荧光灯电路及功率因数的提高
- 格式:doc
- 大小:4.85 MB
- 文档页数:2
实验五 日光灯电路与功率因数的提高一、 实验目的1. 了解日光灯电路的结构、工作原理和线路的联接。
2. 把握提高功率因数的方式,熟悉提高功率因数的意义。
3. 进一步熟练交流电压表、电流表和功率表的利用。
二、 实验仪器交流电流表 交流电压表 功率表 日光灯电路组件 可变电容器 自耦变压器 三、 预习要求1. 温习有关正弦交流电路功率和谐振电路的内容。
2. 温习功率表的利用方式。
3. 了解日光灯电路的组成和工作原理。
四、 实验原理1. 提高功率因数的意义。
在正弦电路中,一端口上有功功率与视在功率之间的关系为:φφcos cos S UI P == 式中:φcos 为功率因数,φ是电压与电流的相位差,也是无独立源一端口的阻抗角。
当功率因数较低时,一方面会使设备的容量无法被充分利用;另一方面,当电源电压和负载功率一按时端线电流较大,功率损耗增加。
因此,提高负载的功率因数,关于降低电能损耗,提高输电效率具有重要的经济意义。
2. 提高功率因数的方式提高功率因数,能够依照负载的性质在电路中接入适当的电抗元件。
在实际电路中,用电负载多为感性,如电动机、电器、日光灯等,它们的等效电路相当于电阻与电感元件的串联。
在不改变负载的结构和工作状态的前提下,简单易行的方式是在这种感性负载两头并联补偿电容器,如图1-32所示。
图1-32 提高功率因数实验电路 图1-33 相量图U I ..由于感性负载中的感性无功电流,与并联电容中的容性无功电流,二者彼此补偿,相当于提高了功率因数。
由图1-33所示相量图分析可知,并联电容后,使电路的总电压与总电流之间的相位差减小,即提高了并联电路的功率因数,而负载本身仍能够正常工作。
固然,所并联的电容值应该有一个适当的范围,若是太大可能会使整个并联电路呈现容性,达不到提高功率因数的目的。
通过对相量图的分析,还能够看出,功率因数增大时,电路中的总电流减小,功率因数减小时,总电流增大。
实验一荧光灯的安装及功率因数的提升一、实验目的1、认识荧光灯的工作原理,学习荧光灯的安装方法。
2、掌握提升功率因数的方法,理解提升功率因数的意义。
3、熟习沟通仪表的使用方法。
二、实验设施和器械荧光灯灯管1支镇流器1个起辉器1个灯管支座2个直流稳压电源0~30V万用表MF-500型电流表0~5A功率表1只三、实验原理与说明1、荧光灯电路的构成电路由荧光灯管、镇流器、起辉器构成,原理电路图如实训图1-1所示。
(1)荧光灯管荧光灯管是一支修长的玻璃管,其内壁涂有一层荧光粉薄膜,在荧光灯管的两头装有钨丝,钨丝上涂有受热后易发射电子的氧化物。
荧光灯管内抽成真空后,充有必定量的惰性气体和少许的汞气(水银蒸气)。
惰性气体有益于日光灯的启动,并延伸灯管的使用寿命;水银蒸气作为主要的导电资料,在放电时产生紫外线激发日光灯管内壁的荧光粉变换为可见光。
(2)起辉器起辉器主要由辉光放电管和电容器构成,其内部构造如实训图1-2所示。
此中辉光放电管内部的倒U形双金属片(动触片)是由两种热膨胀系数不一样的金属片构成;往常状况下,动触片和静触片是分开的;小容量的电容器能够防备起辉器动、静触片断开时产生火花烧坏触片。
(3)镇流器镇流器是一个带有死心的电感线圈。
它与起辉器配合产生瞬时高电压使荧光灯管导通,激发荧光粉发光,还能够限制和稳固电路的工作电流。
2、荧光灯的工作原理如实训图1-1所示,在荧光灯电路接通电源后,电源电压所有加在起辉器两头,进而使辉光放电管内部的动触片与静触片之间产生辉光放电,辉光放电产生的热量使动触片受热膨胀趋势挺直,与静触片接通。
于是,荧光灯管两头的灯丝、辉光放电管内部的触片、镇流器构成一个回路。
灯丝因经过电流而发热,进而使灯丝上的氧化物发射电子。
与此同时,辉光放电管内部的动触片与静触片接通时,触片间电压为零,辉光放电立刻停止,动触片冷却缩短而离开静触片,致使镇流器中的电流忽然减小为零。
