山东省青州市2018-2019学年第一学期期末考试七年级上数学试题
- 格式:pdf
- 大小:2.29 MB
- 文档页数:10
2018~2019学年七年级数学上册第一学期期末试卷一、选择题1、若( )﹣(﹣2)=3,则括号内的数是( )A .﹣1B .1C .5D .﹣5 2、下列所有数中,最大的数是( )A .—4B .0C .—1D .3 3、若|m -3|+(n +2) 2=0,则m +2n 的值为( ).A .-4B .- 1C .0D .4 4、雨滴滴下来形成雨丝属于下列哪个选项的实际应用( )A .点动成线B .线动成面C .面动成体D .以上都不对 5、下列各组数中,互为相反数的是( )A .3与B .(﹣1)2与1C .﹣14与(﹣1)2D .2与|﹣2|6、的倒数是( )A .3B .C .-D .﹣3 7、下图中哪个图形经过折叠后可以围成一个棱柱( )A .B .C .D .8、代数式a 2﹣b1的正确解释是( ) A .a 与b 的倒数的差的平方 B .a 的平方与b 的差的倒数 C .a 的平方与b 的倒数的差 D .a 与b 的差的平方的倒数 9、如图所示的立体图形是由几个小正方体组成的一个几何体,这个几何体从上面看到的形状图是( )……○…………○……A.B.C.D.10、下列各组代数式中,是同类项的共有()(1)32与23(2)﹣5mn与(3)﹣2m2n3与3n3m2(4)3x2y3与3x3y2A.1 组B.2 组C.3 组D.4 组二、填空题11、地球上陆地的面积约为149000000平方千米,把数据149000000用科学记数法表示为。
12、小明今年m岁,5年前小明_____岁。
13、中,底数是_____,指数是_____。
14、一个正方体的六个面上分别标有1、2、3、4、5、6,根据图中从各个方向看到的数字,解答下面的问题:“?”处的数字是_____。
三、计算15、计算:(1)(﹣32)﹣(﹣27)﹣(﹣72)﹣87 (2)16、求代数式的值(1)6x+2x2﹣3x+x2+1,其中 x=﹣5;(2)2(a2b+ab2)﹣2(a2b﹣1)﹣2ab2﹣2,其中 a=﹣2,b=2。
2018-2019学年七年级(上)期末数学试卷一、选择题(本题满分24分,共有8道小题,每小题3分)1.﹣的倒数是( )A.﹣2B.C.±D.22.下列几何体的截面形状不可能是圆的是( )A.圆柱B.圆锥C.球D.棱柱3.某数学兴趣小组为了解本校有多少学生已经患上近视,制定了四种抽样调查方案,你认为比较合理的调查方案是( )A.在校门口通过观察统计有多少学生B.在低年级学生中随机抽取一个班进行调查C.从每个年级的每个班随机抽取1名男生进行调查D.随机抽取本校每个年级10%的学生进行调查4.某大楼地上共有12层,地下共有4层.某人乘电梯从地下2层升至地上9层,电梯一共升了( )A.7层B.8层C.9层D.10层5.若x=y,则下列变形:①x+2=y+2;②﹣2x﹣1=﹣2y﹣1;③=,正确的有( )A.0个B.1个C.2个D.3个6.半径为1的圆中,扇形AOB的圆心角为120°,则扇形AOB的面积为( )A.B.C.D.π7.小刚家2017年和2018年的家庭支出情况如图所示,则小刚家2018年教育方面支出的金额比2017年增加了( )A.0.216万元B.0.108万元C.0.09万元D.0.36万元8.如图,跑道由两个半圆部分AB,CD和两条直跑道AD,BC组成,两个半圆跑道的长都是115m,两条直跑道的长都是85m.小彬站在A处,小强站在B处,两人同时逆时针方向跑步,小彬每秒跑4m,小强每秒跑6m.当小强第一次追上小彬时,他们的位置在( )A.半圆跑道AB上B.直跑道BC上C.半圆跑道CD上D.直跑道AD上二.填空题(本题满分24分,共有8道小题,每小题3分)9.绝对值小于1的整数是 .10.要了解一沓钞票中有没有假钞,采用的合适的调查方式是 .11.若代数式1﹣8x与9x﹣3的值互为相反数,则x= .12.一个由小立方块搭成的几何体,从正面、左面、上面看到的形状图如图所示,这个几何体是由 个小立方块搭成的.13.如图是某校七(2)班45名同学入学语文成绩统计表.现要制作频数直方图来反映这个班语文成绩的分布情况,若以10分为组距分组,共可分 .语文成绩/分46596672人数(频数)1234语文成绩/分74798283人数(频数)2334语文成绩/分85868788人数(频数)5243语文成绩/分91929498人数(频数)233114.当时钟指向上午10:10时,时针与分针的夹角 度.15.两个圆柱体容器如图所示,它们的直径分别为4cm和8cm,高分别为39cm和10cm.先在第一个容器中倒满水,然后将其倒入第二个容器中,若设倒完以后,第二个容器的水面离容器口有xcm,则可列方程为 (不需化简).16.一个两位数,若交换其个位数与十位数的位置,则所得的新两位数比原来两位数大9.这样的两位数共有 个.三.解答题(共72分)17.已知:线段a求作:线段AB,使AB=2a.18.(1)计算:﹣5﹣(﹣+)÷(﹣);(2)计算:(﹣)×÷()3﹣;(3)化简:﹣2(ab﹣3a2)+(5ab﹣a2);(4)解方程:﹣=119.如图,∠AOB和∠COD都是直角,射线OE是∠AOD的平分线.(1)比较∠AOC和∠BOD的大小,并说明理由;(2)当∠BOC=130°时,求∠DOE的度数.20.如图,线段AB=1,点A1是线段AB的中点,点A2是线段A1B的中点,点A3是线段A2B的中点…以此类推,点A n是线段A n﹣1B的中点.(1)线段A5B的长为 ;(2)线段A n B的长为 ;(3)求AA1+A1A2+A2A3+…+A7A8的值.21.如图①是一张长为20cm,宽为12cm的长方形硬纸板,把它的四个角都剪去一个边长为xcm的小正方形,然后把它折成一个无盖的长方体盒子(如图②),请回答下列问题(1)折成的无盖长方体盒子的容积V= cm3;(用含x的代数式表示即可,不需化简)(2)请完成下表,并根据表格回答,当x取什么正整数时,长方体盒子的容积最大?x/cm12345V/cm3180 252192 (3)从正面看折成的长方体盒子,它的形状可能是正方形吗?如果是正方形,求出的值;如果不是正方形,请说明理由.22.某校对七年级300名学生进行了教学质量监测(满分100分),现从中随机抽取部分学生的成绩进行整理,并绘制成如图不完整的统计表和统计图:等级频数频率(频率=频数÷总数)不及格10.05及格20.10良好 0.45优秀8 注:60分以下为“不及格”,60~69分为“及格”,70~79分为“良好”,80分及以上为“优秀”请根据以上信息回答下列问题:(1)补全统计表和统计图;(2)若用扇形统计图表示统计结果,则“良好”所对应扇形的圆心角为多少度?(3)请估计该校七年级本次监测成绩为70分及以上的学生共有多少人?23.元旦期间,某商场用1400元购进了甲、乙两种商品,共100件,进价分别是18元、10元.(1)求甲、乙两种商品各购进了多少件?(2)商场搞促销活动,若同时购买甲、乙两种商品各1件,可享受标价的8折优惠,此时这两种商品的利润率是10%,求这两种商品的标价总共多少元?24.【问题】若a+b=10,则ab的最大值是多少?【探究】探究一:当a﹣b=0时,求ab值.显然此时,a=b=5,则ab=5×5=25探究二:当a﹣b=±1时,求ab值.①a﹣b=1,则a=b+1,由已知得b+1+b=10解得b=,a=b+l=+1=则ab==②a﹣b=﹣1,即b﹣a=1,由①可得,b=,a=则ab==.探究三:当a﹣b=±2时,求ab值(仿照上述方法,写出探究过程).探究四:完成下表:a﹣b…﹣3﹣2﹣10123…ab… 25 …【结论】若a+b=10,则ab的最大值是 (观察上面表格,直接写出结果).【拓展】若a+b=m,则ab的最大值是 .【应用】用一根长为12m的铁丝围成一个长方形,这个长方形面积的最大值是 m2.参考答案与试题解析一.选择题(共8小题)1.﹣的倒数是( )A.﹣2B.C.±D.2【分析】本题需先根据倒数的定义和求法即可求出正确答案.【解答】解:﹣的倒数是﹣2.故选:A.2.下列几何体的截面形状不可能是圆的是( )A.圆柱B.圆锥C.球D.棱柱【分析】根据圆柱、圆锥、球、棱柱的形状特点判断即可.【解答】解:棱柱无论怎么截,截面都不可能有弧度,自然不可能是圆,故选D.3.某数学兴趣小组为了解本校有多少学生已经患上近视,制定了四种抽样调查方案,你认为比较合理的调查方案是( )A.在校门口通过观察统计有多少学生B.在低年级学生中随机抽取一个班进行调查C.从每个年级的每个班随机抽取1名男生进行调查D.随机抽取本校每个年级10%的学生进行调查【分析】抽取样本注意事项就是要考虑样本具有广泛性与代表性,所谓代表性,就是抽取的样本必须是随机的,即各个方面,各个层次的对象都要有所体现.【解答】解:A、抽查对象不具有代表性,故A错误;B、调查对象不具广泛性、代表性,故B错误;C、调查对象不具广泛性,故C错误;D、随机调查本校每个年级10%的学生进行调查,故D正确;故选:D.4.某大楼地上共有12层,地下共有4层.某人乘电梯从地下2层升至地上9层,电梯一共升了( )A.7层B.8层C.9层D.10层【分析】根据题意列出算式,计算即可求出值.【解答】解:根据题意得:9﹣(﹣2)﹣1=10,则某人乘电梯从地下2层升至地上9层,电梯一共升了10层,故选:D.5.若x=y,则下列变形:①x+2=y+2;②﹣2x﹣1=﹣2y﹣1;③=,正确的有( )A.0个B.1个C.2个D.3个【分析】根据等式两边加上(或减去)同一个数,等式仍然成立,根据等式两边乘以(或除以一个不为0的数)一个数,等式仍然成立进行解答即可.【解答】解:若x=y,则:①x+2=y+2,正确;②﹣2x﹣1=﹣2y﹣1,正确;③当a=0时,=不能成立,错误;故选:C.6.半径为1的圆中,扇形AOB的圆心角为120°,则扇形AOB的面积为( )A.B.C.D.π【分析】根据扇形的面积公式计算即可.【解答】解:扇形AOB的面积==,故选:B.7.小刚家2017年和2018年的家庭支出情况如图所示,则小刚家2018年教育方面支出的金额比2017年增加了( )A.0.216万元B.0.108万元C.0.09万元D.0.36万元【分析】分别求得两年的教育方面的支出,二者相减即可求得结果.【解答】解:2017年教育方面支出所占的百分比:1﹣30%﹣25%﹣15%=30%,教育方面支出的金额:1.8×30%=0.54(万元);2018年教育方面支出的金额:2.16×35%=0.756(万元),小刚家2018年教育方面支出的金额比2017年增加了0.756﹣0.54=0.216(万元).故选:A.8.如图,跑道由两个半圆部分AB,CD和两条直跑道AD,BC组成,两个半圆跑道的长都是115m,两条直跑道的长都是85m.小彬站在A处,小强站在B处,两人同时逆时针方向跑步,小彬每秒跑4m,小强每秒跑6m.当小强第一次追上小彬时,他们的位置在( )A.半圆跑道AB上B.直跑道BC上C.半圆跑道CD上D.直跑道AD上【分析】设小强第一次追上小彬的时间为x秒,根据小强路程﹣小斌路程+AB的长度=1个跑道的全长列出方程求得x的值,再进一步判断可得.