2014年第十二届小机灵杯三年级决赛试题解析
- 格式:pdf
- 大小:353.22 KB
- 文档页数:3
第十二届"小机灵杯"决赛试卷(三年级组)一、判断题(正确的打√,错误的打×)1、数字的希腊文原意就是"数字或计算",早期数字的萌芽:结绳、粘珠、划道、木棒记事。
【分析】错2、在同一平面上,四边形不易于变形,有着稳定、坚固、耐压的特点。
【分析】错3、风的等级是1940年由美国气象机构制定的,他们建立了一套分级法,把风力分为19级。
【分析】错4、《几何原本》被广泛认为是历史上最成功的教科书,它的作者是古希腊最有影响的数学家之一的欧几里得。
【分析】对5、世界各国都有这样一条规定:军队过桥时一定要迈着整齐的步伐,这样可以抵消一部分振动,桥不会塌陷。
【分析】错【分析】7、有100个棋子,两人轮流取棋子,每次允许取其中1个或2个,谁最后把棋子取完就算获胜。
如果你先取,那么第一次你取( )个,才能保证获胜。
【分析】10012=331÷+ (),先取1个,使棋子变为99个,然后采取如下策略:若对手取2个,则取1个;若对手取1个,则取2个。
则每次都能使棋子变为3的倍数。
于是后手永远面对3的倍数,只能将其变为一个不是3的倍数的数,则后手无法使棋子变为0,先手胜。
8、三(1)班21名同学共做了69架纸飞机,女生每人做2架,男生每人做5架,那么男生有( )人,女生有( )人。
【分析】假设全是女生,共能做42架纸飞机,离实际69架纸飞机差27架,每将1名女生换为男生,可多做3架纸飞机,所以共有男生273=9÷名,女生为12名。
9、把12个小球分别标上数字1、2、3、……、12后放入一个纸盒中,甲、乙、丙三人各从纸盒中拿出4个球。
现知道他们三人所拿的球上所标的数之和都相等,甲有两个球标有数字6、11,乙有两个球标有数字4、8,丙有一个球标有数字1。
那么丙其他三个球上标有的数字是( )。
【分析】每人所拿4个球数字之和为123123=26++++÷ (),甲已有17,还差9,可从(1、8)(2、7)(3、6)(4、5)中选择1组,而其中1、4、6、8均已被取走,所以甲只能选(2、7)。
第十届“小机灵杯”小学数学竞赛三年级组初赛试题第一项,下列题目每题8分。
1.计算:1-(1+3)+(1+3+5)-(1+3+5+7)+…-(1+3+…+47)+(1+3+…+49)=()3252.在由2、4、6这三个数字各使用1次所组成的三位数中,有很多8的倍数。
在这些8的倍数中,最小的是(),最大的是()。
6243.由两个4和一个5组成的所有不同的三位数的平均数是()。
4814.38粒巧克力放入两个盒子中,如果从第一个盒子中取出4粒放入到第二个盒子,两个盒子中的巧克力粒数就相等了,那么第一个盒子中原来有()粒巧克力。
23第二项,下列题目每题10分。
5.小巧原来有的故事书是小胖的5倍,两人再各买10本,则小巧现有的故事书是小胖的3倍。
小巧原来有()本故事书,小胖现在有()本故事书。
50,206.右图中有两只母鸡正在盘算着,要使每行、每列、每斜行中的鸡蛋不超过2个。
它们最多能在这蛋格子里下()个蛋,蛋格子里已经下了2个蛋。
67.三年级(一)班的同学要去划船,若租5人坐的船,还剩1个人;若租4人坐的船,还剩3人;这个班的人数不超过40人,这个班学生最多()个人。
318.甲、乙、丙三数之和为70,甲数除以乙数,与乙数除以丙数的结果都是商3余1,乙数是()。
16第三项,下列题目每题12分。
9.右图是面积为1平方分米的黑色和白色的方砖拼成的面积为49平方分米的图案。
现在要拼面积是121平方分米的类似图案,需要黑色方砖()块;白色方砖()块。