于是,镇流器产生的自感电动势与电源电压串连叠加于灯管两头,迫使灯管内惰性气体分子电离而产生弧光放电,荧光灯管内温度渐渐高升,水银蒸气游离,并剧烈地撞击惰性气体分子而放电,同时辐射出不行见的紫外线激发灯管内壁的荧光粉而发出近似荧光的可见光。
实验四荧光灯电路与功率因数提高的仿真研究班级:14011502 姓名:贺晶华学号:2015214352 座号:6F一、实验原理:1、荧光灯的组成荧光灯电路主要由灯管、启辉器和镇流器(可视为具有铁心的电感线圈)组成,荧光灯工作电路图如图1所示。
2、提高荧光灯电路的功率因数原理为了提高感性负载的功率因数,常用的方法是感性负载两端并联补偿电容器,以供给感性负载所需的部分无功功率。
荧光灯正常工作后,可看成由灯管和镇流器串联的电路。
灯管相当于一个电阻元件(R),镇流器是一个带铁心的电感线圈(相当于一个电阻(r)、电感(L)串联的元件)。
这样,荧光灯电路就看成一个(R+r)L串联电路。
(R+r)L串联电路是感性电路,设电压相位超前于电流相位θ角,则电路的功率因数为cosθ。
cosθ为负载网络的功率因数;θ为负载网络的阻抗角,即负载网络端口电压与电流的相位差。
为了提高荧光灯电路的功率因数,常用的方法就是与感性负载两端并联电容器,其电路图如图2(a)所示。
图2 提高电路功率因数的实验图与向量图相位的相量图如图2(b)所示,由相量图可见并联电容器后,负载网络端口电压与电流的相位差为θ’。
由于θ>θ’,故cosθ<cosθ’,补偿电容大小可用下式进行计算:根据并联电容的容量不同,这种补偿有欠补偿(cosθ<1,负载网络呈感性)、全补偿(cosθ=1)和过补偿(cosθ<1,负载网络呈容性)3种情况。
二、实验内容:1、仿真电路的构建图3 荧光灯电路与功率因数提高的仿真电路图、如图3所示。
其中,U表示电源设备三相交流电源相线与零线电压(有效值为220V,频率为50Hz,初相位为0°),荧光灯灯管及整流器的线圈电阻(R+r≈300Ω)与镇流器电感(L≈1.65H)调电容C后负载网络电压和电流的波形变化。
2、仿真分析结果1)负载有功功率的测量由于早期EWB版本无功率表,测量较繁琐,可Multisim10中提供了功率表,可直接测量显示负载网络的有功功率,如图3所示。
日光灯电路及功率因数的提高实验报告1.实验目的:本实验主要是为了了解日光灯的电路原理,以及通过不同方式提高日光灯的功率因数,从而达到节能的目的。
2.实验原理:日光灯是一种比较常见的照明灯具,其原理是通过放电管中的气体放电来产生紫外线,同时紫外线通过荧光粉的激发产生可见光线。
在电路方面,日光灯的电路主要包括电源电路、点火电路和预热电路。
其中,电源电路主要是为了提供足够的工作电压和电流,电路中通常采用交流电源。
点火电路则是为了在启动时提供足够的高压,以便放电管内部形成气体放电和紫外线辐射,最终点亮日光灯。
预热电路则是为了提供足够的预热电流,以便减小放电管的点火电压。
在实验中,我们主要关注提高日光灯的功率因数,其中功率因数是指电路中所消耗的有用功率与视在功率之比。
功率因数越高,电路的能量利用效率也就越高。
在日光灯电路中,功率因数主要受到电容器的影响。
常规日光灯中的电容器通常采用交流电容器,其功率因数较低,只有0.5-0.7左右。
因此,为了提高日光灯的功率因数,我们需要通过改进电路中的电容器来实现。
有几种提高日光灯功率因数的方法,其中较为常见的包括:(1)更换电容器:我们可以通过更换高效的交流电容器或相控交流电容器来提高电路的功率因数。
相控交流电容器比较适合纠正交流电路因为电感而导致功率因数下降的问题。
(2)串联电感:我们可以在电路中增加合适的电感,以降低电路中负载电流的频率,从而提高功率因数。
(3)使用电子镇流器:电子镇流器相对传统的电子镇流器来说,具有更高的效率和功率因数,可以大大减小电路中的损耗和浪费。
3.实验过程:本次实验主要选用更换电容器和串联电感两种方法来提高日光灯的功率因数。
具体步骤如下:(1)连接电路:我们首先按照实验装置要求,连接好日光灯的电路。
(2)记录数据:我们记录下日光灯启动前和启动后的功率因数、功率、电流、电压等数据,作为基准数据。