【解答】解:设小强第一次追上小彬的时间为x秒,根据题意,得:6x﹣4x+115=2×115+2×85,解得x=142.5,则4x=570,570﹣400=170>115,∴他们的位置在直跑道BC上,故选:B.二.填空题(共8小题)9.绝对值小于1的整数是 0 .【分析】由绝对值的性质可得出绝对值小于1的整数.【解答】解:绝对值小于1的整数是0.故答案为:0.10.要了解一沓钞票中有没有假钞,采用的合适的调查方式是 普查 .【分析】直接利用全面调查的意义进而得出答案.【解答】解:要了解一沓钞票中有没有假钞,采用的合适的调查方式是:普查.故答案为:普查.11.若代数式1﹣8x与9x﹣3的值互为相反数,则x= 2 .【分析】根据相反数性质列出方程,求出方程的解即可得到x的值.【解答】解:根据题意得:1﹣8x+9x﹣3=0,移项合并得:x=2,故答案为:212.一个由小立方块搭成的几何体,从正面、左面、上面看到的形状图如图所示,这个几何体是由 5 个小立方块搭成的.【分析】从俯视图中可以看出最底层小立方块的个数及形状,从主视图可以看出每一层小立方块的层数和个数,从左视图可看出每一行小立方块的层数和个数,从而算出总的个数.【解答】解:由俯视图易得最底层小立方块的个数为4,由其他视图可知第二层有一个小立方块,那么共有4+1=5个小立方块.故答案为:5.13.如图是某校七(2)班45名同学入学语文成绩统计表.现要制作频数直方图来反映这个班语文成绩的分布情况,若以10分为组距分组,共可分 6 .语文成绩/分46596672人数(频数)1234语文成绩/分74798283人数(频数)2334语文成绩/分85868788人数(频数)5243语文成绩/分91929498人数(频数)2331【分析】根据频数分布表中求组数的方法,用最大值﹣最小值所得的差再除以组距,然后用进一法取整数即可得解.【解答】解:∵这组数据的极差为98﹣46=52,∴若以10分为组距分组,共可分52÷10=5.2≈6(组),故答案为:6.14.当时钟指向上午10:10时,时针与分针的夹角 115 度.【分析】根据钟面平均分成12份,可得每份的度数,根据时针与分针相距的份数乘以每份的度数,可得答案.【解答】解:当时钟指向上午10:10时,时针与分针相距8+=份,当时钟指向上午10:10时,时针与分针的夹角30°×=245°,即当时钟指向上午10:10时,时针与分针的夹角115°,故答案为:115°.15.两个圆柱体容器如图所示,它们的直径分别为4cm和8cm,高分别为39cm和10cm.先在第一个容器中倒满水,然后将其倒入第二个容器中,若设倒完以后,第二个容器的水面离容器口有xcm,则可列方程为 π()2×39=π()2(10﹣x) (不需化简).【分析】利用圆柱体积计算公式表示水的体积,根据水的体积不变即可得到一元一次方程.【解答】解:第一个容器中水的体积为π()2×39;第二个容器中水的体积为π()2(10﹣x),∵水的体积不变,∴π()2×39=π()2(10﹣x),故答案为:π()2×39=π()2(10﹣x).16.一个两位数,若交换其个位数与十位数的位置,则所得的新两位数比原来两位数大9.这样的两位数共有 8 个.【分析】先设原来的两位数为10a+b,根据交换其个位数与十位数的位置,所得新两位数比原两位数大9,列出方程,得出b=a+1,因此可取1到8个数.【解答】解:设原来的两位数为10a+b,根据题意得:10a+b+9=10b+a,解得:b=a+1,因为可取1到8个数,所以这两位数共有8个,它们分别,12,23,34,45,56,67,78,89,故答案为:8.三.解答题(共8小题)17.已知:线段a求作:线段AB,使AB=2a.【分析】在射线AM上依次截取AC=CB=a,则AB满足条件.【解答】解:如图,AB为所作.18.(1)计算:﹣5﹣(﹣+)÷(﹣);(2)计算:(﹣)×÷()3﹣;(3)化简:﹣2(ab﹣3a2)+(5ab﹣a2);(4)解方程:﹣=1【分析】(1)根据运算顺序,先算乘方再算乘除最后算加减,有括号的先算括号里面的,即可得到答案,(2)根据运算顺序,先算乘方再算乘除最后算加减,有括号的先算括号里面的,即可得到答案,(3)原式去括号,合并同类项,得到最简结果即可,(4)依次去分母,去括号,移项,合并同类项,系数化为1,即可得到答案.【解答】解:(1)原式=﹣5+÷(﹣)=﹣5﹣1=﹣6,(2)原式=﹣×﹣=﹣﹣=﹣1,(3)原式=﹣2ab+6a2+5ab﹣a2=5a2+3ab,(4)去分母得:3(x﹣7)﹣4(5x+8)=12,去括号得:3x﹣21﹣20x﹣32=12,移项得:3x﹣20x=12+32+21,合并同类项得:﹣17x=65,系数化为1得:x=﹣.19.如图,∠AOB和∠COD都是直角,射线OE是∠AOD的平分线.(1)比较∠AOC和∠BOD的大小,并说明理由;(2)当∠BOC=130°时,求∠DOE的度数.【分析】(1)根据垂直的定义和等式的性质即可得到结论;(2)根据周角的定义和角平分线的定义即可得到结论.【解答】解:(1)∠AOC=∠BOD,理由:∵∠AOB和∠COD都是直角,∴∠AOB=∠COD=90°,∴∠AOB+∠AOD=∠COD+∠AOD,即∠AOC=∠BOD;(2)∵∠BOC=130°,∠AOB=∠COD=90°,∴∠AOD=360°﹣∠BOC﹣∠AOB﹣∠COD,=360°﹣130°﹣90°﹣90°=50°;∵射线OE是∠AOD的角平分线,∴∠DOE=×50°=25°.20.如图,线段AB=1,点A1是线段AB的中点,点A2是线段A1B的中点,点A3是线段A2B的中点…以此类推,点A n是线段A n﹣1B的中点.(1)线段A5B的长为 ;(2)线段A n B的长为 ;(3)求AA1+A1A2+A2A3+…+A7A8的值.【分析】(1)根据线段的中点的定义计算即可.(2)探究规律,利用规律即可解决问题.(3)根据AA1+A1A2+A2A3+…+A7A8=AB﹣BA8计算即可.【解答】解:(1)由题意:BA1=,BA2=,BA3=,…BA5==.故答案为,(2)由(1)可知BA n=.故答案为(3)AA1+A1A2+A2A3+…+A7A8=AB﹣BA8=1﹣=.21.如图①是一张长为20cm,宽为12cm的长方形硬纸板,把它的四个角都剪去一个边长为xcm的小正方形,然后把它折成一个无盖的长方体盒子(如图②),请回答下列问题(1)折成的无盖长方体盒子的容积V= x(20﹣2x)(12﹣2x); cm3;(用含x的代数式表示即可,不需化简)(2)请完成下表,并根据表格回答,当x取什么正整数时,长方体盒子的容积最大?x/cm12345V/cm3180 256 252192 100 (3)从正面看折成的长方体盒子,它的形状可能是正方形吗?如果是正方形,求出的值;如果不是正方形,请说明理由.【分析】(1)表示出长方体的长、宽、高后即可写出其体积;(2)根据x的值求得体积即可;(3)列出方程求得x的值后即可确定能否是正方形.【解答】解:(1)∵它的四个角都剪去一个边长为xcm的小正方形,然后把它折成一个无盖的长方体盒子,∴长为20﹣2x,宽为12﹣2x,高为x,∴V=x(20﹣2x)(12﹣2x);故答案为:x(20﹣2x)(12﹣2x);(2)表中填:当x=2时,V=2(20﹣4)(12﹣4)=256;当x=5时,V=5(20﹣10)(12﹣10)=100;故答案为:256;100;当x取2时,长方体盒子的容积最大;(3)当从正面看长方体,形状是正方形时,x=20﹣2x解得x=当x=时,12﹣2x=﹣<0.所以,不可能是正方形.22.某校对七年级300名学生进行了教学质量监测(满分100分),现从中随机抽取部分学生的成绩进行整理,并绘制成如图不完整的统计表和统计图:等级频数频率(频率=频数÷总数)不及格10.05及格20.10良好 9 0.45优秀8 0.40 注:60分以下为“不及格”,60~69分为“及格”,70~79分为“良好”,80分及以上为“优秀”请根据以上信息回答下列问题:(1)补全统计表和统计图;(2)若用扇形统计图表示统计结果,则“良好”所对应扇形的圆心角为多少度?(3)请估计该校七年级本次监测成绩为70分及以上的学生共有多少人?【分析】(1)首先根据不合格的人数及频数求得总人数,然后减去其他各组的频数即可求得良好组的频数,用频数除以总人数即可求得频率;(2)用良好的频率乘以360°即可求得其表示的扇形的圆心角的度数;(3)用总人数乘以70分以上的频率即可求得人数.【解答】解:(1)解:因为不及格的频数为1,频率为0.05,所以总人数为1÷0.05=20人,所以良好的频数为20﹣1﹣2﹣8=9,优秀的频率为8÷20=0.40,故答案为:9,0.40;统计图补全为:(2)0.45×360°=162°答:“良好”所对应扇形的圆心角为162°;(3)300×(0.45+0.40)=255,答:估计该校本次监测成绩70分及以上的学生总共约有255人.23.元旦期间,某商场用1400元购进了甲、乙两种商品,共100件,进价分别是18元、10元.(1)求甲、乙两种商品各购进了多少件?(2)商场搞促销活动,若同时购买甲、乙两种商品各1件,可享受标价的8折优惠,此时这两种商品的利润率是10%,求这两种商品的标价总共多少元?【分析】(1)设甲购进了x件,则乙购进了(100﹣x)件,根据购进的总钱数列出关于x的方程,解之可得;(2)设两种商品的标价总共y元.由8折销售时这两种商品的利润率是10%列出方程,解之可得.【解答】解:(1)设甲购进了x件,则乙购进了(100﹣x)件,由题意,得:18x+10(100﹣x)=1400,解得:x=50,100﹣x=50,答:甲、乙两种商品各购进了50件;(2)设两种商品的标价总共y元.由题意,得:(18+10)×(1+10%)=0.8y,解得:y=38.5,答:两种商品的标价总共38.5元.24.【问题】若a+b=10,则ab的最大值是多少?【探究】探究一:当a﹣b=0时,求ab值.显然此时,a=b=5,则ab=5×5=25探究二:当a﹣b=±1时,求ab值.①a﹣b=1,则a=b+1,由已知得b+1+b=10解得b=,a=b+l=+1=则ab==②a﹣b=﹣1,即b﹣a=1,由①可得,b=,a=则ab==.探究三:当a﹣b=±2时,求ab值(仿照上述方法,写出探究过程).探究四:完成下表:a﹣b…﹣3﹣2﹣10123…ab… 24 25 24 …【结论】若a+b=10,则ab的最大值是 25 (观察上面表格,直接写出结果).【拓展】若a+b=m,则ab的最大值是 .【应用】用一根长为12m的铁丝围成一个长方形,这个长方形面积的最大值是 9 m2.【分析】探究三:由a﹣b=2或a﹣b=﹣2,表示出a,代入a+b=10求出各自的值,进而求出ab的值;探究四:按照探究三的方法计算,填写表格即可;结论:由表格找出ab的最大值即可;拓展:依此类推得到所求即可;应用:利用得到的结论计算即可.【解答】解:探究三:当a﹣b=±2时,①a﹣b=2,则a=b+2,由已知得:b+2+b=10,解得:b=4,∴a=b+2=6,则ab=24;②a﹣b=﹣2,即b﹣a=2,由①可得:b=6,a=4,则ab=24;探究四:a﹣b…﹣3﹣2﹣10123…ab…242524…【结论】若a+b=10,则ab的最大值是25;【拓展】若a+b=m,则ab的最大值是;【应用】用一根长为12m的铁丝围成一个长方形,这个长方形面积的最大值是9m2.故答案为:;24;24;;25;;9。
