墨负极材料、金属—石墨复合材料等已广泛应用于节能环保、新能源、新一代信息技术、新能源汽车、高端装备制造、新材料产业等新兴产业。
2010年,欧盟委员会将石墨列为14种“对欧盟生死攸关的原料”之一。
2013年,石墨烯和人脑工程入选欧盟“未来新兴旗舰技术项目”,各获得10亿欧元的专项研发计划资助。
2.天然石墨是我国寡占型矿产资源
石墨原料分为天然鳞片状石墨(晶质石墨)、天然土状石墨(隐晶质石墨)、人造石墨(原料主要为石油焦和沥青焦)3种。
根据美国地质勘探局资料,世界天然石墨储量为7100万吨,中国储量为5500万吨,占世界的77%,其中晶质石墨资源储量占全世界的2/3,隐晶质石墨资源占全世界的1/10。
虽然在很多领域,人造石墨和天然石墨差别不大。
但天然石墨由于其优良的特性,有一定的不可替代性。
例如,隐晶质石墨由于其本身的物理性质,是做各向同性石墨的最佳原料;在膨胀石墨方面,人造石墨无法取代晶质石墨;在阻燃方面,天然石墨制品不但物理性能稳定,还不会像磷系、氯系、溴系等其他阻燃剂产生有害物质。
3.天然石墨的战略价值随技术进步不断提升
例如金属—石墨复合材料不仅具有金属基体的性能,还能充分发挥石墨,特别是高纯石墨自润滑性好、化学稳定性高、减震性好、导热导电、线膨胀系数小等特点,在航空航天、冶金、机械等领域有广泛用途。
最新开发的石墨烯未来应用空间更为巨大,石墨烯可替代硅材料应用在芯片领域,将芯片速度提高到THZ级别。
据有关机构测算,全球每年半导体晶硅的需求量在2500吨左右,石墨烯如果替代1/10的晶硅制成高端集成电路,市场容量至少在5000亿元以上。
石墨烯制成的超级电容器,充电时间只需1毫秒。
2010年全球超级电容市场规模在50亿美元,并保持20%的增长率。
我国石墨产业正在重蹈稀土的覆辙
1.通过低价值应用和出口获取短期利益
总体来看,我国基于高纯石墨深加工及高端材料制备技术仍较为落后,石墨产品多数是中、低档原料产品。
我国石墨或石墨制品现在的主要消费领域为,耐火材料占总消费量的26%、铸造15%、润滑剂14%、制动衬片13%、铅笔7%、其他(碳刷、电池、膨胀石墨等)25%。
在后端应用难以打开的情况下,石墨与稀土一样,作为矿产资源低价出口供应全球。
我国在1954年就开始向欧洲出口铸造用鳞片石墨,1980年后含碳耐火材料由于钢铁工业大量使用使石墨
出口量迅速增加。
20世纪90年代以来,中国成为全世界天然石墨最大供应国,由于石墨过量出口,1993—2004年国际市场石墨价格在谷底徘徊,这期间国际市场天然石墨90%来源于中国。
2005年后石墨出口价出现回升,我国出口量稳步增加,近年稳定在40万吨以上。
2.发达国家利用天然石墨资源攫取高额利润
世界上有60多个国家和地区进口石墨,进口量超过万吨的主要是日本、美国、韩国、荷兰、德国、意大利、英国、新加坡和印度尼西亚等。
目前,德国、法国、美国、瑞士、日本等发达国家都对自己国内的天然石墨资源进行封闭,不予开采,却从石墨矿产输出国低价购进石墨初加工产品经过深加工后高价返卖,赚取巨额利润。
例如,我国往往以5000元/吨以下的价格出口天然鳞片石墨,却分别以25000元/吨、超过200万元/吨的价格从国外进口由此石墨生产的球形石墨和氟化石墨。
美国有90个石墨制品企业,天然石墨完全依靠进口。
发达国家的企业在产业下游往往形成了寡头垄断的态势。
例如氟化石墨主要由美、日、俄生产;膨胀石墨,美、日、德、法等国的产业居领先地位,而且高纯膨胀石墨只有日本生产。
