初一数学第一章练习题
- 格式:doc
- 大小:306.30 KB
- 文档页数:6
初中数学《七上》第一章 有理数-正数和负数 考试练习题姓名:_____________ 年级:____________ 学号:______________1、中国人很早开始使用负数,中国古代数学著作《九章算术》的“ 方程 ” 一章,在世界数学史上首次正式引入负数 . 如果收入 100 元记作 +100 元 . 那么﹣ 80 元表示( )A .支出 20 元B .收入 20 元C .支出 80 元D .收入 80 元知识点:正数和负数 【答案】C【详解】试题分析:“+” 表示收入, “—” 表示支出,则 —80 元表示支出 80 元 .考点:相反意义的量2、如果表示向东走,则向西走表示为________ .知识点:正数和负数 【答案】【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负来表示;【详解】80m 表示向东走 80m ,规定向东为正,则向西走 60 米表示为 -60m.故答案为-60m.【点睛】本题主要考查了正数和负数的概念以及相反意义的量的表示,掌握正数和负数的概念是解题的关键.3、规定:表示向右移动2 个单位长度,记作 +2 ,表示向左移动3 个单位长度,记作( )A . +3B . -3C .D .知识点:正数和负数 【答案】B【分析】根据题中规定的箭头方向可判断正负,结合长度可得答案.【详解】解:∵→ 表示向右移 2 个单位长度,记作 +2 ,∴← 表示向左移动 3 个单位长度,此时移动方向相反,应用 “-” 表示,应记作 -3 , 故选B .【点睛】此题考查了正数和负数的表示,解题的关键是熟练掌握正数和负数的表示方法.4、用正负数表示气温的变化量,上升为正,下降为负.登山队攀登一座山峰,每登高气温的变化量为,攀登后,气温下降__________.知识点:正数和负数 【答案】12【分析】根据题意知,气温变化量为乘以攀登高度,即可求解.【详解】根据“ 每登高气温的变化量为” 知:攀登后, 气温变化量为:下降为负:所以下降12故答案为:12 .【点睛】本题考查了分析信息的能力,正负数的意义,有理数的计算,根据题意分析得出变化量,再结合正负数的意义是解题的关键.5、如果规定收入为正,那么支出为负,收入2 元记作,支出5 元记作().A . 5 元B .元C .元D . 7 元知识点:正数和负数【答案】B【分析】结合题意,根据正负数的性质分析,即可得到答案.【详解】根据题意得:支出5 元记作元故选:B .【点睛】本题考查了正数和负数的知识;解题的关键是熟练掌握正负数的性质,从而完成求解.6、的倒数为()A.-2 B.2 C.D.知识点:正数和负数【答案】D7、5的相反数是()A、-5B、5C、D、知识点:正数和负数【答案】A8、如果水位上升1.2米,记作+1.2米,那么水位下降0.8米记作______米。
人教版七年级上册数学第一章第一节练习题(含答案)一、单选题1.下列各数中,是负分数的是()A.56B.﹣12C.﹣0.8D.02.如果温度上升3℃记作+3℃,那么下降8℃记作()A.﹣5℃B.11℃C.﹣8℃D.+8℃3.如果把一个物体向右移动1m时记作移动+1m,那么这个物体向左移动2m时记作移动()A.﹣1m B.+2m C.﹣2m D.+3m4.下列四个有理数中是负数的是()A.0B.−12C.2D.3.55.若零上5°C记作+5°C,则零下4°C应记作()A.−5°C B.+5°C C.−4°C D.+4°C二、填空题6.中国人很早就开始使用负数,中国古代数学著作《九章算术》的方程一章,在世界数学史上首次正式引入负数.如果收入20元记作+20元,那么支出10元记作元.7.若盈利8万元记作+8万元,则亏损7万元记作万元.8.中国是最早采用正负数表示相反意义的量的国家,一艘潜水艇向下潜50m记为+50m,则向上浮30m记为m.9.做生意盈亏属于正常现象,如果盈利500元记作+500元,那么-300元表示.10.如果“+20%”表示增产20%,那么“−12%”表示.三、解答题11.有24筐大庙香水梨,以每筐20千克为标准,超过或不足的分别用正、负来表示,记录如下:请你计算这24筐香水梨的总质量是多少千克.四、综合题12.在抗洪抢险中,解放军战士的冲锋舟加满油沿东西方向的河流抢救灾民,早晨从A地出发,晚上到达B地,约定向东为正方向,当天的航行路程记录如下(单位:千米):+14,﹣9,+8,﹣7,+13,﹣6,+12,﹣5.(1)请你帮忙确定B地相对于A地的方位?(2)救灾过程中,冲锋舟离出发点A最远处有多远?(3)若冲锋舟每千米耗油0.5升,油箱容量为28升,求冲锋舟当天救灾过程中至少还需补充多少升油?13.某校组织学生去东南花都进行研学活动.第一天下午,学生队伍从露营地出发,开始向东的方向直走到距离露营地500米处的科普园地.学校联络员也从露营地出发,不停地沿途往返行走,为队伍护行.以向东的方向为正方向,联络员从开始到最后行走的情况依次记录如下(单位:米):+150,-75,+205,-30,+25,-25,+30,-25,+75.(1)联络员最终有没有到达科普园?如果没有,那么他离科普园还差多少米?(2)若联络员行走的平均速度为80米/分,请问他此次行程共用了多少分钟?14.城固资源富集,享有“天然药库”的美誉,现有20筐药材,以每筐10千克为标准质量,超过的质量用正数表示,不足的质量用负数表示,结果记录如下:(1)与标准质量相比,这20筐药材总计超过或不足多少千克?(2)若这些药材平均以每千克15元的价格出售,则这20筐药材可卖多少元?15.以45千克为七年级学生的标准体重测量7名学生的体重,把超过标准体重的千克数记为正数,不足的千克数记为负数,将其体重记录如下表:(1)最接近标准体重的是学生(填序号).(2)最大体重与最小体重相差千克.(3)求7名学生的平均体重.16.某食品厂从生产的食品中抽出样品20袋,检测每袋的质量是否符合标准,超过的部分用正数表示,不足的部分用负数表示,记录如表:(1)若每袋标准质量为350克,则这批抽样检测的样品的总质量是多少克?(2)若该食品的包装袋上标有产品合格要求为“净重350±2克”,则这批样品的合格率为多少?17.某粮库10月23日到25日这3天内进出库的吨数记录如下(“+”表示进库,“-”表示出库):(1)经过这3天进出库后,粮库管理员结算时发现粮库里结存480吨粮食,那么3天前粮库里的存量有多少吨?(2)如果进库的装卸费是每吨8元,出库的装卸费是每吨10元,那么这3天要付出多少装卸费?18.一天,某出租车被安排以A地为出发地,只在东西方向道路上营运,向东为正,向西为负,行车里程(单位:km)依先后次序记录如下:+9、﹣3、﹣5、+4、﹣8、+6、﹣7、﹣6、﹣4、+10.假设该出租车每次乘客下车后,都在停车地等待下一个乘客,直到下一个乘客上车再出发.(1)将最后一名乘客送到目的地,出租车在A地何处?19.测量一幢楼的高度,七次测得的数据分别是:79.8m,80.6m,80.4m,79.1m,80.3m,79.3m,80.5m.