(图6) 七年级数学期末考试试题(卷)一、选择题:本大题共10小题,每小题3分,共30分.一、选择题(每小题3分,满分30分)1. 9的算术平方根是( )A 、±3B 、3C 、﹣3D 、 2、在平面直角坐标系中,点(1,﹣3)在( )A 、第一象限B 、第二象限C 、第三象限D 、第四象限 3、以下问题,不适合用全面调查的是( )A 、了解全班同学每周体育锻炼的时间B 、旅客上飞机前进行的安检C 、学校招聘教师,对应聘人员面试D 、了解全市中小学生每天的零花钱 4、实数0,﹣π,,0.1010010001…(相邻两个1之间依次多一个0),227,5-,其中无理数有( )A 、 1个 B 、2个 C 、3个 D 、 4个 5、在“同一平面”条件下,下列说法中错误的个数是( )(1)过一点有且只有一条直线与已知直线平行;(2)过一点有且只有一条直线与已知直线垂直; (3)平移只改变图形的位置,不改变图形的形状和大小;(4)有公共顶点且有一条公共边的两个角互为邻补角. A 、 1个 B 、2个 C 、3个 D 、 4个 6. 如图(1),下列不能判定AB ∥CD 的条件是( ).A 、︒=∠+∠180BCDB B 、21∠=∠;C 、43∠=∠;D 、 5∠=∠B7.如果a <b ,那么下列不等式成立的是( )A .-3a >-3bB .a -3>b -3 C1133a b > D .a -b >0 8.某校七年级在“数学小论文”评比活动中,共征集到论文30篇,并对其进行评比、整理,分成组画出频数分布直方图(图2),从左到右各小长方形的高度比为2:4:3:1,则第2组的频数为( )A .12B . 10C .9D .69.若关于x 的不等式组21x x -⎧⎨⎩>4x +7>a无解,则实数a 的取值范围是( )A .a <-4B . a=-4C . a >-4D .a ≥-410.如图(3),宽为50 cm 的矩形图案由10个全等的小长方形拼成,其中一个小长方形的面积为( )A .400 cm 2B .500 cm 2C .600 cm 2D .4000 cm 2二、填空题(每小题3分,满分24分)11. 将方程2x+y=25写成用含x 的式子表示y 的形式,则y= 12. 写出一个大于2且小于4的无理数13.如果一组数据的最大值为61,最小值为48,且以2为组距, 则应分 组。
七年级第一学期期末考试数 学 试 卷注意事项: 本试卷共八个大题,满分100分,考试时间为90分钟.第一部分 试试你的基本功一、精心选一选(每小题3分,共30分)1.-21的相反数是()A .2B .-2C .21D .-21 2.下列式子正确的是( )A .-0.1>-0.01B .—1>0C .21<31D .-5<3 3. 沿图1中虚线旋转一周,能围成的几何体是下面几何体中的 ( )A B C D 图1 4.多项式12++xy xy 是( )A .二次二项式B .二次三项式C .三次二项式D .三次三项式5.桌上放着一个茶壶,4个同学从各自的方向观察,请指出图3右边的四幅图,从左至右分别是由哪个同学看到的( )A .①②③④B .①③②④C .②④①③D .④③①②6.数a ,b 在数轴上的位置如图2所示,则b a +是( )A .正数B .零C .负数D .都有可能7. 每天供给地球光和热的太阳与我们的距离非常遥远,它距地球的距离约为15000000千米,将150000000千米用科学记数法表示为( )A .0.15×910千米 B .1.5×810千米 C .15×710千米 D .1.5×710千米8.图5是某市一天的温度变化曲线图,通过该图可知,下列说法错误的是( ) A .这天15点时的温度最高 B .这天3点时的温度最低C .这天最高温度与最低温度的差是13℃D .这天21点时的温度是30℃9.一个正方体的侧面展开图如图4所示,用它围成的正方体只可能是( )/时图5图3O O O ABCD图210.已知4个矿泉水空瓶可以换矿泉水一瓶,现有16个矿泉水空瓶,若不交钱,最多可以喝矿泉水( )A .3瓶B .4瓶C .5瓶D .6瓶二、细心填一填(每空3分,共15分)11.52xy -的系数是 。
12.某公园的成人单价是10元,儿童单价是4元。
2018-2019学年度第一学期期末教学质量检测七年级数学试卷一、选择题(每题3分,共36分)1.(3分)﹣的相反数是( )A.B.﹣C.2D.﹣22.(3分)据统计,2017年双十一当天,天猫成交额1682亿,1682亿用科学记数法可表示为( )A.16.82×1010B.0.1682×1012C.1.682×1011D.1.682×10123.(3分)如图,把下列图形折成一个正方体的盒子,折好后与“礼”相对的字是( )A.雅B.教C.集D.团4.(3分)已知a x b2与ab y的和是a x b y,则(x﹣y)y等于( )A.2B.1C.﹣2D.﹣15.(3分)下列各式正确的是( )A.19a2b﹣9ab2=10a2b B.3x+3y=6xyC.16y2﹣7y2=9D.2x﹣5x=﹣3x6.(3分)某同学用剪刀沿直线将一片平整的银杏叶剪掉一部分(如图),发现剩下的银杏叶的周长比原银杏叶的周长要小,能正确解释这一现象的数学知识是( )A.两点之间线段最短B.两点确定一条直线C.垂线段最短D.经过直线外一点,有且只有一条直线与这条直线平行7.(3分)如图,C是AB的中点,D是BC的中点,下列等式不正确的是( )A.CD=AD﹣BC B.CD=AC﹣DB C.CD=AB D.CD=AB﹣DB8.(3分)下列解方程步骤正确的是( )A.由2x+4=3x+1,得2x﹣3x=1+4B.由7(x﹣1)=3(x+3),得7x﹣1=3x+3C.由0.2x﹣0.3=2﹣1.3x,得2x﹣3=2﹣13xD.由,得2x﹣2﹣x﹣2=129.(3分)如图,AB∥CD,直线EF分别与直线AB,CD相交于点G,H,已知∠3=50°,GM平分∠HGB交直线CD于点M,则∠1等于( )A.60°B.80°C.50°D.130°10.(3分)在雅礼社团年会上,各个社团大放光彩,其中话剧社52人,舞蹈社38人要外出表演,现根据演出需要,从舞蹈社中抽调了部分同学参加话剧社,使话剧社的人数恰好是舞蹈社的人数的3倍.设从舞蹈队中抽调了x人参加话剧社,可得正确的方程是( )A.3(52﹣x)=38+x B.52+x=3(38﹣x)C.52﹣3x=38+x D.52﹣x=3(38﹣x)11.(3分)如图,在△ABC中,∠A=90°,点D在AC边上,DE∥BC,若∠1=155°,则∠B的度数为( )A.45°B.55°C.65°D.75°12.(3分)如图,都是由边长为1的正方体叠成的立体图形,例如第(1)个图形由1个正方体叠成,第(2)个图形由4个正方体叠成,第(3)个图形由10个正方体叠成,依次规律,第(7)个图形由( )个正方形叠成.A.86B.87C.85D.84二、填空题(每题3分,共18分)13.(3分)一个角的补角比这个角的余角的2倍大18°,则这个角的度数为 .14.(3分)若a的相反数是﹣3,b的绝对值是4,且|b|=﹣b,则a﹣b= .15.(3分)已知代数式x﹣3y﹣1的值为3,则代数式5+6y﹣2x的值为 .16.(3分)如果线段AB=5cm,BC=4cm,且A、B、C三点在同一条直线上,则AC= .17.(3分)如图,直线a∥b,直角三角形ABC的直角顶点C在直线b上,∠1=20°,∠2=2∠A,则∠A= .18.(3分)按照下列程序计算输出值为2018时,输入的x值为 .三、解答题(本大题有8个小题,共66分)19.(8分)计算:(1)(﹣+﹣)×(﹣12)(2)﹣|﹣5|×(﹣12)﹣4÷(﹣)2.20.(8分)解方程:(1)2x+3=12﹣3(x﹣3)(2)21.(6分)先化简,再求值,x2﹣3(2x2﹣4y)+2(x2﹣y),其中|x+2|+(5y﹣1)2=022.(8分)如图,在△ABC中,GD⊥AC于点D,∠AFE=∠ABC,∠1+∠2=180°,∠AEF=65°,求∠1的度数.解:∠AFE=∠ABC(已知)∴ (同位角相等,两直线平行)∴∠1=∠ (两直线平行,内错角相等)∠1+∠2=180°(已知)∴ (等量代换)∴EB∥DG ∴∠GDE=∠BEA GD⊥AC(已知)∴ (垂直的定义)∴∠BEA=90°(等量代换)∠AEF=65°(已知)∴∠1=∠ ﹣∠ =90°﹣65°=25°(等式的性质)23.(8分)如图:∠BCA=64°,CE平分∠ACB,CD平分∠ECB,DF∥BC交CE于点F,求∠CDF和∠DCF的度数.24.(8分)中雅七年级(1)班想买一些运动器材供班上同学阳光体育课件使用,班主任安排班长去商店买篮球和排球,下面是班长与售货员的对话:班长:阿姨,您好!售货员:同学,你好,想买点什么?(1)根据这段对话,你能算出篮球和排球的单价各是多少吗?(2)六一儿童节店里搞活动有两种套餐,1、套装打折:五个篮球和五个排球为一套装,套装打八折:2、满减活动:999减100,1999减200;两种活动不重复参与,学校打算买15个篮球,13个排球作为奖品,请问如何安排更划算?25.(10分)“幸福是奋斗出来的”,在数轴上,若C到A的距离刚好是3,则C点叫做A 的“幸福点”,若C到A、B的距离之和为6,则C叫做A、B的“幸福中心”(1)如图1,点A表示的数为﹣1,则A的幸福点C所表示的数应该是 ;(2)如图2,M、N为数轴上两点,点M所表示的数为4,点N所表示的数为﹣2,点C 就是M、N的幸福中心,则C所表示的数可以是 (填一个即可);(3)如图3,A、B、P为数轴上三点,点A所表示的数为﹣1,点B所表示的数为4,点P所表示的数为8,现有一只电子蚂蚁从点P出发,以2个单位每秒的速度向左运动,当经过多少秒时,电子蚂蚁是A和B的幸福中心?26.(10分)已知AM∥CN,点B为平面内一点,AB⊥BC于B(1)如图1,直接写出∠A和∠C之间的数量关系;(3)如图2,过点B作BD⊥AM于点D,求证:∠ABD=∠C;(3)如图3,在(2)问的条件下,点E、F在DM上,连接BE、BF、CF,BF平分∠DBC,BE平分∠ABD,若∠FCB+∠NCF=180°,∠ABF=2∠ABE,求∠EBC的度数.参考答案与试题解析一、选择题(每题3分,共36分)1.(3分)﹣的相反数是( )A.B.﹣C.2D.﹣2【分析】根据相反数的定义:只有符号不同的两个数叫相反数即可求解.【解答】解:根据概念得:﹣的相反数是.故选:A.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.不要把相反数的意义与倒数的意义混淆.2.(3分)据统计,2017年双十一当天,天猫成交额1682亿,1682亿用科学记数法可表示为( )A.16.82×1010B.0.1682×1012C.1.682×1011D.1.682×1012【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.【解答】解:1682亿=1.682×1011.故选:C.【点评】此题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.3.(3分)如图,把下列图形折成一个正方体的盒子,折好后与“礼”相对的字是( )A.雅B.