(3)更换电容器:接下来我们将原来的电容器更换为高效的相控交流电容器,再次记录相关数据。
实验六 日光灯电路及功率因数的提高一、实验目的1.验证单相交流电路中的电流、电压和功率关系的理论;2.了解日光灯电路的组成,工作原理和安装方法;3.了解用电容器改善功率因数的方法和意义;4.学习功率表的使用方法。
二、实验原理电力系统中的负载大部分是感性负载,其功率因数较低,为提高电源的利用率和减少供电线路的损耗,往往采用在感性负载两端并联电容器的方法,来进行无功补偿,以提高线路的功率因数。
日光灯电路为感性负载,其功率因数一般在0.3~0.4左右,在本实验中,利用日光灯电路来模拟实际的感性负载观察交流电路的各种现象。
1.日光灯的工作原理如图6-1所示,日光灯电路由荧光灯管、镇流器和启辉器三部分组成:(1)灯管:日光灯管是一根玻璃管,它的内壁均匀地涂有一层薄薄的荧光粉,灯管两端各有一个阳极和一根灯丝。
灯丝由钨丝制成,其作用是发射电子。
阳极是两根镍丝,焊在灯丝上,与灯丝具有相同的电位,其主要作用是当它具有正电位时吸收部分电子,以减少电子对灯丝的撞击。
此外,它还具有帮助灯管点燃的作用。
灯管内还充有惰性气体(如氮气)与水银蒸汽。
由于有水银蒸汽,当管内产生辉光放电时,就会放射紫外线。
这些紫外线照射到荧光粉上就会发出可见光。
(2)镇流器:它是绕在硅钢片铁芯上的电感线圈,在电路上与灯管相串联。
其作用为:在日光灯启动时,产生足够的自感电势,使灯管内的气体放电;在日光灯正常工作时,限制灯管电流。
不同功率的灯管应配以相应的镇流器。
(3)启辉器:它是一个小型的辉光管,管内充有惰性气体,并装有两个电极:一个是固定电极,一个是倒“U ”形的可动电极,如图6-3所示。
两电极上都焊接有触头。
倒“U ”形可动电极由热膨胀系数不同的两种金属片制成。
点燃过程:日光灯管、镇流器和启辉器的联接电路如图6-1所示。
刚接通电源时,灯管内气体尚未放电,电源电压全部加在启辉器上,使它产生辉光放电并发热,倒“U ”形的金属片受热膨胀,由于内层金属的热膨胀系数大,双金属片受热后趋于伸直,使金属片上的触点闭合,将电路接通。
一. 电子仪器仪表使用(1)【实验目的】1. 学习正确使用数字万用表和直流稳压电源;2. 验证叠加原理及基尔霍夫定律;3. 加深对线性电路中参考方向和实际方向以及电压、电流正负的认识。
【相关知识要点】1. 叠加原理:在任一线性网络中,多个激励同时作用的总响应等于每个激励单独作用时引起的响应之和。
叠加定理是线性电路普遍适用的基本定理,它是线性电路的重要性质之一。
应用叠加定理可以把一个复杂电路分解成几个简单电路来研究,如图1.4.1所示,然后将这些简单电路的研究结果叠加,便可求得原来电路中的电流或电压。
原电路BBBE 1 单独作用图1.4.18 叠加原理AAAE 2 单独作用R 1R 1E 1E 1E 2I 1R 3R 3R 3R 2R 2I 2I 2’I 1’I 3I 3’I 1’’I ’’23I ’’R 1E 2R 2"I 'I I "I 'I I " I 'I I 333222111 +=+=+=图1.4.1 叠加定理示意图2. 基尔霍夫定律:基尔荷夫电流定律(KCL):对任一节点,在任一时刻,所有各支路电流的代数和恒等于零。
即:∑I =0 (若流入节点为正,则流出节点为负)基尔荷夫电压定律(KVL):沿任一绕行回路,在任一时刻,所有支路或元件电压的代数和恒等于零。
即:∑U =0 (若与绕行方向相同为正,则与绕行方向相反为负)【预习与思考】1. 掌握叠加原理、基尔霍夫定律等理论。
2. 计算图1.4.1中负载支路的电压U L 、电流I L ,将所得值记入表1.4.1中。
3. 叠加原理中,两个电源同时作用时在电路中所消耗的功率是否也等于两个电源单独作用时所消耗的功率之和?为什么?【注意事项】1. 在使用万用表测量时,注意电压、电流、欧姆等档次的选择,切忌用电流档测电压(即与被测元件并联)。
2. 一定要在电源断开的情况下,才能用万用表测电阻。