(1)以80为标准,用正数表示超出部分,用负数表示不足部分,写出七次测得数据对应的数;(2)求这七次测量的平均值;(3)写出最接近平均值的测量数据,并说明理由.20.王敏为了解自家小汽车的使用情况,连续记录了这周的7天中她家小汽车每天行驶的路程.以20km为标准,每天超过或不足20km的部分分别用正数、负数表示.下面是她记录的数据(单位:km):+4,-2,-4,+8,+6,-3,+4.(1)王敏家小汽车这7天中,行驶路程最多的一天比最少的一天多多少km?(2)请你计算王敏家小汽车这7天共行驶的路程.答案1.C 2.C 3.C 4.B 5.C 6.-10 7.-7 8.-30 9.亏损300元10.减产12% 11.解:−3×1+(−2×4)+(−1.5×4)+(0×6)+(1×5)+(2.5×4)+20×24=−3−8−6+5+10+480=478(千克).答:这24筐香水梨的总质量是478千克.12.(1)解:∵14﹣9+8﹣7+13﹣6+12﹣5=20,∴B地在A地的东边20千米(2)解:∵路程记录中各点离出发点的距离分别为:14千米;14﹣9=5千米;14﹣9+8=13千米;14﹣9+8﹣7=6千米;14﹣9+8﹣7+13=19千米;14﹣9+8﹣7+13﹣6=13千米;14﹣9+8﹣7+13﹣6+12=25千米;14﹣9+8﹣7+13﹣6+12﹣5=20千米.∴最远处离出发点25千米;(3)解:这一天走的总路程为:14+|﹣9|+8+|﹣7|+13+|﹣6|+12+|﹣5|=74千米,应耗油74×0.5=37(升),故还需补充的油量为:37﹣28=9(升)13.(1)解:+150-75+205-30+25-25+30-25+75=330米,330<500,∴联络员最终没有到达科普园,离科普园还差170米(2)解:(150+75+205+30+25+25+30+25+75)÷80=8分钟,∴他此次行程共用了8分钟.14.(1)解:(-0.8)×1+(-0.5)×4+(-0.3)×2+0×3+0.4×2+0.5×8,=-0.8-2-0.6+0+0.8+4,=1.4(千克),所以这20筐药材总计超过1.4千克.(2)解:(10×20+1.4)×15,=201.4×15,=3 021(元),所以这20筐药材可卖3021元.15.(1)4号(2)11(3)解:7名学生的平均体重=45+(﹣5+3+2﹣1﹣2+4+6)÷7=46(千克), ∴7名学生的平均体重为46千克.16.(1)解:超出的质量为:−5×2+(−2)×4+0×5+1×5+3×1+6×3=−10−8+0+5+3+18=8(克), 总质量为:350×20+8=7008(克), 答:这批抽样检测样品总质量是7008克.(2)解:因为绝对值小于或等于2的食品的袋数为: 4+5+5=14(袋),所以合格率为:1420×100%=70%,答:这批样品的合格率为70%.17.(1)解:26-38-20+34-32-15=(26+34)-(38+20+32+15)=60-105=-45,∴3天前粮库里的存量=480+45=525吨 (2)解:60×8+105×10=48+1050=1098元. ∴这3天要付出1098元装卸费.18.(1)解:∵行车里程依先后次序记录:+9、﹣3、﹣5、+4、﹣8、+6、﹣7、﹣6、﹣4、+10,∴将最后一名乘客送到目的地出租车在A 地位置:19.(1)解:79.8−80=−0.2,80.6−80=0.6,80.4−80=0.4,79.1−80=−0.9,80.3−80=0.3,79.3−80=−0.7,80.5−80=0.5.故七次测得数据对应的数分别是−0.2,+0.6,+0.4,−0.9,+0.3,−0.7,+0.5. (2)解:79.8+80.6+80.4+79.1+80.3+79.3+80.57=80m故这七次测量的平均值为80m .(3)解:79.8 m ,理由如下:因为|−0.2|=0.2,在七次测得数据中绝对值最小,故最接近平均值的测量数据.20.(1)解:8−(−4)=12(km).答:行驶最多的一天比行驶最少的一天多12km. (2)解:超过或不足20km 的部分的和为(+4)+(−2)+(−4)+(+8)+(+6)+(−3)+(+4)=13, 这7天共行驶的路程是13+7×20=153(km). 答:王敏家小汽车这7天共行驶的路程是153km.。
七年级数学上册《第一章有理数的加减混合运算》同步练习题含答案(冀教版)学校:___________班级:___________姓名:___________考号:___________一、选择题1.计算(-3)+9的结果等于( )A.6B.12C.-12D.-62.如图为我县十二月份某一天的天气预报,该天最高气温比最低气温高( )A.﹣3℃B.7℃C.3℃D.﹣7℃3.把-2+(+3)-(-5)+(-4)-(+3)写成省略括号和的形式,正确的是()A.-2+3-5-4-3B.-2+3+5-4+3C.-2+3+5+4-3D.-2+3+5-4-34.下列各式中,与式子-1-2+3不相等的是( )A.(-1)+(-2)+(+3)B.(-1)-2+(+3)C.(-1)+(-2)-(-3)D.(-1)-(-2)-(-3)5.在数轴上表示a,b的点的位置如图所示,则a,b,a+b,a-b中,负数有( )A.1个B.2个C.3个D.4个6.若a+b+c=0,则下列结论正确的是( )A.a=b=c=0B.a,b,c中至少有两个是负数C.a,b,c中可以没有负数D.a,b,c中至少有两个是正数7.水利勘察队沿一条河向上游走了5.5千米,又继续向上游走了4.8千米,然后又向下游走了5.2千米,又向下游走了4.1千米,这时勘察队在出发点的________处( )A.上游1千米B.下游9千米C.上游10.3千米D.下游1千米8.若|x|=7,|y|=5,且x+y>0,那么x-y的值是()A.2或12B.-2或12C.2或-12D.-2或-12二、填空题9.计算:﹣5+9= .10.绝对值不大于2.5的整数有,它们的和是.11.若∣x+y∣+∣y-3∣=0,则x-y的值为 .12.一家电脑公司仓库原有电脑100台,一个星期调入、调出的电脑记录是:调入38台,调出42台,调入27台,调出33台,调出40台,则这个仓库现有电脑台.13.某冷库的室温为-4 ℃,-批食品需要在-28 ℃冷藏,如果每小时降温3 ℃,经过小时后能降到所要求的温度.14.已知a、b、c是三个非负实数,且a+b=7, c - a =-5, s=a+b+c,则s的最大值与它最小值为的差为________.三、解答题15.计算:13+(-15)-(-23).16.计算:14+(﹣4)﹣2﹣(﹣26)﹣317.计算:(﹣14)﹣(﹣7)+(﹣5)+(﹣12)18.计算:[1.4﹣(﹣3.6+5.2)﹣4.3]﹣(﹣1.5)19.有5筐蔬菜,以每筐50千克为准,超过的千克数记为正,不足记为负,称重记录如下:+3,-6,-4,+2,-1,总计超过或不足多少千克?5筐蔬菜的总重量是多少千克?20.