教C.集D.团【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解答】解:这是一个正方体的平面展开图,共有六个面,其中面“礼”与面“集”相对,面“雅”与面“教”相对,面“育”与面“团”相对.故选:C.【点评】本题考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.4.(3分)已知a x b2与ab y的和是a x b y,则(x﹣y)y等于( )A.2B.1C.﹣2D.﹣1【分析】根据同类项的定义即可求出答案.【解答】解:由题意可知:a x b2与ab y是同类项,∴x=1,y=2,∴原式=(﹣1)2=1,故选:B.【点评】本题考查同类项的概念,解题的关键是熟练运用同类型的概念,本题属于基础题型.5.(3分)下列各式正确的是( )A.19a2b﹣9ab2=10a2b B.3x+3y=6xyC.16y2﹣7y2=9D.2x﹣5x=﹣3x【分析】根据合并同类项的法则进行计算即可.【解答】解:A、19a2b﹣9ab2,不能合并,故错误;B、3x+3y,不能合并,故错误;C、16y2﹣7y2=9y2,故错误;D、2x﹣5x=﹣3x,故正确;故选:D.【点评】本题考查了合并同类项,掌握合并同类项的法则是解题的关键.6.(3分)某同学用剪刀沿直线将一片平整的银杏叶剪掉一部分(如图),发现剩下的银杏叶的周长比原银杏叶的周长要小,能正确解释这一现象的数学知识是( )A.两点之间线段最短B.两点确定一条直线C.垂线段最短D.经过直线外一点,有且只有一条直线与这条直线平行【分析】根据两点之间,线段最短进行解答.【解答】解:某同学用剪刀沿直线将一片平整的银杏叶剪掉一部分(如图),发现剩下的银杏叶的周长比原银杏叶的周长要小,能正确解释这一现象的数学知识是两点之间线段最短.故选:A.【点评】此题主要考查了线段的性质,关键是掌握两点之间,线段最短.7.(3分)如图,C是AB的中点,D是BC的中点,下列等式不正确的是( )A.CD=AD﹣BC B.CD=AC﹣DB C.CD=AB D.CD=AB﹣DB【分析】根据线段中点的定义可判断.【解答】解:∵C是AB的中点,D是BC的中点∴AC=BC=AB,CD=BD=BC∵CD=AD﹣AC∴CD=AD﹣BC故A正确∵CD=BC﹣DB∴CD=AC﹣DB故B正确∵AC=BC=AB,CD=BD=BC∴CD=AB故C错误∵CD=BC﹣DB∴CD=AB﹣DB故D正确故选:C.【点评】本题考查了两点之间的距离,熟练掌握线段中点的定义是本题的关键.8.(3分)下列解方程步骤正确的是( )A.由2x+4=3x+1,得2x﹣3x=1+4B.由7(x﹣1)=3(x+3),得7x﹣1=3x+3C.由0.2x﹣0.3=2﹣1.3x,得2x﹣3=2﹣13xD.由,得2x﹣2﹣x﹣2=12【分析】根据解一元一次方程的基本步骤逐一判断即可得.【解答】解:A、由2x+4=3x+1,得2x﹣3x=1﹣4,此选项错误;B、由7(x﹣1)=3(x+3),得7x﹣7=3x+9,此选项错误;C、由0.2x﹣0.3=2﹣1.3x,得2x﹣3=20﹣13x,此选项错误;D、由,得2x﹣2﹣x﹣2=12,此选项正确;故选:D.【点评】本题主要考查解一元一次方程,解题的关键是掌握解一元一次方程的基本步骤.9.(3分)如图,AB∥CD,直线EF分别与直线AB,CD相交于点G,H,已知∠3=50°,GM平分∠HGB交直线CD于点M,则∠1等于( )A.60°B.80°C.50°D.130°【分析】根据平行线的性质与∠3=50°,求得∠BGM=50°,由GM平分∠HGB交直线CD 于点M,得出∠BGF的度数,再根据邻补角的性质求得∠1的度数.【解答】解:∵AB∥CD,∴∠BGM=∠3=50°,∵GM平分∠HGB,∴∠BGF=100°,∴∠1=180°﹣100°=80°.故选:B.【点评】本题主要考查了平行线的性质,两直线平行,内错角相等;以及角平分线的定义.10.(3分)在雅礼社团年会上,各个社团大放光彩,其中话剧社52人,舞蹈社38人要外出表演,现根据演出需要,从舞蹈社中抽调了部分同学参加话剧社,使话剧社的人数恰好是舞蹈社的人数的3倍.设从舞蹈队中抽调了x人参加话剧社,可得正确的方程是( )A.3(52﹣x)=38+x B.52+x=3(38﹣x)C.52﹣3x=38+x D.52﹣x=3(38﹣x)【分析】设从舞蹈队中抽调了x人参加话剧社,由抽调后话剧社的人数恰好是舞蹈社的人数的3倍,即可得出关于x的一元一次方程,此题得解.【解答】解:设从舞蹈队中抽调了x人参加话剧社,根据题意得:52+x=3(38﹣x).故选:B.【点评】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.11.(3分)如图,在△ABC中,∠A=90°,点D在AC边上,DE∥BC,若∠1=155°,则∠B的度数为( )A.45°B.55°C.65°D.75°【分析】先根据补角的定义求出∠CDE的度数,再由平行线的性质求出∠C的度数,根据余角的定义即可得出结论.【解答】解:∵∠1=155°,∴∠CDE=180°﹣155°=25°.∵DE∥BC,∴∠C=∠CDE=25°.∵∠A=90°,∴∠B=90°﹣25°=65°.故选:C.【点评】本题考查的是平行线的性质,用到的知识点为:两直线平行,内错角相等.12.(3分)如图,都是由边长为1的正方体叠成的立体图形,例如第(1)个图形由1个正方体叠成,第(2)个图形由4个正方体叠成,第(3)个图形由10个正方体叠成,依次规律,第(7)个图形由( )个正方形叠成.A.86B.87C.85D.84【分析】根据图形的变换规律,可知第n个图形中的正方体的个数为1+3+6+…+,据此可得第(7)个图形中正方体的个数.【解答】解:由图可得:第(1)个图形中正方体的个数为1;第(2)个图形中正方体的个数为4=1+3;第(3)个图形中正方体的个数为10=1+3+6;第(4)个图形中正方体的个数为20=1+3+6+10;故第n个图形中的正方体的个数为1+3+6+…+,第(7)个图形中正方体的个数为1+3+6+10+15+21+28=84.故选:D.【点评】本题主要考查了图形变化类问题以及正方体,解决问题的关键是依据图形得到变换规律.解题时注意:第n个图形中的正方体的个数为1+3+6+…+.二、填空题(每题3分,共18分)13.(3分)一个角的补角比这个角的余角的2倍大18°,则这个角的度数为 18° .【分析】设这个角的度数为x,根据余角和补角的定义、结合题意列出方程,解方程即可.【解答】解:设这个角的度数为x,由题意得,180°﹣x=2(90°﹣x)+18°,解得,x=18°,故答案为:18°.【点评】本题考查的是余角和补角,如果两个角的和等于90°,就说这两个角互为余角;如果两个角的和等于180°,就说这两个角互为补角.14.(3分)若a的相反数是﹣3,b的绝对值是4,且|b|=﹣b,则a﹣b= 7 .【分析】利用相反数,绝对值的代数意义求出a与b的值,代入原式计算即可求出值.【解答】解:根据题意得:a=3,b=﹣4,则原式=3﹣(﹣4)=3+4=7,故答案为:7【点评】此题考查了有理数的减法,以及相反数,绝对值,熟练掌握各自的性质是解本题的关键.15.(3分)已知代数式x﹣3y﹣1的值为3,则代数式5+6y﹣2x的值为 ﹣3 .【分析】首先求出x﹣3y的值是多少,然后把它代入5+6y﹣2x,求出算式的值为多少即可.【解答】解:∵x﹣3y﹣1=3,∴x﹣3y=4,∴5+6y﹣2x=5﹣2(x﹣3y)=5﹣2×4=5﹣8=﹣3故答案为:﹣3.【点评】此题主要考查了代数式求值问题,要熟练掌握,求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.16.(3分)如果线段AB=5cm,BC=4cm,且A、B、C三点在同一条直线上,则AC= 1cm 或9cm .【分析】分类讨论:C在线段AB上,C在线段AB的延长线上,根据线段的和差,可得答案.【解答】解:当C在线段AB上时,由线段的和差,得AC=AB﹣BC=5﹣4=1(cm);当C在线段AB的延长线上时,由线段的和差,得AC=AB+BC=5+4=9(cm),故答案为:1cm或9cm.【点评】本题考查了两点间的距离,分类讨论是解题关键,以防漏掉.17.(3分)如图,直线a∥b,直角三角形ABC的直角顶点C在直线b上,∠1=20°,∠2=2∠A,则∠A= 35° .【分析】根据平角等于180°列式计算得到∠3,根据两直线平行,同位角相等可得∠3=∠2,进而得到∠A的度数.【解答】解:∵∠1=20°,∠ACB=90°,∴∠3=90°﹣∠1=70°,∵直线a∥b,∴∠2=∠3=70°,又∵∠2=2∠A,∴∠A=35°,故答案是:35°.【点评】本题考查了平行线的性质,平角的定义,熟记性质并准确识图是解题的关键.18.(3分)按照下列程序计算输出值为2018时,输入的x值为 202 .【分析】利用计算程序得到2(5x﹣1)=2018,然后解关于x的方程即可.【解答】解:根据题意得2(5x﹣1)=2018,5x﹣1=1009,所以x=202.故答案为202.【点评】本题考查了有理数混合运算:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.也考查了一元一次方程的应用,三、解答题(本大题有8个小题,共66分)19.(8分)计算:(1)(﹣+﹣)×(﹣12)(2)﹣|﹣5|×(﹣12)﹣4÷(﹣)2.【分析】(1)运用乘法的分配律计算可得;(2)根据有理数的混合运算顺序和法则计算可得.【解答】解:(1)原式=(﹣)×(﹣12)+×(﹣12)+(﹣)×(﹣12)=2﹣9+5=﹣2;(2)原式=﹣5×(﹣1)﹣4×4=5﹣16=﹣11.【点评】本题主要考查有理数的混合运算,解题的关键是熟练掌握有理数的混合运算顺序和法则.20.(8分)解方程:(1)2x+3=12﹣3(x﹣3)(2)【分析】(1)方程去括号,移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)去括号得:2x+3=12﹣3x+9,移项合并得:5x=18,解得:x=3.6;(2)去分母得:9x﹣6=24﹣8x+4,移项合并得:17x=34,解得:x=2.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.21.(6分)先化简,再求值,x2﹣3(2x2﹣4y)+2(x2﹣y),其中|x+2|+(5y﹣1)2=0【分析】原式去括号合并得到最简结果,利用非负数的性质求出x与y的值,代入计算即可求出值.【解答】解:原式=x2﹣6x2+12y+2x2﹣2y=﹣3x2+10y,∵|x+2|+(5y﹣1)2=0,∴x=﹣2,y=,则原式=﹣12+2=﹣10.【点评】此题考查了整式的加减﹣化简求值,以及非负数的性质,熟练掌握运算法则是解本题的关键.22.(8分)如图,在△ABC中,GD⊥AC于点D,∠AFE=∠ABC,∠1+∠2=180°,∠AEF=65°,求∠1的度数.