55,6610.长方形的周长是56厘米,截去一个最大的正方形后,余下一个小长方形,这个小长方形的长是宽的3倍,这个小长方形的长是()厘米。
1211.商店促销一种圆珠笔,规定:每支1元,每5支4元,每10支7元,每20支13元。
小明的钱最多能买56支,小华的钱最多能买65支,小华的钱比小明多()钱。
512.小刚把从1开始的自然数排成下图,其中第一行只有1个数,接下来的每一行都比上一行多一个数。
2003年2004年2005年2006年2007年2008年2009年2010年2,4593,2284,35,306,43157,328,169,6610,11 11,10 12,2660 13,60 14,792 15,116,49/4 17,G18,44 19,12 20,1536,72012年2013年第十一届小机灵杯五年级初赛试题1、5.5×6.6+6.6×7.7+7.7×8.8+8.8×9.92、五(1)班男生的平均身高是149cm,女生的平均身高是144cm,全班的平均身高是147cm。
那么,五(1)班的男生人数是女生人数的多少倍?3、甲、乙分别持有7张卡片,卡片上分别写有1、2、3、4、5、6、7七个数字。
如果两人各摸出一张卡片,那么两张卡片上数字和为8的可能性是多少?4、有一个圆形跑道,甲用40秒跑完一圈,乙跑的方向与甲相反,每15秒遇到甲一次。
乙跑完一圈需要几秒?5、50个各不相同的正整数,它们的和为2012,那么这些数里奇数最多有几个?6、把正整数排成下列数阵:1 2 5 10 …4 3 6 11 …9 8 7 12 …16 15 14 13 ………………第21行第21列的数是多少?7、有一叠卡片共200张,从上到下依次编号为1到200,从最上面的一张开始按如下次序进行操作:把最上面的第一张卡片拿掉,把下一张卡片放在这一叠卡片的最下面;再把最上面的第一张(原来的第三张)卡片拿掉,把下一张卡片放在这一叠卡片的最下面……依次重复这样做。
那么剩下的这张卡片是原来200张卡片里的第几张?8、某班有60人,其中42人会游泳,46人会骑车,50人会溜冰,55人会打乒乓球。
可以肯定至少有多少人四项运动都会?9、把既不是平方数也不是立方数的正整数(0除外)按从小到大的顺序排列,得到2,3,5,6,7,10,……,其中第1000个数是多少?10、如图所示,ABCD是梯形,三角形ADE的面积是1,三角形ABF的面积是9,三角形BCF的面积是27,那么三角形ACE的面积是多少?11、某学生漏看了写在两个三位数之间的乘号,将它们当成了一个六位数,而该六位数恰好是原来乘积的7倍,这两个三位数之和是多少?12、从1到900中选6个正整数,使这6个连续正整数的积的尾数恰好为4个0,有多少种选法?第十一届"小机灵"杯数学竞赛决赛五年级试题第一项,每题4分。
第九届“小机灵杯”小学数学竞赛三年级组初赛试题1.计算:210+209-208+207-206+......+3-2+1=()。
2.如图所示,从上往下,每个方格中的数都等于它下方两个方格中所填数之和,最上层方格中两个数之和是()。
3.如图所示,a、b、c、d、e、f、g、h、i、j表示10个各不相同的数,表中的数为所在行与列对应字母的差,例如"b-h=6",图中"九宫格"中九个数的和是()。
4.小胖比他的表姐小12岁,再过4年小胖的年龄是他表姐年龄的一半,他俩今年的年龄总和是()岁。
5.如图所示,从A点走到B点,沿线段走最短路线,共有()种不同走法。
6.五位打工者一天的辛苦劳动后共获得330元工资,由于工种不同,获得最高工资者比其他四位分别多得12、14、21和28元,获得最低工资者的工资是()元。
7.如图所示的图形的周长是()厘米。