一只小虫沿一根东西方向放着的木杆爬行,小虫从某点A出发在木杆上来回爬行7次,如果向东爬行的路程记为正数,向西爬行的路程记为负数,爬行过的各段路程依次如下(单位:cm):+5,-3,+11,-8,+12,-6,-11.(1)小虫最后是否回到了出发点A?为什么?(2)小虫一共爬行了多少厘米?21.一辆汽车沿着南北方向的公路来回行驶,某天早晨从A地出发,晚上最后到达B地,约定向北正方向(如:+7表示汽车向北行驶7千米),当天行驶记录如下:+18,﹣9,+7,﹣14,﹣6,12,﹣6,+8.(单位:千米)问:(1)B地在A地的何方,相距多少千米?(2)若汽车行驶1千米耗油0.35升,那么这一天共耗油多少升?22.若用A、B、C、D分别表示有理数a、b、c,0为原点如图所示.已知a<c<0,b>0.(1)化简|a﹣c|+|b﹣a|﹣|c﹣a|;(2)|﹣a+b|﹣|﹣c﹣b|+|﹣a+c|参考答案1.A2.B3.D4.D5.C6.C7.A8.A9.答案为:410.答案为: -2,-1,0,1,211.答案为:-512.答案为:50.13.答案为:814.答案为:2.15.原式=13-15+23=21.16.原式=14﹣4﹣2+26﹣3=40﹣9=31.17.原式=﹣14+7﹣5﹣12=﹣24.18.解:[1.4﹣(﹣3.6+5.2)﹣4.3]﹣(﹣1.5)=[1.4﹣1.6﹣4.3]+1.5=﹣4.5+1.5=319.解:与标准重量比较,5筐蔬菜总计超过3+(-6)+(-4)+2+(-1)=-6(千克) 5筐蔬菜的总重量=50×5+(-6)=244(千克).故总计不足6千克,5筐蔬菜的总重量是244千克.20.解:(1)小虫最后回到了出发点A理由是:(+5)+(-3)+(+11)+(-8)+(+12)+(-6)+(-11)=0即小虫最后回到了出发点A.(2)|+5|+|-3|+|+11|+|-8|+|+12|+|-6|+|-11|=56(cm)答:小虫一共爬行了56 cm.21.解:(1)18﹣9+7﹣14﹣6+12﹣6+8=45﹣35=10 所以,B地在A地北方10千米;(2)18+9+7+14+6+12+6+8=80千米80×0.35=28升.22.解:(1)∵a<c<0,b>0∴a﹣c<0,b﹣a>0,c﹣a>0∴|a﹣c|+|b﹣a|﹣|c﹣a|=c﹣a+b﹣a﹣(c﹣a)=c﹣a+b﹣a﹣c+a=b﹣a;(2)∵a<c<0,b>0∴﹣a+b>0,﹣c﹣b>0,﹣a+c>0∴|﹣a+b|﹣|﹣c﹣b|+|﹣a+c|=﹣a+b+c+b+c﹣a=﹣2a+2b+2c.。
人教版七年级数学(上)第一章《整式》经典例题及练习一. 教学内容:整式1. 单项式的有关概念,如何确定单项式的系数和次数;2. 多项式的有关概念,如何确定多项式的系数和次数;3. 什么是整式;4. 分析实际问题中的数量关系,培养用字母表示数量关系以及解决实际问题的能力.二. 知识要点:1. 用字母表示数时,应注意以下几点:(1)加、减、乘、除、乘方等运算符号将数和表示数的字母连接而成的式子是代数式.(2)代数式中出现的乘号一般用“·”或省略不写,例如4乘a写作4a.(3)在代数式中出现除法运算时,一般按分数的写法来写,例如a除以t写作.(4)代数式中大于1的分数系数一般写成假分数,例如2. 单项式(1)如3a,xy,-6m2,-k等,它们都是数与字母的积,像这样的式子叫做单项式. 对于单项式的理解有以下几点需要注意:①单项式反映的或者是数与字母,或者是字母与字母之间的运算关系,且这种运算只能是乘法,而不能含有加减运算,如代数式(x+1)3不是单项式.②字母不能出现在分母里,如不是单项式,因为它是n与m的除法运算.③单独的一个数或一个字母也是单项式,如0,-2,a都是单项式.(2)单项式的系数:是指单项式中的数字因数,如果一个单项式只含有字母因数,它的系数就是1或-1,如m就是1·m,其系数是1;-a2b就是-1·a2b,其系数是-1.(3)单项式的次数:是指一个单项式中所有字母的指数的和. 掌握好这个概念要注意以下几点:①从本质上说,单项式的次数就是单项式中字母因数的个数,如5a3b就是5aaab,有4个字母因数,因此它的次数就是4.②确定单项式的次数时,不要漏掉“1”. 如单项式3x2yz3的次数是2+1+3=6,字母因数的指数为1时,不能认为它没有指数.③单项式的次数只与单项式中的字母因数的指数有关,而不能误加入系数的指数,如单项式-2a3b4c5的次数是字母a、b、c的指数和,即3+4+5=12,而不是2+3+4+5=14.④单独一个非零数字的次数是零.3. 多项式(1)多项式:是指几个单项式的和. 其含义有:①必须由单项式组成;②体现和的运算法则,如3a2+b-5是多项式,(2)多项式的项:是指多项式中的每个单项式. 其中不含字母的项叫做常数项. 要特别注意,多项式的项包括它前面的性质符号(正号或负号).另外,一个多项式化简后含有几项,就叫做几项式. 多项式中的某一项的次数是n,这一项就叫做n次项. 如多项式x3+2xy+x2-x+y-1是六项式,x3的次数是3,叫三次项,2xy、x2的次数都是2,都叫二次项,-x、y的次数都是1,都叫一次项,后面的-1叫常数项.(3)多项式的次数:是指多项式里次数最高的项的次数. 应当注意的是:不要与单项式的次数混淆,而误认为多项式的次数是各项次数之和,如多项式3x4+2y2+1的次数是4,而不是4+2=6,故此多项式叫做四次三项式.4. 单项式与多项式统称为整式.三. 重点难点:1. 重点:单项式和多项式的有关概念.2. 难点:如何确定单项式的次数和系数,如何确定多项式的次数.【典型例题】例1. (1)(2008年宁夏)某市对一段全长1500米的道路进行改造. 原计划每天修x米,为了尽量减少施工对城市交通所造成的影响,实际施工时,每天修路比原计划的2倍还多35米,那么修这条路实际用了__________天.(2)(2008年全国数学竞赛广东初赛)某商店经销一批衬衣,每件进价为a元,零售价比进价高m%,后因市场变化,该商店把零售价调整为原来零售价的n%出售,那么调整后每件衬衣的零售价是()A. a(1+m%)(1-n%)元B. am%(1-n%)元C. a(1+m%)n%元D. a(1+m%·n%)元分析:(1)修这条路实际用的天数等于这条路的全长1500米除以实际每天的工作量,原计划每天修x米,实际施工时,每天比原计划的2倍还多35米,即(2x+35)米. 用1500除以(2x+35)就可以了. (2)每件衬衣进价为a元,零售价比进价高m%,那么零售价就是a(1+m%),后来零售价调整为原来的n%,也就是a(1+m%)n%.评析:用字母表示数时,要注意书写代数式的惯例(数字在前字母在后,乘号省略,如果是除法写成分数的形式,系数是代分数时写成假分数,数字和字母写在括号的前面等)例2. 找出下列代数式中的单项式,并写出各单项式的系数和次数.单独一个数字是单项式,它的次数是0.8a3x的系数是8,次数是4;-1的系数是-1,次数是0.评析:判定一个代数式是否是单项式,关键就是看式子中的数字与字母或字母与字母之间是不是纯粹的乘积关系,如果含有加、减、除的关系,那么它就不是单项式.例3. 