解:∠AFE=∠ABC(已知)∴ EF∥BC (同位角相等,两直线平行)∴∠1=∠ EBC (两直线平行,内错角相等)∠1+∠2=180°(已知)∴ ∠EBC+∠2=180° (等量代换)∴EB∥DG 同旁内角互补,两直线平行 ∴∠GDE=∠BEA 两直线平行,同位角相等 GD⊥AC(已知)∴ ∠GDE=90° (垂直的定义)∴∠BEA=90°(等量代换)∠AEF=65°(已知)∴∠1=∠ BEA ﹣∠ AEF =90°﹣65°=25°(等式的性质)【分析】根据平行线的性质和判定可填空.【解答】解:∠AFE=∠ABC(已知)∴EF∥BC(同位角相等,两直线平行)∴∠1=∠EBC(两直线平行,内错角相等)∠1+∠2=180°(已知)∴∠EBC+∠2=180°(等量代换)∴EB∥DG (同旁内角互补,两直线平行)∴∠GDE=∠BEA (两直线平行,同位角相等)GD⊥AC(已知)∴∠GDE=90°(垂直的定义)∴∠BEA=90°(等量代换)∠AEF=65°(已知)∴∠1=∠BEA﹣∠AEF=90°﹣65°=25°(等式的性质)故答案为:EF∥BC,∠EBC,∠EBC+∠2=180°,同旁内角互补,两直线平行,两直线平行,同位角相等,∠GDE,∠BEA,∠AEF.【点评】本题考查了平行线的判定和性质,灵活运用平行线的性质和判定解决问题是本题的关键.23.(8分)如图:∠BCA=64°,CE平分∠ACB,CD平分∠ECB,DF∥BC交CE于点F,求∠CDF和∠DCF的度数.【分析】根据角平分线的定义可求∠BCF的度数,再根据角平分线的定义可求∠BCD和∠DCF的度数,再根据平行线的性质可求∠CDF的度数.【解答】解:∵∠BCA=64°,CE平分∠ACB,∴∠BCF=32°,∵CD平分∠ECB,∴∠BCD=∠DCF=32°,∵DF∥BC,∴∠CDF=∠BCD=32°.【点评】考查了角平分线的定义,平行线的性质,关键是熟悉两直线平行,内错角相等的知识点.24.(8分)中雅七年级(1)班想买一些运动器材供班上同学阳光体育课件使用,班主任安排班长去商店买篮球和排球,下面是班长与售货员的对话:班长:阿姨,您好!售货员:同学,你好,想买点什么?(1)根据这段对话,你能算出篮球和排球的单价各是多少吗?(2)六一儿童节店里搞活动有两种套餐,1、套装打折:五个篮球和五个排球为一套装,套装打八折:2、满减活动:999减100,1999减200;两种活动不重复参与,学校打算买15个篮球,13个排球作为奖品,请问如何安排更划算?【分析】(1)设篮球的单价为x元/个,排球的单价为y元/个,根据每个排球比每个篮球便宜30元及570元购买3个篮球和5个排球,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)分别求出按套装打折购买及按满减活动购买所需费用,比较后即可得出结论.【解答】解:(1)设篮球的单价为x元/个,排球的单价为y元/个,根据题意得:,解得:.答:篮球的单价为90元/个,排球的单价为60元/个.(2)按套装打折购买需付费用为:10×(90+60)×0.8+5×90+3×60=1830(元),按满减活动购买需付费用为:15×90+13×60﹣200=1930(元).∵1830<1930,∴按套装打折购买更划算.【点评】本题考查了二元一次方程组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)分别求出按套装打折购买及按满减活动购买所需费用.25.(10分)“幸福是奋斗出来的”,在数轴上,若C到A的距离刚好是3,则C点叫做A 的“幸福点”,若C到A、B的距离之和为6,则C叫做A、B的“幸福中心”(1)如图1,点A表示的数为﹣1,则A的幸福点C所表示的数应该是 ﹣4或2 ;(2)如图2,M、N为数轴上两点,点M所表示的数为4,点N所表示的数为﹣2,点C 就是M、N的幸福中心,则C所表示的数可以是 ﹣2或﹣1或0或1或2或3或4 (填一个即可);(3)如图3,A、B、P为数轴上三点,点A所表示的数为﹣1,点B所表示的数为4,点P所表示的数为8,现有一只电子蚂蚁从点P出发,以2个单位每秒的速度向左运动,当经过多少秒时,电子蚂蚁是A和B的幸福中心?【分析】(1)根据幸福点的定义即可求解;(2)根据幸福中心的定义即可求解;(3)分两种情况列式:①P在B的右边;②P在A的左边讨论;可以得出结论.【解答】解:(1)A的幸福点C所表示的数应该是﹣1﹣3=﹣4或﹣1+3=2;(2)4﹣(﹣2)=6,故C所表示的数可以是﹣2或﹣1或0或1或2或3或4;(3)设经过x秒时,电子蚂蚁是A和B的幸福中心,依题意有①8﹣2x﹣4+(8﹣2x+1)=6,解得x=1.75;②4﹣(8﹣2x)+[﹣1﹣(8﹣2x)]=6,解得x=4.75.故当经过1.75秒或4.75秒时,电子蚂蚁是A和B的幸福中心.【点评】本题考查了数轴及数轴上两点的距离、动点问题,熟练掌握动点中三个量的数量关系式:路程=时间×速度,认真理解新定义.26.(10分)已知AM∥CN,点B为平面内一点,AB⊥BC于B(1)如图1,直接写出∠A和∠C之间的数量关系;(2)如图2,过点B作BD⊥AM于点D,求证:∠ABD=∠C;(3)如图3,在(2)问的条件下,点E、F在DM上,连接BE、BF、CF,BF平分∠DBC,BE平分∠ABD,若∠FCB+∠NCF=180°,∠ABF=2∠ABE,求∠EBC的度数.【分析】(1)根据平行线的性质以及直角三角形的性质进行证明即可;(2)先过点B作BG∥DM,根据同角的余角相等,得出∠ABD=∠CBG,再根据平行线的性质,得出∠C=∠CBG,即可得到∠ABD=∠C;(3)先过点B作BG∥DM,根据角平分线的定义,得出∠ABF=∠GBF,再设∠DBE=α,∠ABF=β,根据∠CBF+∠BFC+∠BCF=180°,可得(2α+β)+3α+(3α+β)=180°,根据AB ⊥BC,可得β+β+2α=90°,最后解方程组即可得到∠ABE=15°,进而得出∠EBC=∠ABE+∠ABC=15°+90°=105°.【解答】解:(1)如图1,∵AM∥CN,∴∠C=∠AOB,∵AB⊥BC,∴∠A+∠AOB=90°,∴∠A+∠C=90°;(2)如图2,过点B作BG∥DM,∵BD⊥AM,∴DB⊥BG,即∠ABD+∠ABG=90°,又∵AB⊥BC,∴∠CBG+∠ABG=90°,∴∠ABD=∠CBG,∵AM∥CN,BG∥AM,∴CN∥BG,∴∠C=∠CBG,∴∠ABD=∠C;(3)如图3,过点B作BG∥DM,∵BF平分∠DBC,BE平分∠ABD,∴∠DBF=∠CBF,∠DBE=∠ABE,由(2)可得∠ABD=∠CBG,∴∠ABF=∠GBF,设∠DBE=α,∠ABF=β,则∠ABE=α,∠ABD=2α=∠CBG,∠GBF=β=∠AFB,∠BFC=3∠DBE=3α,∴∠AFC=3α+β,∵∠AFC+∠NCF=180°,∠FCB+∠NCF=180°,∴∠FCB=∠AFC=3α+β,△BCF中,由∠CBF+∠BFC+∠BCF=180°,可得(2α+β)+3α+(3α+β)=180°,①由AB⊥BC,可得β+β+2α=90°,②由①②联立方程组,解得α=15°,∴∠ABE=15°,∴∠EBC=∠ABE+∠ABC=15°+90°=105°.【点评】本题主要考查了平行线的性质的运用,解决问题的关键是作平行线构造内错角,运用等角的余角(补角)相等进行推导.余角和补角计算的应用,常常与等式的性质、等量代换相关联.解题时注意方程思想的运用.。
2018—2019学年第一学期期末质量监测考试卷七年级数学题号 一 二 三19-21 A 卷 小计 B 卷22-26 总分 得分A 卷(100分)一、选择题(每小题4分,共40分)下列各题均有四个答案,其中只有一个是正确的,请将正确的答案的代号填入题后的括号内。
1.下列合并同类项正确的是( ).A . 2a +3b =5abB . 2ab -2ba =0C .xy xyy x -=-2232 D .422734x xx =+2.海南的富铁矿是国内少有富铁矿之一,储量居全国第6位,其储量约为237 000 000吨,用科学记数法表示应为( )A . 237×106吨B . 2.37×107吨C . 2.37×108吨D . 0.237×108吨 3.如果a 与1互为相反数,则|a|等于( )A. 2 B . -2 C . 1 D . -1 4.近似数4.73和( )最接近.A . 4.69B . 4.699C . 4.728D . 4.731 5.若a+b=0,则a 和b 的关系为( )A .相等B .互为倒数C .互为相反数D .都为0 6.由四舍五入得到的近似数82.35万,精确到( ) A . 十分位 B . 百分 C . 百位 D . 十位 7.图中的三视图所对应的几何体是( )A. B.C. D. 第7题图21·世纪*教育网8.下列各组图形中都是平面图形的是( )A . 三角形、圆、球、圆锥B . 点、线段、棱锥、棱柱C . 角、三角形、正方形、圆D . 点、角、线段、长方体 9.将一块直角三角板ABC 按如图方式放置,其中∠ABC=30°,A 、B 两点分别落在直线m 、n 上,∠1=20°,添加下列哪一个条件可使直线m ∥n ( ) A . ∠2=20° B . ∠2=30° C . ∠2=45° D . ∠2=50°10.如图(1)是一个水平摆放的小正方体木块,图(2),(3)是由这样的小正方体木块叠放而成,按照这样的规律继续叠放下去,至第七个叠放的图形中,小正方体木块总数应是( )个. A . 91 B . 66 C . 25 D . 120二、填空题(每小题4分,共32分)11.若2212x x --=,则代数式224x x -的值为__________. 12.多项式12423223-+-+y xy y x y x 是_____次_____项式.13.小倩将“细心、规范、勤思”写在一个正方体的六个面上,其表面展开图如密封线∙学校: 姓名: 考场: 准考证号:图所示,那么在该正方体中,和“细”相对的字是________.14.当31=a ,b=﹣6时,代数式ab ba -的值是_____.15. 2)2(4387473-⨯-÷--=16.如图,已知A 、B 、C 三点在同一直线上,AB=24cm ,AB BC 83=,E 是AC 的中点,D 是AB 的中点,则DE 的长 .17.先化简后求值,当23,4-==y x 时=-+--)31(6)2(52y x y x x18.若关于a,b的多项式中不含有项,则_____.三、解答题(本大题共3个小题,共28分)19.(8分)计算:(1)21)41()61(32----+- (2)32232692)32()3(-÷+÷--20.(10分)如图,AB//CD ,∠CDE=119°,点E 、G 在AB 上,GF 交∠DEB 的平分线EF 于点F ,∠AGF=130°,求∠F 的度数.21.(10分)如图,已知AM//BN ,∠A=600.点P 是射线AM 上一动点(与点A 不重合),BC 、BD 分别平分∠ABP 和∠PBN ,分别交射线AM 于点C ,D.(1)①∠ABN 的度数是 ;②∵AM //BN ,∴∠ACB=∠ ; (2)求∠CBD 的度数;(3)当点P 运动时,∠APB 与∠ADB 之间的数量关系是否随之发生变化?若不变化,请写出它们之间的关系,并说明理由;若变化,请写出变化规律.B 卷(50分)四、解答题(本大题共5个小题,共50分)22.(10分)计算:(1)422)2(41)52(3-⨯----+-; (2))2()532.01(3-⨯÷----23(10分).