8.在数20468204682046820468中划去10个数字(不能改变原来数字的顺序),得到一个最小的十位数,这个最小的十位数是()。
9.右边的乘法算式中,只知道一个数字"8",请你补全,那么这个算式的积最小是()。
10.在1、2、3、4、5、6六个数中,选三个数,使它们的和能被3整除,那么,不同的选取共有()种。
11.有四袋糖,每袋糖的块数都不相同,任意三袋糖的块数总和都不少于60块,那么,这四袋糖的块数总和至少有()块。
12.3根火柴可以摆成一个小三角形,用很多根火柴摆成了一个如图那样的大三角形,如果大三角形外沿的每条边都增加到10根火柴,那么摆成这样形状的大三角形需要用()根火柴。
13.一次测验中,小胖答错了6道题,小亚答错了7道题,小丁丁答对的题的数量等于小胖和小亚答对题数量的总和,小丁丁答对了17道题,这次测验共有()道题。
14.1997的数字和是1+9+9+7=26,小于2000的四位数中,数字和等于26的四位数共有()个。
“小机灵杯”数学竞赛初赛(三年级组)时间:60 分钟总分:120 分(第1 题~第4 题,每题8 分)【第1 题】已知1050 -840 ÷□⨯8 =90 ,那么□=。
【分析与解】计算问题,易得□=7【第2 题】即将过去的一年中有连续的7 天,其日期数总和是100 ,那么这7 天的日期数分别是、、、、、、。
【分析与解】时间与日期。
如果这7 天在同一个月中,那么日期数总和是中间数⨯7 ;而100 不是7的倍数;故这7 天在相邻的两个月。
28 + 27 + 26 = 81,28 + 27 + 26 + 25 =106 >100 ;30 + 29 + 28 = 87 ,30 + 29 + 28 + 27 =114 >100 ;31+ 30 + 29 = 90 ,31+ 30 + 29 + 28 =118 >100 ;1+ 2 + 3 + 4 =10 ;所以只能是100 = 29 +30 +31+1+ 2 +3 + 4 ;即这7 天的日期数分别是29 、30 、31、1 、2 、3 、4 。
【第3 题】用5个相同的小正方形拼成一个轴对称图形,要求每个小正方形至少有一条边与另一个小正方形的边完全重合,共有种不同的拼法。
请你一一画出这些图形。
(通过旋转或翻折得到的图形算作同一种)【分析与解】图形剪拼。
考虑到对称图形,共有 6 种。
分别为“一字”形,“凹字”形,“T 字”形,“十字”形,“w 字”形, “L 字”形【第4 题】小明的弟弟是三胞胎,小明今年的年龄与3 个弟弟的年龄总和相等。
再过6 年,3 个弟弟的年龄总和是小明年龄的2 倍。
小明今年岁。
【分析与解】年龄问题,差倍问题。
(方法一)小明今年的年龄与3 个弟弟的年龄总和相等;故再过6 年,3 个弟弟的年龄总和比小明多6 ⨯3 - 6 =12 岁;而再过6 年,3 个弟弟的年龄总和是小明年龄的2 倍;则再过6 年,小明年龄为12 ÷(2 -1)=12 岁;小明今年12 - 6 = 6 岁。
盈亏问题1来源:盈亏问题,顾名思义有剩下就叫盈,不够分就叫亏,不同的方法分配物品时,经常会产程这种盈亏现象。
把若干物体平均分给一定数量的对象,并不是每次都能正好分完。
如果物体还有剩余,就叫盈;如果物体不够分,少了,叫亏。
凡是研究盈和亏这一类算法的应用题就叫盈亏问题。
分类:“盈亏问题”“盈盈问题”“亏亏问题”解题思路:主要包含1、由人数差别而产生的盈亏2、由每个人分得的物品数量差别而产生的盈亏。
解决这类问题的思路,就在于,物品分配时的总量是不变的,变得只是每个人拿到的数量,或者人数。
因此,只要得到分掉的总差数和每份的差值,就能得到份数,进而求得总数。