请你用代数式表示如图所示的长方体形无盖的纸盒的容积(纸盒厚度忽略不计)和表面积,这些代数式是整式吗?如果是,请你分别指出它们是单项式还是多项式.分析:容积是长×宽×高,表面积(无盖)是五个面的面积,在分辨它们是不是整式,是单项式还是多项式时,牵牵把握住概念,根据概念判断.解:纸盒的容积为abc;表面积为ab+2bc+2ac(或ab+ac+bc+ac+bc). 它们都是整式;abc是单项式,ab+2bc+2ac(或ab+ac+bc+ac+bc)是多项式.评析:①本题是综合考查本节知识的实际问题,作用有二:一是将本节所学知识直接应用到具体问题的分析和解答中,既巩固了知识,又强化了对知识的应用意识;二是将几何图形与代数有机结合起来,有利于综合解决问题能力的提高. ②本题解答关键:长方体的体积公式和表面积公式.故只剩下-2x2a+1y2的次数是7,即2a+1+2=7,则a=2.解:2评析:本题考查对多项式的次数概念的理解. 多项式的次数是由次数最高的项的次数决定的.例5. 把代数式2a2c3和a3x2的共同点填写在下列横线上.例如:都是整式.(1)都是____________________;(2)都是____________________.分析:观察两式,共同点有:(1)都是五次式;(2)都含有字母a.解:(1)五次式;(2)都含有字母a.评析:主要观察单项式的特征.例6. 如果多项式x4-(a-1)x3+5x2-(b+3)x-1不含x3和x项,求a、b的值.分析:多项式不含x3和x项,则x3和x项的系数就是0. 根据这两项的系数等于0就可以求出a和b 的值了.解:因为多项式不含x3项,所以其系数-(a-1)=0,所以a=1.因为多项式也不含x项,所以其系数-(b+3)=0,所以b=-3.答:a的值是1,b的值是-3.评析:多项式不含某项,则某项的系数为0.【方法总结】1. “用字母表示数”是代数学的基础,这种符号化的表示方法随着学习的深入会逐渐加深数学抽象化的程度,我们要体会这种抽象化,它更接近数学的本质,也是有效地解决数学问题的工具.2. 在学习多项式的时候,要注意和单项式的概念进行比较,通过比较两者之间的相同点和不同点,掌握两个概念之间的联系与区别,突出概念的本质,帮助我们理解多项式的概念.【模拟试题】(答题时间:40分钟)一. 选择题1. 在代数式中单项式共有()A. 2个B. 4个C. 6个D. 8个*2. 下列说法不正确的是()C. 6x2-3x+1的项是6x2,-3x,1D. 2πR+2πR2是三次二项式3. 下列整式中是多项式的是()4. 下列说法正确的是()A. 单项式a的指数是零B. 单项式a的系数是零C. 24x3是7次单项式D. -1是单项式5. 组成多项式2x2-x-3的单项式是下列几组中的()A. 2x2,x,3B. 2x2,-x,-3C. 2x2,x,-3D. 2x2,-x,3*7. 下列说法正确的是()B. 单项式a的系数为0,次数为2C. 单项式-5×102m2n2的系数为-5,次数为58. 下列单项式中的次数与其他三个单项式次数不同的是()**9. (2007年华杯初赛)如果一个多项式的各项的次数都相同,则称该多项式为齐次多项式. 例如:x3+2xy2+2xyz+y3是3次齐次多项式. 若x m+2y2+3xy3z2是齐次多项式,则m等于()A. 1B. 2C. 3D. 4二. 填空题1. (2007年云南)一台电视机的原价为a元,降价4%后的价格为__________元.三. 解答题*1. 下列代数式中哪些是单项式,并指出其系数和次数.2. 说出下列多项式是几次几项式:(1)a3-ab+b3(2)3a-3a2b+b2a-1(3)3xy2-4x3y+12(4)9x4-16x2y2+25y2+4xy-1四. 综合提高题**3. 一个关于字母a、b的多项式,除常数项外,其余各项的次数都是3,这个多项式最多有几项?试写出一个符合这种要求的多项式,若a、b满足︱a+b︱+(b-1)2=0,求你写出的多项式的值.【试题答案】一. 选择题1. B2. D3. B4. D5. B6. C7. D8. B9. B二. 填空题三. 解答题2. (1)三次三项式(2)三次四项式(3)四次三项式(4)四次五项式四. 综合提高题1. 由题意可知m+2+1=8,∴m=52. (1)四次六项式,最高次项是-3x3y,最高次项系数是-3,常数项是1(2)三次三项式,最高次项是y3,最高次项系数是1,常数项是-0.53. 最多有5项(可以含有a3,b3,a2b,ab2),如a3+a2b+ab2+b3+1(答案不唯一). 因为︱a+b ︱+(b-1)2=0,所以b=1,a=-1,所以原式=-1+1-1+1+1=1。
初一上册数学练习题第一章有理数1.1 正数和负数1、在数学中,正数有无穷多个,负数也有无穷多个。
2、如果水位升高5m时水位变化记作+5m,那么水位下降3m时水位变化记作-3m,水位不升不降时水位变化记作0m。
3、在同一个问题中,分别用正数与负数表示的量具有相反的意义。
4、下列说法正确的是(B)零既不是正数也不是负数。
5、向东行进-30米表示的意义是(D)向西行进30米。
6、零上13℃记作+13℃,零下2℃可记作(B)-2℃。
7、某市2009年元旦的最高气温为2℃,最低气温为-8℃,那么这天的最高气温比最低气温高10℃。
1.2 有理数1.整数和分数统称为有理数。
2.零和负数统称为非正数,零和正数统称为非负数。
3.下列说法中正确的是(D)整数和分数统称为有理数。
4.下列说法中不正确的是(C)-2000既是负数,也是整数,但不是有理数。
5.把下列各数分别填在相应集合中:正数集合:{1.325.0.618}负数集合:{-0.20.-789.-23.13.-2004}非正数集合:{-0.20.-789.-23.13.-2004}非负数集合:{0.1.325.0.618}6.把下列各数分别填在相应的大括号里:正数集合:{5.3.7}负数集合:{-2.-3.4.-21}整数集合:{-2.5.-3.-21}有理数集合:{-2.5.-3.4.-21.3.7}1.2.2 数轴1.(2012江苏泰州市,10,3分)如图,数轴上的点P表示的数是-1,将点P向右移动3个单位长度得到点P’,则点P’表示的数是2.2.(2012山东莱芜,1,3分)如图,在数轴上点M表示的数可能是负数。
3.数轴上点A表示数a,那么A到原点的距离是什么?4.数轴上距离原点为3的数是什么?1.3 相反数、绝对值和倒数1.-2的相反数是什么?A。
B。
-。
C。
-2.D。
22.3的相反数是什么?A。
-3.B。
C。
3.D。
3.-2012的相反数是什么?A。