高新一中新图书馆在“校园书香四溢”活动中迎来了借书高潮,上周借书记录如下表:(超过100册的部分记为正,少于100册的部分记为负) 星期一星期二 星期三星期四 星期五(1)上星期借书最多的一天比借书最少的一天多借出图书多少册?(2)上星期平均每天借出多少册书?24.(10分)如图,已知O 为直线AB 上一点,过点O 向直线AB 上方引三条射线OC 、OD 、OE ,且OC 平分∠AOD ,∠2=3∠1. (1)若∠1=18°,求∠COE 的度数;(2)若∠COE =70°,求∠2的度数.25.(10分)一辆载重汽车的车厢容积为4m ×2m ×0.5m ,额定载重量为4t .问. (1)如果车厢装满泥沙(泥沙的体积等于车厢容积)是否超载?(已知泥沙的密度为 33/102m kg ⨯)(2)为了行车安全,汽车不能超载,如果不超载,此车最多能装多少立方米的泥沙?26.(10分)如图,数轴上A 、B 两点对应的有理数分别为20和30,点P 和点Q 分别同时从点A 和点O 出发,以每秒2个单位长度,每秒4个单位长度的速度向数轴正方向运动,设运动时间为t 秒. (1)当t=2时,则P 、Q 两点对应的有理数分别是 ;PQ=________;(2)点C 是数轴上点B 左侧一点,其对应的数是x ,且CB=2CA ,求x 的值;(3)在点P 和点Q 出发的同时,点R 以每秒8个单位长度的速度从点B 出发,开始向左运动,遇到点Q 后立即返回向右运动,遇到点P 后立即返回向左运动,与点Q 相遇后再立即返回,如此往返,直到P 、Q 两点相遇时,点R 停止运动,求点R 运动的路程一共是多少个单位长度?点R 停止的位置所对应的数是多少?2018—2019学年第一学期期末质量监测考试卷七年级数学参考答案A 卷(100分)一、选择题(每小题4分,共40分)1、B2、C 3C 4.D 5.C 6.C 7.B 8.C 9.D 10.A二、填空题(每小题4分,共32分)11、6 12、四 五 13、规 14、619- 15、-2 16、DE=4.5cm17、 105 18、-6三、解答题(28分)19、(8分)(1)1213-;(2)4127 20.(10分)9.5°.∵AB ∥CD ,∠CDE=119°,∴∠AED=180°-119°=61°,∠DEB=119°. ∵GF 交∠DEB 的平分线EF 于点F , ∴∠DEF=119°÷2=59.5°, ∴∠GEF=61°+59.5°=120.5°. ∵∠AGF=130°,∴∠F=∠AGF-∠GEF=130°-120.5°=9.5°.21.(10分)解:(1)120°;∠CBN ………………(3分)(2)∵AM ∥BN ,∴∠ABN+∠A=180°,∴∠ABN=180°-60°=120°,∴∠ABP+∠PBN=120°,∵BC 平分∠ABP ,BD 平分∠PBN , ∴∠ABP=2∠CBP ,∠PBN=2∠DBP , ∴2∠CBP+2∠DBP=120°,∴∠CBD=∠CBP+∠DBP=60°;………………(6分) (3)不变,∠APB :∠ADB=2:1. ∵AM ∥BN ,∴∠APB=∠PBN ,∠ADB=∠DBN , ∵BD 平分∠PBN , ∴∠PBN=2∠DBN ,∴∠APB :∠ADB=2:1;………………(10分)B 卷(50分)四、解答题(50分)22、 (1)36;……(5分)(2)317-.……(5分) 23.(10分)(1)30册;……(5分) (2)103册 ……(5分) 24.(10分). (1)72°.……(5分)解:∵∠2=3∠1 ∴∠2=3×18°=54°∵OC 平分∠AOD ∴∠3=(180°-∠1-∠2)÷2=54° ∠COE=∠1+∠3=18°+54°=72° (2)60°.……(5分)解:设∠1=x ,则∠2=3∠1=3x ,∵∠COE=∠1+∠3=70° ∴∠3=(70-x ) ∵OC 平分∠AOD ,∴∠4=∠3=(70-x )∵∠1+∠2+∠3+∠4=180° ∴x+3x+(70-x )+(70-x )=180° x=20 ∴∠2=3x=60°25.(10分)(1)解:4×2×0.5×2×103=8×103(kg )=8t ∴ 车厢装满泥沙超载……(5分)(2)解:汽车不超载,所装泥沙的质量最大为4t ,即4t =4×103kg 。
2018—2019学年第一学期期末测试七年级数学试题温馨提示:1.本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页。
满分为120分。
考试用时100分钟。
考试结束后,只上交答题卡。
2.答卷前,考生务必用0.5毫米黑色签字笔将自己的学校、班级、姓名、准考证号、考场、座号填写在答题卡规定的位置上,并用2B 铅笔填涂相应位置。
3.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。
答案不能答在试题卷上。
24.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试题卷上;不准使用涂改液、胶带纸、修正带。
不按以上要求作答的答案无效。
第Ⅰ卷(选择题)一、选择题:本大题共12小题,共36分,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分. 1.下列算式:(1)(2)--;(2)2- ;(3) 3(2)-;(4)2(2)-.其中运算结果为正数的个数为(A )1 (B )2 (C )3 (D )4【 2.若a 与b 互为相反数,则a-b 等于(A )2a (B )-2a (C ) 0 (D )-2 3.下列变形符合等式基本性质的是(A )如果2a -b =7,那么b =7-2a (B )如果mk =nk ,那么m =n(C )如果-3x =5,那么x =5+3 (D )如果-13a =2,那么a =-64.下列去括号的过程(1)c b a c b a --=--)(; (2)c b a c b a ++=--)(; (3)c b a c b a +-=+-)(; (4)c b a c b a --=+-)(.其中运算结果错误的个数为(A )1 (B )2 (C )3 (D )4【 5.下列说法正确的是(A )1-x 是一次单项式 (B)单项式a 的系数和次数都是1 (C )单项式-π2x 2y 2的次数是6 (D)单项式24102x ⨯的系数是26.下列方程:(1)2x -1=x -7 ,(2)12x =13x -1 ,(3)2(x +5)=-4-x , (4)23x =x -2.其中解为x =-6的方程的个数为 (A )4 (B )3 (C )2 (D )1 7.把方程5.07.01.023.012.0-=--x x 的分母化为整数的方程是 (A )57203102-=--x x (B )5723102-=--x x (C )572312-=--x x (D )5720312-=--x x 8.森林是地球之肺,每年能为人类提供大约28.3亿吨的有机物,28.3亿吨用科学记数法表示为(A ) 28.3×107(B ) 2.83×108(C )0.283×1010(D )2.83×1099.下列现象中,可用基本事实“两点之间,线段最短”来解释的现象是 (A )用两个钉子就可以把木条固定在墙上(B )利用圆规可以比较两条线段的大小关系 (C )把弯曲的公路改直,就能缩短路程(D )植树时,只要定出两棵树的位置,就能确定同一行树所在的直线10.一个两位数,个位数字为a ,十位数字为b ,把这个两位数的个位数字与十位数字 交换,得到一个新的两位数,则新两位数与原两位数的和为 (A )b a 99+(B )ab 2(C )ab ba +(D )b a 1111+ 11.已知表示有理数a 、b 的点在数轴上的位置如图所示:则下列结论正确的是(A )|a|<1<|b| (B )1<a<b (C )1<|a|<b (D ) -b<-a<-1 12.定义符号“*”表示的运算法则为a*b =ab +3a ,若(3*x)+(x*3)=-27,则x = (A )29-(B )29(C )4 (D )-4 第Ⅱ卷(非选择题)二、填空题:本大题共6小题,共24分,只要求填写最后结果,每小题填对得4分. 13.若把45.58°化成以度、分、秒的形式,则结果为.14.若xm-1y 3与2xy n 的和仍是单项式,则(m-n )2018的值等于______ .15. 若031)2(2=++-y x ,则y x -=. 16.某同学在计算10+2x 的值时,误将“+”看成了“﹣”,计算结果为20,那么10+2x 的值应为.17.如图,数轴上相邻刻度之间的距离是51,若BC=52,A 点在数轴上对应的数值是53-,则B 点在数轴上对应的数值是 .218.我们知道,钟表的时针与分针每隔一定的时间就会重合一次,请利用所学知识确定,时针与分针从上一次重合到下一次重合,间隔的时间是______ 小时.三、解答题:本大题共6个小题,满分60分.解答时请写出必要的演推过程.19.(每小题分5分,本小题满分10分)计算: (1)11(0.5)06(7)( 4.75)42-+--+--(2)[(﹣5)2×]×(﹣2)3÷7.20.(每小题分5分,本小题满分10分)先化简,再求值: (1)3x 2-[5x-(6x-4)-2x 2],其中x=3(2)(8mn-3m 2)-5mn-2(3mn-2m 2),其中m=-1,n=2.21.(每小题分5分,本小题满分10分)解方程:(1)6322-41--=x x . (2)3125121103--=+x x . 22.(本小题满分8分)一个角的余角比这个角的补角的 13 还小10°,求这个角的度数.23.(本大题满分10分)列方程解应用题:A 车和B 车分别从甲,乙两地同时出发,沿同一路线相向匀速而行.出发后1.5小时两车相距75公里,之后再行驶2.5小时A 车到达乙地,而B 车还差40公里才能到达甲地.求甲地和乙地相距多少公里?24.(本小题满分12分)如图,∠AOB是直角,ON是∠AOC的平分线,OM是∠BOC的平分线.(1)当∠AOC=40°,求出∠MON的大小,并写出解答过程理由;(2)当∠AOC=50°,求出∠MON的大小,并写出解答过程理由;(3)当锐角∠AOC=α时,求出∠MON的大小,并写出解答过程理由.2017—2018学年第一学期期末测试七年级数学试题参考答案一、选择题(本大题12个小题,每小题3分,共36分)二、填空题(本大题6个小题,每小题4分,共24分)13.45°34'48"; 14.1; 15.37; 16. 0 ; 17.0或54 ; 18.1112 . 三、解答题(本大题6个小题,共60分) 19.(每小题分5分,本小题满分10分)计算:解:(1)11(0.5)06(7)( 4.75)42-+--+-- =130.567.5444-+-+………………………………………………2分=13(0.57.5)(64)44--++………………………………………………4分=3.………………………………………………5分(2)[(﹣5)2×]×(﹣2)3÷7=[25×]×(﹣8)÷7……………………………………1分 =[﹣15+8]×(﹣8)÷7………………………………………………2分 =﹣7×(﹣8)÷7 (3)分=56÷7…………………………………………………………4分=8.