解题公式:1、(盈+亏)÷两次分得之差=人数或单位数2、(盈-盈)÷两次分得之差=人数或单位数3、(亏-亏)÷两次分得之差=人数或单位数易错点:解题思路类似于鸡兔同笼问题老猴子给小猴子分桃,每只小猴10个桃,就多出9个桃,每只小猴分11个桃则多出2个桃,那么一共有多少只小猴子?老猴子一共有多少个桃子?1.1.小明把一些香蕉分给猴子们.如果每只猴子分2根香蕉,还剩下50根香蕉;如果每只猴子分6根香蕉,还剩下10根香蕉.那么共有__________只猴子.2.2.老师拿来很多张剪纸,分给5个同学,每人分到的一样多,还剩下22 张,后来又来了两个同学,分给他们同样多的剪纸后,就只剩下6张了,请问:老师一共拿来了多少张剪纸?3.3.老师买了一些糖果,准备分给同学们,每人3个,还剩下15个,每人4个,还剩下3个,那么一共老师买了_____个糖果。
学校新进一批书,将它们分给几位老师,如果每人发10本,还差9本,每人发9本,还差2本,那么最后有多少本书?1.1.小红把一些玫瑰花插到花瓶里.如果每瓶插入5朵玫瑰花,就会少10朵;如果每瓶插入9朵,就会少50朵.那么,小红有________个花瓶.2.2.老师给班里同学发积分卡.如果每个同学发5张积分卡,就会少4张积分卡;如果每个同学发7张积分卡,就会少24张积分卡.那么老师共准备了________张积分卡.3.3.老师买了一些糖果,准备分给同学们,每人3个,还差6个,每人4个,还差16个,那么一共有______个同学。
第十二届“小机灵杯”智力冲浪展示活动决赛试卷(五年级组)2014年1月19日8:30~9:50时间:80分钟总分:120分一、判断题(每题1分)【第1题】小数点在十进制中用来隔开整数部分和小数部分。
中国魏晋时代的数学家刘徽第一个将“小数”这一概念用文字表达出来。
……………………………………………………………………………………………()【分析与解】中国自古以来就使用十进位制计数法,一些实用的计量单位也采用十进制,所以很容易产生十进分数,即小数的概念。
第一个将这一概念用文字表达出来的是魏晋时代的刘徽。
他在计算圆周率的过程中,用到尺、寸、分、厘、毫、秒、忽等7个单位;对于忽以下的更小单位则不再命名,而统称为“微数”。
填“√”。
【第2题】做小数加减法时要把小数点对齐。
在小数乘法法则中,两个因数中一共有几位小数,就要从积的左边向右数几位点上小数点。
…………………………………………………………………………………………()【分析与解】在小数乘法法则中,两个因数中一共有几位小数,就要从积的右边向左数几位点上小数点。
故填“×”。
第十二届“小机灵杯”智力冲浪展示活动决赛试卷五年级组中国古代数学最重要的典籍应当是《九章算术》,魏晋数学家刘徽用割圆术证明了圆面积的精确公式,并给出了计算圆周率的科学方法。
……………………………………………………………………………( )【分析与解】所谓“割圆术”,是用圆内接正多边形的面积去无限逼近圆面积并以此求取圆周率的方法。
“圜,一中同长也”。
意思是说:圆只有一个中心,圆周上每一点到中心的距离相等。
早在我国先秦时期,《墨经》上就已经给出了圆的这个定义,而公元前11世纪,我国西周时期数学家商高也曾与周公讨论过圆与方的关系。
认识了圆,人们也就开始了有关于圆的种种计算,特别是计算圆的面积。
我国古代数学经典《九章算术》在第一章“方田”章中写到“半周半径相乘得积步”,也就是我们现在所熟悉的公式。
归一问题1、来源:我国珠算除法中有一种方法,称为归除法.除数是几,就称几归;除数是8,就称为8归.而归一的意思,就是用除法求出单一量。
在应用题中,复合应用题中的某些问题,解题时需先根据已知条件,求出一个单位量的数值,如单位面积的产量、单位时间的工作量、单位物品的价格、单位时间所行的距离等等,然后,再根据题中的条件和问题求出结果。