3. 在使用稳压电源时,只允许按下一个琴键按钮,切勿将几个选择按钮同时压下,使几组互相独立的电源并联在同一个电压表上,而将几个电源相互短路造成仪器的损坏。
日光灯电路及功率因数的提高实验报告一、引言引言部分主要介绍日光灯电路及功率因数的背景信息,并阐述实验的目的和意义。
二、实验原理本部分详细介绍日光灯电路的基本原理和功率因数的概念,包括电路结构、工作原理和功率因数的定义与计算方法。
2.1 日光灯电路概述日光灯电路由电源、镇流器、日光灯管和启动装置等组成,其工作原理是通过电流和电压的相互作用,将电能转化为光能。
2.2 功率因数的定义与计算方法功率因数是衡量电路效率的重要指标,其定义为有功功率和视在功率之比。
常见的提高功率因数的方法有补偿电路的设计和无功功率的补偿等。
三、实验步骤本部分详细说明实验的具体步骤和操作流程,并列出实验所需材料和仪器设备清单。
3.1 实验材料与设备•日光灯管•电阻器•电容器•电源•电压表•电流表3.2 实验操作流程1.连接电源和电流表,并调节合适的电流值。
2.依次连接电阻器和电容器,并记录电压和电流的数值。
3.根据记录的数据,计算功率因数。
4.反复进行多组实验,以验证实验结果的准确性。
四、实验结果与分析本部分详细介绍实验所得结果,并进行数据分析和讨论。
4.1 实验数据记录使用表格形式列出各组实验数据,并对数据进行标注。
4.2 数据分析与讨论根据实验数据,计算得到各组实验的功率因数,并进行结果分析和讨论。
五、实验结论本部分总结实验的目的、步骤和结果,给出实验结论,并对实验中遇到的问题和改进方法进行讨论。
六、实验心得本部分讨论实验过程中遇到的困难和挑战,总结实验经验和心得,并提出对今后实验改进的建议。
七、参考文献列出参考的相关文献、教材和网站等。
八、附录提供实验中的原始数据记录表和实验装置的照片等附加信息。
日光灯电路及其功率因数的提高,实验报告日光灯电路及其功率因数的提高,实验报告日光灯电路与功率因数的提高实验4.7 日光灯电路与功率因数的提高4.7.1实验目的1(熟悉日光灯的接线方法。
2(掌握在感性负载上并联电容器以提高电路功率因数的原理。
4.7.2实验任务4.7.2.1基本实验1(完成因无补偿电容和不同的补偿电容时电路中相关支路的电压、电流以及电路的功率、功率因数的测量和电路的总功率因数曲线cosθ′=f(C)的测量。
并测出将电路的总功率因数提高到最大值时所需补偿电容器的电容值。
(日光灯灯管额定电压为220V,额定功率30W。
)2(完成图4-7-1所示点亮日光灯时所需电压U点亮和日光灯熄灭时电压U熄灭的测量。
3(定量画出电路的相量图。
完成镇图4-7-1流器的等效参数RL、L的计算。
4.7.2.2扩展实验保持U=220V不变,当电路并联最佳电容器后使得总功率因数达到最大时,在电容器组两端并入20W灯泡,通过并入灯泡的个数,使得总电流I与无并联电容时的I值大致相同,记录此时I、IC、IL、P以及流入灯泡的电流值。
4.7.3实验设备1(三相自耦调压器一套 2. 灯管一套 3(镇流器一只 4. 起辉器一只 5.单相智能型数字功率表一只 6. 电容器组/500V 一套 7. 电流插座三付 8. 粗导线电流插头一付 9. 交流电压表(0~500V) 或数字万用表一只 10(交流电流表(0~5A) 一只 11(粗导线若干4.7.4 实验原理1(日光灯电路组成日光灯电路主要有灯管、启辉器和镇流器U,组成。
联接关系如图4-7-2所示。
2(日光灯工作原理接通电源后,启辉器内固定电极、可动电极间的氖气发生辉光放电,使可动电极的双金图4-7-2 日光灯电路图属片因受热膨胀而与固定电极接触,内壁涂有荧光粉的真空灯管里的灯丝预热并发射电子。
启辉器接通后辉光放电停止,双金属片冷缩与固定电极断开,此时镇流器将感应出瞬时高电压加于灯管两端,使灯管内的惰性气体电离而引起弧光放电,产生大量紫外线,灯管内壁的荧光粉吸收紫外线后,辐射出可见光,发光后日光灯两端电压急剧下降,下降到一定值,如40W 日光灯下降到110V左右开始稳定工作。