…………………………………………………………5分20.(每小题分5分,本小题满分10分)先化简,再求值:解:(1)原式, ………………………3分当时,原式; ………………………5分 (2)原式,………………………3分当时,原式. ………………………5分21.(每小题分5分,本小题满分10分)解方程:解:(1)去分母得:, …………3分移项合并得:; …………5分(2)解:原方程可化为312253--=+x x . …………1分去分母,得)12(2)53(3--=+x x . …………2分去括号,得24159+-=+x x . …………3分移项,得215-49+=+x x . …………4分合并同类项,得1313-=x .系数化为1,得1-=x . …………5分22.(本小题满分8分)解:设这个角的度数为x °, …………1分根据题意,得90-x =13(180-x)-10, …………5分解得x =60. …………7分答:这个角的度数为60°. …………8分23.(本大题满分10分)解:设甲地和乙地相距x 公里,根据题意,列出方程752401.5 1.52.5x x --=+………………………………………5分 解方程,得4300360x x -=-………………………………………7分240x =………………………………………9分答:甲地和乙地相距240公里. ……………………………10分24.(本小题满分12分)解:(1)∠AOC =40°时, ∠MON =∠MOC -∠CON ………………………………………1分=12(∠BOC -∠AOC) ………………………………………3分=12∠AOB ………………………………………5分 =45°. ………………………………………6分 (2)当∠AOC =50°,∠MON =45°.理由同(1).………………………9分 (3)当∠AOC=α时,∠MON =45°. 理由同(1).………………………12分注意:评分标准仅做参考,只要学生作答正确,均可得分。
2018-2019学年七年级(上)期末数学试卷一、选择题(本大题共8小题,共24.0分)1. 如图,检测4个足球,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数.从轻重的角度看,最接近标准的是()A. B. C. D.【答案】B【解析】【分析】检测质量时,与标准质量偏差越小,合格的程度就越高.比较与标准质量的差的绝对值即可.【详解】|+0.6|=0.6,|-0.2|=0.2,|-0.5|=0.5,|+0.3|=0.3 ,而0.2<0.3<0.5<0.6 ,∴B球与标准质量偏差最小,故选B.【点睛】本题考查的是绝对值的应用,理解绝对值表示的意义是解决本题的关键.2. 用式子表示“a的2倍与b的差的平方”,正确的是()A. 2(a﹣b)2B. 2a﹣b2C. (a﹣2b)2D. (2a﹣b)2【答案】D【解析】【分析】根据代数式的表示方法,先求倍数,然后求差,再求平方.【详解】解:a的2倍为2a,与b的差的平方为(2a﹣b)2故选:D.【点睛】本题考查了列代数式的知识,列代数式的关键是正确理解题目中的关键词,比如本题中的倍、差、平方等,从而明确其中的运算关系,正确的列出代数式.3. 在下面四个几何体中,左视图、俯视图分别是长方形和圆的几何体是()A. B. C. D.【答案】A【解析】【分析】逐一判断出各几何体的左视图、俯视图即可求得答案.【详解】A 、圆柱的左视图是长方形,俯视图是圆,符合题意;B 、圆锥的的左视图是等腰三角形,俯视图是带有圆心的圆,不符合题意;C 、长方体的左视图是长方形,俯视图是长方形,不符合题意;D 、三棱柱的左视图是长方形,俯视图是三角形,不符合题意,故选A .【点睛】本题考查了简单几何体的三视图,熟练掌握常见几何体的三视图是解题的关键.4. 下列各式中运算正确的是( )A. 224a a a +=B. 4a 3a 1-=C. 2223a b 4ba a b -=-D. 2353a 2a 5a +=【答案】C【解析】【分析】根据合并同类项的法则逐一进行计算即可.【详解】A. 222a a 2a +=,故A 选项错误;B. 4a 3a a -=,故B 选项错误;C. 2223a b 4ba a b -=-,正确;D. 23a 与32a 不是同类项,不能合并,故D 选项错误,故选C .【点睛】本题考查了合并同类项法则的应用,注意:合并同类项时,把同类项的系数相加作为结果的系数,字母和字母的指数不变.5. 如图,能用∠1、∠ABC、∠B 三种方法表示同一个角的是( ) A. B. C.D.【答案】A【解析】【分析】根据角的表示法可以得到正确解答.【详解】解:B、C、D选项中,以B为顶点的角不只一个,所以不能用∠B表示某个角,所以三个选项都是错误的;A选项中,以B为顶点的只有一个角,并且∠B=∠ABC=∠1,所以A正确.故选A .【点睛】本题考查角的表示法,明确“过某个顶点的角不只一个时,不能单独用这个顶点表示角”是解题关键.6. 如图,经过刨平的木板上的A,B两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线,能解释这一实际应用的数学知识是()A. 两点之间,线段最短B. 两点确定一条直线C. 垂线段最短D. 在同一平面内,过一点有且只有一条直线与已知直线垂直【答案】B【解析】【分析】根据“经过两点有且只有一条直线”即可得出结论.【详解】解:∵经过两点有且只有一条直线,∴经过木板上的A、B两个点,只能弹出一条笔直的墨线.故选B.【点睛】本题考查了直线性质,牢记“经过两点有且只有一条直线”是解题的关键.7. 在下列式子中变形正确的是( )A. 如果a b =,那么a c b c +=-B. 如果a b =,那么a b 33=C. 如果a 63=,那么a 2=D. 如果a b c 0-+=,那么a b c =+【答案】B【解析】【分析】根据等式的性质逐个判断即可.【详解】A 、∵a=b ,∴a+c=b+c ,不是b-c ,故本选项不符合题意;B 、∵a=b ,∴两边都除以3得:a b 33=,故本选项符合题意; C 、∵a 63=,∴两边都乘以3得:a=18,故本选项不符合题意; D 、∵a-b+c=0,∴两边都加b-c 得:a=b-c ,故本选项不符合题意,故选B .【点睛】本题考查了等式的性质,能熟记等式的性质的内容是解此题的关键.8. 直线l 外一点P 与直线l 上两点的连线段长分别为3cm ,5cm ,则点P 到直线l 的距离是( )A. 不超过3cmB. 3cmC. 5cmD. 不少于5cm【答案】A【解析】【分析】根据直线外的点与直线上各点的连线垂线段最短,可得答案.【详解】解:直线外的点与直线上各点的连线垂线段最短,得点P 到直线l 的距离是小于或等于3,故选A .【点睛】本题考查了点到直线的距离,直线外的点与直线上各点的连线垂线段最短. 二、填空题(本大题共10小题,共30.0分)9. 元月份某天某市的最高气温是4℃,最低气温是-5℃,那么这天的温差(最高气温减最低气温)是______℃.【答案】9【解析】【分析】利用最高气温减最低气温,再根据减去一个数等于加上这个数的相反数计算即可.【详解】这天的温差为4-(-5)=4+5=9(℃),故答案为9【点睛】本题考查有理数的减法的应用,正确列出算式,熟练掌握有理数减法的运算法则是解题的关键. 10. 我国倡导的“一带一路”建设将促进我国与世界各国的互利合作,“一带一路”地区覆盖总人口约为4400000000人,将数据4400000000用科学记数法表示为______.【答案】4.4×109【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】4400000000的小数点向左移动9位得到4.4,所以4400000000用科学记数法可表示为:4.4×109, 故答案为4.4×109. 【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.11. 若3x =-是关于x 的一元一次方程250x m ++=的解,则m 的值为___________.【答案】1【解析】把x =−3代入方程得:−6+m +5=0,解得:m =1,故答案为1.12. 若|x -12|+(y +2)2=0,则(xy )2019的值为______. 【答案】-1【解析】【分析】根据非负数的性质列出算式,求出x 、y 的值,计算即可.【详解】∵|x-12|+(y+2)2=0, ∴x-12=0,y+2=0, ∴x=12,y=-2,∴(xy)2019=(-1)2019=-1,故答案为-1.【点睛】本题考查的是非负数的性质,掌握当几个非负数相加和为0时,则其中的每一项都必须等于0是解题的关键.13. 若a+b=2019,c+d=-5,则代数式(a-2c)-(2d-b)=______.【答案】2029【解析】【分析】根据去括号、添括号法则把原式变形,代入计算,得到答案.【详解】(a-2c)-(2d-b)=a-2c-2d+b=(a+b)-2(c+d)=2019+10=2029,故答案为2029.【点睛】本题考查的是整式的加减混合运算,掌握去括号、添括号法则是解题的关键.注意整体思想的应用.14. 一个正方体的平面展开图如图所示,将它折成正方体后“扬”字对面是______字.【答案】美【解析】【分析】注意正方体的空间图形,从相对面入手,分析及解答问题.【详解】对于正方体的平面展开图中相对的面一定相隔一个小正方形,由图形可知,“扬”字对面是“美”字,故答案为美.【点睛】本题考查了正方体的平面展开图,对于正方体的平面展开图中相对的面一定相隔一个小正方形,据此作答.15. 若∠A=45°30′,则∠A的补角等于_______________.【答案】134°30′【解析】试题分析:根据补角定义:如果两个角的和等于180°(平角),就说这两个角互为补角可得答案.解:∵∠A=45°30′,∴∠A的补角=180°﹣45°30′=179°60′﹣45°30′=134°30′,故答案为134°30′.考点:余角和补角;度分秒的换算.16. 如图,将一副直角三角板叠放在一起,使其直角顶点重合于点O,若∠DOC=26°,则∠AOB=______°.【答案】154【解析】【分析】先根据∠COB=∠DOB-∠DOC求出∠COB,再代入∠AOB=∠AOC+∠COB,即可求解.【详解】∵∠COB=∠DOB-∠DOC=90°-26°=64°,∴∠AOB=∠AOC+∠COB=90°+64°=154°,故答案是:154.【点睛】本题考查了角度的计算,弄清角的和差关系是解题的关键.17. 已知线段AB=6cm,C是线段AB的中点,E是直线AB上的一点,且CE=13AB,则线段AE=______cm.【答案】1或5【解析】【分析】由已知C是线段AB中点,AB=6,求得AC=3,进一步分类探讨:E在线段AC内;E在线段CB内;由此画图得出答案即可.【详解】∵C是线段AB的中点,AB=6cm,∴AC=12AB=3cm,CE=13AB=2cm,①如图,当E在线段AC上时,AE=AC-CE=3-2=1cm;②如图,E在线段CB上,AE=AC+CE=3+2=5cm,所以AE=1cm或5cm,故答案为1或5.