这样的应用题就叫做归一问题,这种解题方法叫做“归一法”。
2、分类:一种是正归一,也称为直进归一.如:一辆汽车3小时行150千米,照这样,7小时行驶多少千米?另一种是反归一,也称为返回归一.如:修路队6小时修路180千米,照这样,修路240千米需几小时?3、正、反归一问题的相同点是:一般情况下第一步先求出单一量;不同点在第二步.正归一问题是求几个单一量是多少,反归一是求包含多少个单一量。
4、解题方法:解题时需先根据已知条件,求出一个单位量的数值,然后,再根据题中的条件和问题求出结果。
有些归一问题可以采取同类数量之间进行倍数比较的方法进行解答,这种方法叫做倍比法。
由上所述,解答归一问题的关键是求出单位量的数值,再根据题中“照这样计算”、“用同样的速度”等句子的含义,抓准题中数量的对应关系,列出算式,求得问题的解决。
归一问题有可能会与消元问题和等量问题相结合。
一列火车3小时行240千米,用同样的速度,7小时行驶多少千米?1.1.一个豆腐加工场用96千克黄豆做了384千克豆腐。
那么,120千克黄豆可做豆腐多少千克?2.2.小红看一本故事书,3天看了36页,那么7天能看多少页?3.3.机床厂20天可以制造260台机器,那么,25天能制造多少台机器?一列火车3小时行240千米,用同样的速度,行驶640千米需要多少小时?1.1.小红看一本故事书,3天看了36页,看108页要多少天?2.2.一个豆腐加工场用96千克黄豆做了384千克豆腐。
那么加工576千克豆腐需要黄豆多少千克?3.3.机床厂20天可以制造260台机器,那么制造325台机器需要多少天?一列火车3小时行240千米,用同样的速度,再行驶7个小时,那么这列火车一共行驶了多少千米?1.1.机床厂原计划20天制造300台机器,实际每天比原计划多制造5台,实际制造这些机器用了几天时间?2.2.修一条长5千米的公路,3天修了1500米,照这样的速度,还要几天才能修完?3.3.铺设一条1500米的管道,5天铺了300米,照这样的速度,还要几天可以铺完?8个人10天修公路800米,照这样算,20人要修4200米,要用多少天?1.1.3个工人4小时做了360个零件,那么5个工人6小时能做多少个零件?2.2.两台拖拉机3天耕地18公顷,照这样计算,要在9天耕完81公顷地,需要几台这样的拖拉机?3.3.5个小朋友3小时折了60个千纸鹤,照这样算,7个小朋友要折168个千纸鹤,需要______小时?8个人10天修公路800米,照这样算,20人要修4000米,但是修到一半的时候,突然走了10个人,那么修完一共需要多少天?1.1.一项工作,8个人12小时可以完成,如果增加4个人,每人的工作效率相同,可以提前______小时完成?2.2.安装一条水管,头4天装了180米,为了加快进度,后面每天多装5米,还要15天可装完,那么这条水管总长______米?3.3.民兵军训,4小时走了16千米,为了早点到达目的地,后面每小时多走1千米,剩下的20千米要______小时?8个人10天可以修公路800米,照这样算,如果时间和效率不变,要修4200米,那么需要增加多少人?1.1.两台拖拉机3天耕地18公顷,照这样计算,如果时间和效率不变,耕完81公顷地,要增加______台这样的拖拉机?2.2.5个小朋友3小时折了60个千纸鹤,照这样算,如果时间和效率不变,要折108个千纸鹤,需要增加______个人?3.3.3个工人4小时做了360个零件,照这样算,如果人数和效率不变,要制作810个零件,还需要______个小时?小明妈妈花了 8 元钱买了一条鱼,以 9 元的价格卖掉。