七年级数学上册《第一章有理数的加法》同步练习及答案-人教版学校:___________班级:___________姓名:___________考号:___________基础巩固练习一、选择题1.计算-2+1的结果是( )A.1B.-1C.3D.-32.下列计算正确的是( )A.(+6)+(+13)=+7B.(-6)+(+13)=-19C.(+6)+(-13)=-7D.(-5)+(-3)=83.佳佳家冰箱冷冻室的温度为-15 ℃,求调高3 ℃后的温度,这个过程可以用下列算式表示的是( )A.-15+(-3)=-18B.15+(-3)=12C.-15+3=-12D.15+(+3)=184.有理数a、b在数轴上对应的位置如图所示,则a+b的值( )A.大于0B.小于0C.小于aD.大于b5.某校小卖铺一周的盈亏情况如下表所示(每天固定成本200元,其中“+”表示盈利,“-”表示亏损)星期一二三四五盈亏+220 -30 +215 -25 +225则这个周共盈利( )A.715元B.630元C.635元D.605元6.两个有理数的和等于零,则这两个有理数( )A.都是零B.一正一负C.有一个加数是零D.互为相反数7.下列各式的结果,符号为正的是( )A.(-3)+(-2)B.(-2)+0C.(-5)+6D.(-5)+58.在一竞赛中,老师将90分规定为标准成绩,记作0分,高出此分的分数记为正,不足此分的分数记为负,五名参赛者的成绩为+1,-2,+10,-7,0.那么( )A.最高成绩为90分B.最低成绩为88分C.平均成绩为90分D.平均成绩为90.4分二、填空题9.比﹣3大2的数是.10.已知飞机的飞行高度为10 000 m,上升3 000 m后,又上升了-5 000 m,此时飞机的高度是 m.11.在下面的计算过程后面填上运用的运算律.计算:(-2)+(+3)+(-5)+(+4).解:原式=(-2)+(-5)+(+3)+(+4)( )=[(-2)+(-5)]+[(+3)+(+4)] ( )=(-7)+(+7)=0.12.-113的相反数与-34的和是____________.13.小明家冰箱冷冻室的温度为-5℃,调高4℃后的温度为______℃.14.计算(-0.5)+314+2.75+(-512)的结果为 .三、解答题15.计算:(-23)+(+58)+(-17);16.计算:|(-7)+(-2)|+(-3);17.计算:﹣27+(﹣32)+(﹣8)+27;18.计算:(+26)+(-14)+(-16)+(+18);19.若|a|=4,|b|=2,且a<b,求a+b的值.20.振子从一点A开始左右来回振动8次,如果规定向右为正,向左为负,这8次振动记录为(单位:毫米):+10,﹣9,+8,﹣6,+7.5,﹣6,+8,﹣7.(1)求振子停止时所在位置距A点有多远?(2)如果每毫米需时间0.02秒,则共用时间多少秒?21.根据下面给出的数轴,解答下面的问题:(1)请你根据图中A、B两点的位置,分别写出它们所表示的有理数A:B:;(2)观察数轴,与点A的距离为4的点表示的数是:;(3)若将数轴折叠,使得A点与﹣3表示的点重合,则B点与数表示的点重合.能力提升练习一、选择题:1.如图,数轴上点A ,B 表示的有理数分别是a ,b ,则( ) A.a +b >0 B.a +b <a C.a +b <0 D.a +b >b2.若两个有理数的和为负数,则这两个有理数( )A.一定都是负数B.一正一负,且负数的绝对值大C.一个为零,另一个为负数D.至少有一个是负数3.如果a ,b 是有理数,那么下列式子成立的是( )A.如果a <0,b <0,那么a +b >0B.如果a >0,b <0,那么a +b >0C.如果a >0,b <0,那么a +b <0D.如果a <0,b >0且|a|>|b|,那么a +b <04.计算0.75+(- 114)+0.125+(-57)+(-418)的结果是( ) A.657 B.-657 C.527 D.-5275.已知|a|=5,|b|=2,且|a ﹣b|=b ﹣a ,则a +b =( )A.3或7B.﹣3或﹣7C.﹣3D.﹣76.如图,数轴上P 、Q 、S 、T 四点对应的整数分别是p 、q 、s 、t ,且有p +q +s +t =﹣2,那么,原点应是点( )A.PB.QC.SD.T二、填空题7.设a 为最小的正整数,b 是最大的负整数,c 是绝对值最小的数,则a +b +c= .8.上周五某股民小王买进某公司股票1 000股,每股35元,下表为本周内每日股票的涨跌情况(单位:元):则在星期五收盘时,每股的价格是 .9.若|x﹣2|=5,|y|=4,且x>y,则x+y的值为.10.设a<0,b>0,且a+b>0,用“<”号把a、﹣a、b、﹣b连接起来为.三、解答题:11.计算:(-1.75)+1.5+(+7.3)+(-4.25)+(-6.5).12.计算:137+(-213)+247+(-123).13.计算:(-2.125)+(+315)+(+518)+(-3.2).14.计算:(-2.125)+(+315)+(+518)+(-3.2).15.某产粮专业户出售余粮10袋,每袋重量如下(单位:千克):199、201、197、203、200、195、197、199、202、196.(1)如果每袋余粮以200千克为标准,求这10袋余粮总计超过多少千克或者不足多少千克?(2)这10袋余粮一共多少千克?16.寻找公式,求代数式的值:从2开始,连续的偶数相加,它们的和的情况如下表:(1)当n个最小的连续偶数相加时,它们的和S与n之间有什么样的关系,用公式表示出来;(2)按此规律计算:①2+4+6+…+200值;②162+164+166+…+400值.答案基础巩固练习1.B2.C3.C4.A.5.D6.D7.C.8.D9.答案为:﹣1.10.答案为:8000.11.答案为:加法交换律,加法结合律.12.答案为:7 1213.答案为:-114.答案为:0.15.解:原式=[(-23)+(-17)]+(+58)=-40+58=18.16.解:原式=|-9|+(-3)=9+(-3)=6.17.解:原式=﹣27+(﹣32)+(﹣8)+27=﹣27﹣32﹣8+27=﹣40;18.解:原式=[(-14)+(-16)]+(26+18)=-30+44=14.19.解:∵|a|=4,|b|=2∴a=4或﹣4,b=2或﹣2∵a<b∴a=﹣4,b=2或﹣2当a=﹣4,b=2时,a+b=﹣4+2=﹣2;当a=﹣4,b=﹣2时,a+b=﹣4﹣2=﹣6.20.解:(1)+10+(﹣9)+8+(﹣6)+7.5+(﹣6)+8+(﹣7)=5.5毫米答:振子停止时所在位置距A点5.5毫米;(2)0.02×(10+|﹣9|+8+|﹣6|+7.5+|﹣6|+8+|﹣7|)=0.02×61.5=1.23秒.答:共用时间1.23秒.21.解:(1)由数轴上AB两点的位置可知,A点表示1,B点表示﹣2.5. 故答案为:1,﹣2.5;(2)∵A点表示1∴与点A的距离为4的点表示的数是5或﹣3.故答案为:5或﹣3;(3)∵A点与﹣3表示的点重合∴其中点==﹣1∵点B表示﹣2.5∴与B点重合的数=﹣2+2.5=0.5.故答案为:0.5.能力提升练习1.C2.D3.D;4.B.5.B.6.C.7.答案为:0.8.答案为:34元;9.答案为:11,3,﹣7.10.答案为:﹣b<a<﹣a<b.11.解:原式=[(-1.75)+(-4.25)]+[(-6.5)+1.5]+(+7.3)=-6+(-5)+7.3=-11+7.3=-3.7.12.