【点睛】本题考查线段中点的意义,线段的和与差,分类探究是解决问题的关键.18. 某中学初三(6)班十几名同学毕业前和数学老师合影留念,一张彩色底片要0.6元,扩印一张相片0.5元,每人分一张,免费赠送老师一张(由学生出钱),每个学生交0.6元刚好,则相片上共有______人.【答案】12【解析】【分析】扩印费+0.5×照片上人数=0.6×学生数,把相关数值代入计算即可.【详解】设相片上共有x人,0.6+0.5x=0.6×(x-1),解得x=12,故答案为12.【点睛】本题考查一元一次方程的应用,弄清题意,得到所需总费用的等量关系是解决本题的关键.三、计算题(本大题共4小题,共32.0分)19. 计算:(1)14-(-12)+(-25)-17.(2)(12-13)÷(-16)-22×(-4).【答案】(1)-16;(2)15【解析】【分析】(1)根据有理数的加减法法则进行计算即可;(2)按顺序先计算括号内的减法、乘方,然后再按运算顺序进行计算即可. 【详解】(1)14-(-12)+(-25)-17=14+12+(-25)+(-17)=-16;(2)(12-13)÷(-16)-22×(-4)=16×(-6)-4×(-4)=(-1)+16=15.【点睛】本题考查了有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.20. 化简:(1)(5a-3b)-3(a-2b);(2)3x2-[7x-(4x-3)-2x2].【答案】(1)2a+3b;(2)5x2-3x-3【解析】【分析】(1)先按照去括号法则去掉整式中的小括号,再合并整式中的同类项即可;(2)先按照去括号法则去掉整式中的小括号,然后去中括号,最后合并整式中的同类项即可.【详解】(1)原式=5a-3b-3a+6b=2a+3b;(2)原式=3x2-[7x-4x+3-2x2]=3x2-7x+4x-3+2x2=5x2-3x-3.【点睛】本题考查整式的加减,解决此类题目的关键是熟记去括号法则,熟练运用合并同类项的法则.21. 解方程:(1)2x+3=11-6x.(2)x24+-2x16-=1【答案】(1)x=1;(2)x=-4.【解析】【分析】(1)按移项、合并同类项、系数化为1的步骤进行求解即可得;(2)按去分母、去括号、移项、合并同类项、系数化为1的步骤进行求解即可得.【详解】(1)2x+6x=11-3,8x=8,x=1;(2)3(x+2)-2(2x-1)=12,3x+6-4x+2=12,3x-4x=12-6-2,-x=4,x=-4.【点睛】本题主要考查解一元一次方程,去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x=a形式转化.22. 先化简,再求值,2(3ab2-a3b)-3(2ab2-a3b),其中a=-12,b=4.【答案】a3b,1 2 -.【解析】【分析】根据乘法分配律,先去括号,再合并同类项进行化简,再代入求值. 【详解】解:原式=6ab2﹣2a3b﹣6ab2+3a3b=a3b,当a=12-,b=4时,原式=3142⎛⎫-⨯⎪⎝⎭=12-.故答案为1 2 -【点睛】本题考核知识点:整式化简求值.解题关键点:根据乘法分配律去括号,再合并同类项.四、解答题(本大题共6小题,共64.0分)23. 如图,点P是∠AOB的边OB上的一点.(1)过点P画OB的垂线,交OA于点C;(2)过点P画OA的垂线,垂足为H;(3)线段PH的长度是点P到______的距离,______是点C到直线OB的距离,线段PC、PH、OC这三条线段大小关系是______(用“<”号连接).【答案】(1)见解析;(2)见解析;(3)OA,PC的长度,PH<PC<OC.【解析】【分析】(1)利用三角板过点P画∠OPC=90°即可;(2)利用网格特点,过点P画∠PHO=90°即可;(3)利用点到直线的距离可以判断线段PH的长度是点P到OA的距离,PC是点C到直线OB的距离,根据垂线段最短即可确定线段PC、PH、OC的大小关系.【详解】(1)如图所示;(2)如图所示;(3) 线段PH的长度是点P到OA的距离,PC是点C到直线OB的距离,根据垂线段最短可知PH<PC<OC,故答案为OA,PC,PH<PC<OC.【点睛】本题主要考查了基本作图----作已知直线的垂线,另外还需利用点到直线的距离才可解决问题.24. 某小组计划做一批“中华结”,如果每人做6个,那么比计划多做了8个;如果每人做4个,那么比计划少做了42个.请你根据以上信息,提出一个用一元一次方程解决的问题,并写出解答过程.【答案】计划做多少个“中华结”?答案见解析.【解析】【分析】首先提出问题:这批“中华结”的个数是多少?设该批“中华结”的个数为x个,根据加工总个数=单人加工个数×人数,结合该小组人数不变找出关于x的一元一次方程,解之即可得出结论.【详解】这批“中华结”的个数是多少?设计划做“中华结”的个数为x个.根据题意,得:842 64x x+-=.解得:x=142.答:计划做“中华结”的个数为142个.【点睛】本题考查了一元一次方程应用.25. 阅读下面一段文字:问题:0.8⋅能用分数表示吗?探求:步骤①设x=0.8⋅,步骤②10x=10×0.8⋅,步骤③10x=8.8⋅,步骤④10x =8+0.8⋅,步骤⑤10x =8+x ,步骤⑥9x =8,步骤⑦x =89. 根据你对这段文字的理解,回答下列问题:(1)步骤①到步骤②的依据是______;(2)仿照上述探求过程,请你尝试把0.36⋅⋅表示成分数的形式.【答案】(1)等式的基本性质2:等式两边都乘以或除以同一个数(除数不能为0),所得的等式仍然成立;(2)见解析,114x =. 【解析】【分析】(1)利用等式的基本性质得出答案;(2)利用已知设x=0.36⋅⋅,进而得出100x=36+x ,求出即可.【详解】(1)步骤①到步骤②,等式的两边同时乘10,依据的是等式的基本性质2:等式两边都乘以或除以同一个数(除数不能为0),所得的等式仍然成立,故答案为等式的基本性质2:等式两边都乘以或除以同一个数(除数不能为0),所得的等式仍然成立;(2)设x=0.36⋅⋅,100x=100×0.36⋅⋅,100x=36.36⋅⋅,100x=36+ 0.36⋅⋅,100x=36+x ,99x=36,解得:x=411. 【点睛】本题主要考查了等式的基本性质以及一元一次方程的应用,根据题意得出正确等量关系是解题关键.26. 如图,直线AB 、CD 、EF 相交于点O ,OG ⊥CD ,∠BOD =32°.(1)求∠AOG 的度数;(2)如果OC 是∠AOE 的平分线,那么OG 是∠AOF 的平分线吗?请说明理由.【答案】(1)∠AOG=58°;(2)OG是∠AOF的平分线,见解析.【解析】【分析】(1)根据对顶角的性质,可得∠AOC的度数,根据角的和差,可得答案;(2)根据角平分线的性质,可得∠AOC与∠COE的关系,根据对顶角的性质,可得∠DOF与∠COE的关系,根据等量代换,可得∠AOC与∠DOF的关系,根据余角的性质,可得答案.【详解】(1)由对顶角相等,得∠AOC=∠BOD=32°,由角的和差,得∠AOG=∠COG-∠AOC=90°-32°=58°;(2)如果OC是∠AOE的平分线,那么OG是∠AOF的平分线,理由如下:由OC是∠AOE的平分线,得∠COE=∠AOC=32°,由对顶角相等,得∠DOF=∠COE,等量代换,得∠DOF=∠AOC,∠AOC+∠AOG=∠COG=90°,∠DOF+∠FOG=∠DOG=90°,由等角的余角相等,得∠AOG=∠FOG,OG是∠AOF的平分线.【点睛】本题考查了对顶角、邻补角,(1)利用了对顶角相等的性质,角的和差;(2)利用了对顶角相等的性质,角的和差,还利用了余角的性质:等角的余角相等.27. 为了加强公民的节水意识,合理利用水资源,某市采用价格调控手段达到节水的目的.该市自来水收费价格见价目表.若某户居民1月份用水38m ,则应收水费:264(86)20⨯+⨯-=元.(1)若该户居民2月份用水312.5m ,则应收水费______元;(2)若该户居民3、4月份共用水315m (4月份用水量超过3月份),共交水费44元,则该户居民3,4月份各用水多少立方米?【答案】(1)48;(2)三月份用水34m .四月份用水113m .【解析】【分析】(1)根据表中收费规则即可得到结果;(2)分两种情况:用水不超过36m 时与用水超过36m ,但不超过310m 时,再这两种情况下设三月份用水3m x ,根据表中收费规则分别列出方程即可得到结果.【详解】(1)应收水费()()264106812.51048⨯+⨯-+⨯-=元.(2)当三月份用水不超过36m 时,设三月份用水3m x ,则()226448151044x x +⨯+⨯+--= 解之得411x =<,符合题意.当三月份用水超过36m 时,但不超过310m 时,设三月份用水3m x ,则()()264626448151044x x ⨯+-+⨯+⨯+⨯--=解之得36x =<(舍去)所以三月份用水34m .四月份用水113m .28. 如图,点O 在直线AB 上,OC ⊥AB ,△ODE 中,∠ODE =90°,∠EOD =60°,先将△ODE 一边OE 与OC 重合,然后绕点O 顺时针方向旋转,当OE 与OB 重合时停止旋转.(1)当OD 在OA 与OC 之间,且∠COD =20°时,则∠AOE =______;(2)试探索:在△ODE 旋转过程中,∠AOD 与∠COE 大小的差是否发生变化?若不变,请求出这个差值;若变化,请说明理由;(3)在△ODE的旋转过程中,若∠AOE=7∠COD,试求∠AOE的大小.【答案】(1)130°;(2)∠AOD与∠COE的差不发生变化,为30°;(3)∠AOE=131.25°或175°.【解析】【分析】(1)求出∠COE的度数,即可求出答案;(2)分为两种情况,根据∠AOC=90°和∠DOE=60°求出即可;(3)根据∠AOE=7∠COD、∠DOE=60°、∠AOC=90°求出即可.【详解】(1)∵OC⊥AB,∴∠AOC=90°,∵OD在OA和OC之间,∠COD=20°,∠EOD=60°,∴∠COE=60°-20°=40°,∴∠AOE=90°+40°=130°,故答案为130°;(2)在△ODE旋转过程中,∠AOD与∠COE的差不发生变化,有两种情况:①如图1、∵∠AOD+∠COD=90°,∠COD+∠COE=60°,∴∠AOD-∠COE=90°-60°=30°,②如图2、∵∠AOD=∠AOC+∠COD=90°+∠COD,∠COE=∠DOE+∠DOC=60°+∠DOC,∴∠AOD-∠COE=(90°+∠COD)-(60°+∠COD)=30°,即△ODE在旋转过程中,∠AOD与∠COE的差不发生变化,为30°;(3)如图1、∵∠AOE=7∠COD,∠AOC=90°,∠DOE=60°,∴90°+60°-∠COD=7∠COD,解得:∠COD=18.75°,∴∠AOE=7×18.75°=131.25°;如图2、∵∠AOE=7∠COD,∠AOC=90°,∠DOE=60°,∴90°+60°+∠COD=7∠COD,∴∠COD=25°,∴∠AOE=7×25°=175°,即∠AOE=131.25°或175°.【点睛】本题考查了角的有关计算的应用,能根据题意求出各个角的度数是解此题的关键.注意分类思想的运用.。