日光灯电路及功率因数的提高实验总结通过本次日光灯电路及其功率因数的提高的实验,我了解了日光灯电路的工作原理以及掌握了如何提高功率因数的意义与方法。
在老师详细的讲解下,我知道了如何测量日光灯电路有关并联内容和没有并联电容这两种情况下的功率因素,掌握了提高功率因素的方法。
我还知道了实验原理是,在正弦交流电路中,功率因数的高低关系到交流电源的输出功率和电力设备能否得到充分利用。
为了提高交流电源的利用率,减少线路的能量损耗,可采取在感性负载两端并联适当容量的补偿电容,以改善电路的功率因数。
并联了补偿电容器C以后,原来的感性负载取用的无功功率中的一部分,将由补偿电容提供,这样由电源提供的无功功率就减少了,电路的总电流也会减小,从而使得感性电路的功率因数得到提高。
在老师的讲解下,我彻底掌握了本次日光灯电路及其功率因数的提高的实验原理和实验过程,收获很多。
日光灯电路与功率因数的提高实验报告日光灯电路与功率因数的提高实验报告引言:在现代社会中,电能的消耗已成为一个重要的问题。
为了提高能源利用率和减少能源浪费,我们需要关注电路的功率因数。
本实验旨在研究日光灯电路中功率因数的提高方法,以期能为实际应用提供一定的参考。
一、实验目的本实验的主要目的是探究日光灯电路中功率因数的提高方法,并通过实验验证相关理论。
二、实验原理1. 功率因数的定义功率因数是指电路中有用功与视在功之比,用来衡量电路的有效使用程度。
功率因数的理论范围在0到1之间,数值越接近1,说明电路的有用功越高,能源利用效率越好。
2. 日光灯电路日光灯电路是一种常见的照明电路,由电源、镇流器和灯管组成。
在传统的日光灯电路中,功率因数通常较低,这会导致电能的浪费。
三、实验步骤1. 搭建传统日光灯电路按照传统的日光灯电路连接方式,搭建一个基础电路,包括电源、镇流器和灯管。
2. 测量功率因数使用功率因数测试仪,测量传统日光灯电路的功率因数,并记录测量结果。
3. 安装功率因数改善装置在电路中加入功率因数改善装置,该装置可以通过电容器或电感器来提高电路的功率因数。
根据实验要求选择合适的装置并进行安装。
4. 测量改进后的功率因数使用功率因数测试仪,再次测量改进后的日光灯电路的功率因数,并记录测量结果。
四、实验结果与分析通过实验测量,我们得到了传统日光灯电路和改进后电路的功率因数。
根据测量结果,我们可以得出以下结论:1. 传统日光灯电路的功率因数较低,通常在0.5左右。
这是由于电路中存在电感元件,导致电流与电压之间存在相位差,使得功率因数降低。
2. 安装功率因数改善装置后,电路的功率因数得到了明显提高。
改进后的电路功率因数通常能达到0.9以上,有些甚至可以接近1。
这是因为功率因数改善装置通过补偿电路中的电感元件,使得电流与电压之间的相位差减小,从而提高了功率因数。
3. 通过对比传统电路和改进后电路的功率因数,我们可以明显看出功率因数改善装置的有效性。
荧光灯电路及功率因数的提高
实验目的:
1.掌握荧光灯电路的连接,理解荧光灯的工作原理。
2.掌握交流电流和电压的测量方法,能够正确测量灯管、镇流器电流和电压。
3.理解功率因数和功率因数的意义,能够使用电容器提高荧光灯电路的功率因数。
实验步骤:
1.调节电源
将交流电压源调成相电压220V
U、V、W相线与
中线N之间电压即
为相电压交流电压表
电压调节旋钮
2.连接电源和负载
(1)将电源和负载进行连接,连接完毕后,闭合开关,荧光灯要能正常点燃。
(2)观察荧光灯点燃过程中启辉器和灯管明暗关系。
(3)测量电路总电流,观测点燃过程电流的变化。
(4)并入电容,观察灯管亮度和电路电流的变化。
3.数据测量
按照下表测量电路中的相关电流和电压。
电容(F )
电源电压S U 灯管电压R U 镇流器电压L U 电路总电流I 0 1 2.2 4.7
4.实验结论
通过实验,我们可知,在荧光灯电路中,适当的并入电容可以改变电路的功率因数。
但并非是电容越大越好,如果电容过大,电路中的电流减小程度未必理想,甚至可能出现电路电流不减反增的现象。
启辉器 灯管端子
镇流器
短接按
钮。