国外企业在很多领域已经做了专利覆盖,例如美国一家公司将柔性石墨作为导热材料的相关专利进行全覆盖,很难突破。
制约我国石墨产业高端化发展的主要因素
1.技术创新能力不足
虽然我国在采选环节技术优势明显,但多年来采矿、选矿工艺没有大的突破和变化,传统酸碱法、高温提纯法等方法还存在较严重的环保、能耗问题。
同时,产业链后端应用层面技术创新明显不足。
低硫可膨胀技术、柔性石墨系列化、球化包敷改性、金属—石墨复合材料制备等众多关键技术还仍需突破。
装备水平与产业的发展需求不匹配。
虽然在柔性石墨、燃料电池、人造金刚石、石墨复合材料等领域,取得了一定进展,但受到了相关设备的严重制约。
2.创新组织存在结构性缺陷
目前石墨产业的企业集中在产业链前端,有少量分布在电池负极材料等领域。
企业特别是产业链前端的企业,开展的技术创新活动还偏少,水平不高。
前端企业同质化较严重,往往陷入价格战—利润下降—无力投入研发—继续模仿的恶性循环。
在石墨领域,目前大学和科研院所是技术创新的主要承担者,但我国石墨材料学科建设和研究力量还比较薄弱,仅有极少数高校曾开设碳素专业,没有专门的天然石墨研究机构。
同时石墨的基础研究明显不足,对不同类型石墨矿物学特性研究还不够,前瞻性强的石墨新材料以及新概念、新原理和新方法的研发重视也不足。
3.政府对产业规制尚不到位
目前中国石墨产业总体规模还偏小,矿产资源分布广泛,涉及到的产业部门宽泛而分散。
政府的产业管制还不到位,还没有通过有效的政策手段来改善竞争秩序,激励企业进行技术创新。
石墨产业整体的竞争特别是上游企业之间的竞争还比较粗放。
众多中小企业将污水、烟尘、粉尘超标随意排放。
石墨浮选回收率仅有60%—80%,排放的尾矿中仍然含有较大量的石墨,导致严重的资源浪费。
相关政策建议
1.加强行业规制,进行保护性开发
制订相关技术标准。
加快制订石墨采选、深加工等环节的技术标准,鼓励发展绿色制造技术及工艺,尽快淘汰落后、污染的技术和工艺,逐步引导石墨矿产资源向高附加值、高技术的企业、产品配置。
鼓励行业和企业推广应用石墨新的技术工艺,通过评估应用前后节能减排的指标量,给予相应的税收优惠,继续优化调整享受出口退税石墨产品种类,引导国内企业发展膨胀石墨等技术含量较高的产品。
2.打造创新型龙头企业,推动石墨产业集约和集群发展
通过重大技术项目或示范工程带动企业的研发体系建设和新产品开发,加快形成一批具有较强创新能力和核心竞争力的石墨龙头企业。
完善产业链的重点环节,依托资源优势,加快形成以高集约度为特征的初级产品加工环节,以多批次、小批量、定制生产为特征的深加工环节,以高端应用为特征的应用环节,以优势资源为基础的产业集群,在此基础上构成多层次的产业链。
依托高新技术产业开发区、特色产业基地等区域,在矿山所在地或具有研发生产优势的地区,形成若干特色突出、国内外知名、具有国际竞争力的产业集群。
3.创新研发组织管理机制,促进新技术商业化
支持石墨产业技术创新战略联盟的发展,增强行业协会在收集技术需求、编制技术路线图等方面的功能。
依托国家科技计划,跨领域、跨计划组织实施一批石墨重大创新产品(工程)的应用示范,带动石墨产品向高端化发展。
制定石墨产业专利战略。
持续支持开展石墨产业专利地图研究,在负极材料等重点领域,明确石墨产业专利布局方向,构建专利池。
(作者单位:中国科学技术发展战略研究院)
中国科学技术发展战略研究院陈志刘峰李哲来源:《科技日报》2014年03月17日。