解:原式=(137+247)+[(-213)+(-123)]=4+(-4)=0.13.原式=[(-2.125)+(+518)]+[(+315)+(-3.2)]=3.14.解:原式=[(-2.125)+(+518)]+[(+315)+(-3.2)]=3.15.解:(1)以200千克为基准,超过200千克的数记作正数,不足200千克的数记作负数则这10袋余粮对应的数分别为:-1、+1、-3、+3、0、-5、-3、-1、+2、-4. (-1)+(+1)+(-3)+(+3)+0+(-5)+(-3)+(-1)+(+2)+(-4)=-11.答:这10袋余粮总计不足11千克.(2)200×10+(-11)=2 000-11=1 989.答:这10袋余粮一共1 989千克.16.解:(1))∵1个最小的连续偶数相加时,S=1×(1+1)2个最小的连续偶数相加时,S=2×(2+1)3个最小的连续偶数相加时,S=3×(3+1)…∴n个最小的连续偶数相加时,S=n(n+1);(2)①根据(1)得:2+4+6+…+200=100×(100+1)=10100;②162+164+166+…+400=(2+4+6+...+400)﹣(2+4+6+ (160)=200×201﹣80×81=40200﹣6480=33720.。
1.数学考试成绩85分以上为优秀,以85分为标准,老师将某一小组五名同学的成绩记为+9、-4、+11、-7、0,这五名同学的实际成绩最高的应是( ) A .94分 B .85分 C .98分 D .96分D解析:D 【分析】根据85分为标准,以及记录的数字,求出五名学生的实际成绩,即可做出判断. 【详解】解:根据题意得:859=94,854=81,8511=96,857=78,850=85+-+-- 即五名学生的实际成绩分别为:94;81;96;78;85, 则这五名同学的实际成绩最高的应是96分. 故选D . 【点睛】本题考查了正数和负数的识别,有理数的加减的应用,正确理解正负数的意义是解题的关键.2.下列运算正确的有( )①()15150--=;②11111122344⎛⎫÷-+= ⎪⎝⎭; ③2112439⎛⎫-= ⎪⎝⎭; ④()30.10.0001-=-;⑤22433-=-A .1个B .2个C .3个D .4个A解析:A 【分析】根据有理数加减乘除运算法则,和乘方的运算法则逐一判断即可. 【详解】()151530--=-,故①错误;11111511211223412121255⎛⎫÷-+=÷=⨯= ⎪⎝⎭,故②错误; 2217492339⎛⎫⎛⎫-=-=⎪ ⎪⎝⎭⎝⎭,故③错误;()30.10.001-=-,故④错误;22433-=-,故⑤正确; 故选A . 【点睛】本题考查了有理数的运算,乘方的运算,关键是熟练掌握有理数的运算法则.3.下列计算中,错误的是( ) A .(2)(3)236-⨯-=⨯= B .()144282⎛⎫÷-=⨯-=- ⎪⎝⎭C .363(6)3--=-++=D .()()2399--=--= C解析:C 【分析】根据有理数的运算法则逐一判断即可. 【详解】(2)(3)236-⨯-=⨯=,故A 选项正确;()144282⎛⎫÷-=⨯-=- ⎪⎝⎭,故B 选项正确; 363(6)9--=-+-=-,故C 选项错误;()()2399--=--=,故D 选项正确;故选C . 【点睛】本题考查了有理数的运算,重点是去括号时要注意符号的变化. 4.在-1,2,-3,4,这四个数中,任意三数之积的最大值是( ) A .6 B .12C .8D .24B解析:B 【分析】三个数乘积最大时一定为正数,二2和4的积为8,因此一定要根据-1和-3相乘,积为3,然后和4相乘,此时三数积最大. 【详解】∵乘积最大时一定为正数 ∴-1,-3,4的乘积最大为12 故选B . 【点睛】本题考查了有理数的乘法,两个负数相乘积为正数,先将两个负数化为正数是本题的关键.5.实数a ,b ,c ,d 在数轴上的位置如图所示,下列关系式不正确的是( )A .|a|>|b|B .|ac|=acC .b <dD .c+d >0B解析:B 【分析】先弄清a,b,c 在数轴上的位置及大小,根据实数大小比较方法可以解得. 【详解】从a 、b 、c 、d 在数轴上的位置可知:a <b <0,d >c >1;A、|a|>|b|,故选项正确;B、a、c异号,则|ac|=-ac,故选项错误;C、b<d,故选项正确;D、d>c>1,则c+d>0,故选项正确.故选B.【点睛】本题考核知识点:实数大小比较. 解题关键点:记住数轴上右边的数大于左边的数;两个负数,绝对值大的反而小.6.在数轴上距原点4个单位长度的点所表示的数是().A.4 B.-4 C.4或-4 D.2或-2C解析:C【解析】解:距离原点4个单位长度的点在原点的左边和右边各有一个,分别是4和-4,故选C.7.在日历纵列上圈出了三个数,算出它们的和,其中正确的一个是()A.28 B.34 C.45 D.75C解析:C【分析】日历纵列上圈出相邻的三个数,下边的数总比上边上的数大7,设中间的数是a,则上边的数是a- 7,下边的数是a+ 7,则三个数的和是3a,因而一定是3的倍数,且3数之和一定大于等于24,一定小于等于72,据此即可判断.【详解】日历纵列上圈出相邻的三个数,下边的数总比上边的数大7,设中间的数是a,则上边的数是a - 7,下边的数是a+ 7,则三个数的和是3a,因而一定是3的倍数,当第一个数为1,则另两个数为8,15,则它们的和为24,当第一个数为17,则另两个数为24,31,则它们的和为72,所以符合题意的三数之和一定在24到72之间,所以符合题意的只有45,所以C选项是正确的.【点睛】此题主要考查了一元一次方程的应用和有理数的计算,正确理解图表,得到日历纵列上圈出相邻的三个数的和一定是3的倍数以及它的取值范围是关键.-一定是负数;②||a一定是正数;③倒数等于它本身的数是±1;8.下列说法:①a④绝对值等于它本身的数是l;⑤平方等于它本身的数是1.其中正确的个数是()A.1个B.2个C.3个D.4个A解析:A【分析】根据正数与负数的意义对①进行判断即可;根据绝对值的性质对②与④进行判断即可;根据倒数的意义对③进行判断即可;根据平方的意义对⑤进行判断即可.【详解】-不一定是负数,故该说法错误;①a②||a一定是非负数,故该说法错误;③倒数等于它本身的数是±1,故该说法正确;④绝对值等于它本身的数是非负数,故该说法错误;⑤平方等于它本身的数是0或1,故该说法错误.综上所述,共1个正确,故选:A.【点睛】本题主要考查了有理数的性质,熟练掌握相关概念是解题关键. 9.下列有理数的大小比较正确的是()A.1123<B.1123->-C.1123->-D.1123-->-+ B解析:B【分析】根据有理数大小的比较方法逐项判断即得答案.【详解】解:A、1123>,故本选项大小比较错误,不符合题意;B、因为1122-=,1133-=,1123>,所以1123->-,故本选项大小比较正确,符合题意;C、因为1122-=,1133-=,1123>,所以1123-<-,故本选项大小比较错误,不符合题意;D、因为1122--=-,1133-+=-,1123-<-,所以1123--<-+,故本选项大小比较错误,不符合题意.故选:B.【点睛】本题考查了有理数的大小比较和有理数的绝对值,属于基础题型,掌握比较大小的方法是解题的关键.10.下列正确的是()A.5465-<-B.()()2121--<+- C.1210823-->D.227733⎛⎫--=--⎪⎝⎭A解析:A【分析】根据不等式的性质对各选项进行判断即可.【详解】解:(1)∵5465>,∴5465-<-,故选项A 符合题意; (2)∵-(-21)=21,+(-21)=-21,21>-21,∴()()2121--+->,故选项B 错误; (3)∵11210=108223---<,故选项C 错误; (4)∵227=-733--,227=733⎛⎫-- ⎪⎝⎭,∴227733⎛⎫---- ⎪⎝⎭<; 故选:A . 【点睛】此题主要考查了有理数的大小比较,熟练掌握有理数比较大小的方法是解答此题的关键. 11.一根1米长的绳子,第一次剪去一半,第二次剪去剩下的一半,如此下去,第六次后剩下的绳子长度为( )A .312⎛⎫ ⎪⎝⎭米B .512⎛⎫ ⎪⎝⎭米 C .612⎛⎫ ⎪⎝⎭米 D .1212⎛⎫ ⎪⎝⎭米C 解析:C 【分析】根据乘方的意义和题意可知:第2次后剩下的绳子的长度为(12)2米,那么依此类推得到第六次后剩下的绳子的长度为(12)6米. 【详解】 ∵1-12=12, ∴第2次后剩下的绳子的长度为(12)2米; 依此类推第六次后剩下的绳子的长度为(12)6米. 故选C . 【点睛】此题主要考查了乘方的意义.其中解题是正确理解题意是解题的关键,能够根据题意列出代数式是解题主要步骤.12.已知实数m 、n 在数轴上的对应点的位置如图所示,则下列判断正确的是( )A .m >0B .n <0C .mn <0D .m -n >0C解析:C 【解析】从数轴可知m 小于0,n 大于0,从而很容易判断四个选项的正误.解:由已知可得n大于m,并从数轴知m小于0,n大于0,所以mn小于0,则A,B,D 均错误.故选C.13.某市11月4日至7日天气预报的最高气温与最低气温如表:日期11月4日11月5日11月6日11月7日最高气温(℃)1912209最低气温(℃)43-45其中温差最大的一天是()A.11月4日B.11月5日C.11月6日D.11月7日C 解析:C【分析】运用减法算出每一天的温差,再进行比较即可.【详解】11月4日的温差为19415-=(℃);11月5日的温差为12(3)15--=(℃);11月6日的温差为20416-=(℃);11月7日的温差为19514-=(℃).所以温差最大的一天是11月6日.故选C.【点睛】考核知识点:有理数减法运用.根据题意列出减法算式是关键.14.计算-2的结果是()A.0 B.-2 C.-4 D.4A解析:A【详解】解:因为|-2|-2=2-2=0,故选A.考点:绝对值、有理数的减法15.计算(-2)2018+(-2)2019等于( )A.-24037B.-2 C.-22018D.22018C解析:C【分析】直接利用偶次方,奇次方的性质化简各数得出答案.【详解】解:(-2)2018+(-2)2019=(-2)2018+(-2)2018·(-2)=(-2)2018·(1-2)=-22018故选:C.【点睛】此题主要考查了偶次方的性质,正确化简各数是解题关键.1.若a、b、c、d、e都是大于1、且是不全相等的五个整数,它们的乘积abcde=,则它们的和a b c d e2000++++的最小值为__.【分析】先把abcde=2000化为abcde=2000=24×53的形式再根据整数abcde都大于1得到使a+b+c+d+e尽可能小时各未知数的取值求出最小值即可【详解】解:abcde=2000=解析:【分析】先把abcde=2000化为abcde=2000=24×53的形式,再根据整数a,b,c,d,e都大于1,得到使a+b+c+d+e尽可能小时各未知数的取值,求出最小值即可.【详解】解:abcde=2000=24×53,为使a+b+c+d+e尽可能小,显然应取a=23,b=2,c=d=e=5或a=22,b=22,c=d=e=5,前者S=8+2+15=25,后者S=4+4+15=23,故最小值S=23.故答案为:23.【点睛】本题考查的是质因数分解,能把原式化为abcde=2000=24×53的形式是解答此题的关键.2.数轴上,如果点 A所表示的数是3-,已知到点A 的距离等于 4 个单位长度的点所表示的数为负数,则这个数是_______.-7【分析】根据在数轴上点A所表示的数为3可以得到到点A的距离等于4个单位长度的点所表示的数是什么再根据负数的定义即可求解【详解】解:∵点A所表示的数是-3到点A的距离等于4个单位长度的点所表示的数解析:-7【分析】根据在数轴上,点A所表示的数为3,可以得到到点A的距离等于4个单位长度的点所表示的数是什么,再根据负数的定义即可求解.【详解】解:∵点A所表示的数是-3,到点A的距离等于4个单位长度的点所表示的数为负数,∴这个数是-3-4=-7.故答案为:-7.【点睛】本题考查了数轴,解题的关键是明确数轴的特点,知道到一个点的距离等3个单位长度的点表示的数有两个.3.若230x y ++-= ,则x y -的值为________.【分析】先利用绝对值的非负性求出xy 的值代入求解即可【详解】解:由题意得解得∴故答案为:【点睛】本题考查了绝对值的非负性解题的关键是熟练掌握绝对值的非负性 解析:5-【分析】先利用绝对值的非负性求出x 、y 的值,代入求解即可. 【详解】 解:由题意得,230x y ++-=20,30x y +=-=解得 2x =-, 3y =, ∴235-=--=-x y , 故答案为: 5.- 【点睛】本题考查了绝对值的非负性,解题的关键是熟练掌握绝对值的非负性.4.小明写作业时,不慎将墨水滴在数轴上,根据图中数值,请你确定墨迹盖住部分的整数有______.012【分析】根据题意可以确定被污染部分的取值范围继而求出答案【详解】设被污染的部分为a 由题意得:-1<a <3在数轴上这一部分的整数有:012∴被污染的部分中共有3个整数分别为:012故答案为012解析:0,1,2 【分析】根据题意可以确定被污染部分的取值范围,继而求出答案. 【详解】设被污染的部分为a , 由题意得:-1<a <3,在数轴上这一部分的整数有:0,1,2.∴被污染的部分中共有3个整数,分别为: 0,1,2. 故答案为0,1,2. 【点睛】考查了数轴,解决此题的关键是确定被污染部分的取值范围,理解整数的概念. 5.数轴上A 、B 两点所表示的有理数的和是 ________.-1【解析】由数轴得点A 表示的数是﹣3点B表示的数是2∴AB两点所表示的有理数的和是﹣3+2=﹣1故答案为-1解析:-1【解析】由数轴得,点A表示的数是﹣3,点B表示的数是2,∴ A,B两点所表示的有理数的和是﹣3+2=﹣1,故答案为-1.6.若两个不相等的数互为相反数,则两数之商为____.-1【分析】设其中一个数为a (a≠0)它的相反数为-a然后作商即可【详解】解:设其中一个数为a(a≠0)则它的相反数为-a所以这两个数的商为a÷(-a)=-1故答案为:-1【点睛】本题考查了相反数和解析:-1【分析】设其中一个数为a(a≠0),它的相反数为-a,然后作商即可.【详解】解:设其中一个数为a(a≠0),则它的相反数为-a,所以这两个数的商为a÷(-a)=-1.故答案为:-1.【点睛】本题考查了相反数和除法法则,根据题意设出这两个数是解决此题的关键.7.填空:(1)____的平方等于9;(2)(-2)3=____;(3)-14+1=____;(4)23×212⎛⎫⎪⎝⎭=____.3或-3-802【分析】根据乘方的法则计算即可【详解】解:(1)32=9(-3)2=9所以3或-3的平方等于9;(2)(-2)3=-2×2×2=-8;(3)-14+1=-1+1=0;(4)23×=8解析:3或-3 -8 0 2【分析】根据乘方的法则计算即可.【详解】解:(1)32=9,(-3)2=9,所以3或-3的平方等于9;(2)(-2)3=-2×2×2=-8;(3)-14+1=-1+1=0;(4)23×212⎛⎫⎪⎝⎭=8×14=2.故答案为:3或-3;-8;0;2.【点睛】本题考查了有理数乘方运算,熟记法则和乘方的意义是解决此题的关键.8.运用加法运算律填空:(1)[(-1)+2]+(-4)=___=___;(2)117+(-44)+(-17)+14=____=____.(-1)+(-4)+2-3117+(-17)+(-44)+1470【分析】(1)根据同号相加的特点利用加法的交换律先计算(-1)+(-4);(2)利用抵消的特点利用加法的交换律和结合律进行简便计算【解析:[(-1)+(-4)]+2 -3 [117+(-17)]+[(-44)+14] 70【分析】(1)根据同号相加的特点,利用加法的交换律,先计算(-1)+(-4);(2)利用抵消的特点,利用加法的交换律和结合律进行简便计算.【详解】(1)同号相加较为简单,故:[(-1)+2]+(-4)=[(-1)+(-4)]+2=-3(2)117和(-17)可通过抵消凑整,(-44)和14也可通过抵消凑整,故:117+(-44)+(-17)+14=[117+(-17)]+[(-44)+14]=70.【点睛】本题考查有理数加法的简算,解题关键是灵活利用加法交换律和结合律,凑整进行简算.9.若三个互不相等的有理数,既可以表示为3,a b+,b的形式,也可以表示为0,3a b ,a的形式,则4a b-的值________.15【分析】根据分母不等于0可得b≠0进而推得a+b=0再求出=-3解得b=-3a=3然后代入进行计算即可【详解】解:∵三个互不相等的有理数既可以表示为3的形式也可以表示为的形式∴∴=∴∴==∴==解析:15【分析】根据分母不等于0,可得b≠0,进而推得a+b=0,再求出3ab=-3,解得b=-3.a=3,然后代入4a b-进行计算即可.【详解】解:∵三个互不相等的有理数,既可以表示为3、a b+、b的形式,也可以表示为0、3ab、a的形式∴0b≠,∴a b+=0,∴3a3b=-,∴b=3-,a=3,∴4a b-=123+=15.故答案为15.【点睛】本题考查了代数式求值及其有理数的相关概念,根据题意推得b≠0、 a+b=0、3a b=-3是解答本题的关键.10.在-1,2,-3,0,5这五个数中,任取两个数相除,其中商最小是________.-5【分析】所给的五个数中最大的数是5绝对值最小的负数是-1所以取两个相除其中商最小的是:5÷(-1)=-5【详解】∵-3<-1<0<2<5所给的五个数中最大的数是5绝对值最小的负数是-1∴任取两个解析:-5【分析】所给的五个数中,最大的数是5,绝对值最小的负数是-1,所以取两个相除,其中商最小的是:5÷(-1)=-5.【详解】∵-3<-1<0<2<5,所给的五个数中,最大的数是5,绝对值最小的负数是-1,∴任取两个相除,其中商最小的是:5÷(-1)=-5,故答案为:-5.【点睛】本题主要考查有理数的大小比较和有理数除法,解决本题的关键是要熟练掌握有理数大小比较和有理数除法法则.11.一个数的25是165-,则这个数是______.−8【分析】把这个数看成单位1它的对应的数量是求这个数用除法【详解】()÷=−8故答案为−8【点睛】此题考查有理数的除法解题关键在于这个数看成单位1解析:−8【分析】把这个数看成单位“1”,它的25对应的数量是165-,求这个数用除法 【详解】 (165-)÷25=−8. 故答案为−8.【点睛】 此题考查有理数的除法,解题关键在于这个数看成单位“1”1.计算:(1)()()()923126--⨯-+÷-(2)()2235112342⎛⎫-+--÷- ⎪⎝⎭.解析:(1)1;(2)-1.【分析】(1)先算乘除,再算加减即可求解;(2)先算乘方,后算除法,最后算加减即可求解.【详解】(1)()()()923126--⨯-+÷-=962--=1;(2)()2235112342⎛⎫-+--÷- ⎪⎝⎭ =11891632-+-÷ =1893216-+-⨯ =892-+-=-1.【点睛】 此题考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.2.计算(1)(-1)2019+0.25×(-2)3+4÷23 (2)21233()12323-÷+-⨯+解析:(1)3;(2)-2【分析】(1)先计算乘方,然后计算乘除,再计算加减运算,即可得到答案;(2)先计算乘方,然后计算乘除,再计算加减运算,即可得到答案;【详解】解:(1)原式=-1+0.25×(-8)+6=-1-2+6=3;(2)原式=12931212323-÷+⨯-⨯+ =-3+6-8+3=-2;【点睛】本题考查了有理数的加减乘除混合运算,解题的关键是熟练掌握运算法则,正确的进行计算.3.计算:(1)231+-+;(2)()3202111024⎡⎤-⨯+-÷⎣⎦. 解析:(1)6;(2)12-【分析】 (1)先化简绝对值,再算加法即可求解;(2)先算乘方,再算括号里面的,最后算乘除即可.【详解】(1)原式=2+3+1=6;(2)原式=1(108)4-⨯-÷=124-⨯÷=1124-⨯⨯=12- 【点睛】此题考查有理数的混合运算,掌握运算顺序和运算法则是解答此题的关键. 4.计算: (1)5721()()129336--÷- (2)22115()(3)(12)23-+÷-⨯---⨯ 解析:(1)37;(2)50.【分析】(1)先把除法转化为乘法,然后根据乘法分配律计算即可求出值;(2)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值.【详解】(1)原式=572()(36)152824371293--⨯-=-++=. (2)原式=15(3)(3)(14)2145650-+⨯-⨯---⨯=-++=. 【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.。
初一数学第一章练习题(打印版)### 初一数学第一章练习题#### 一、选择题(每题2分,共20分)1. 下列哪个数是正数?- A. -3- B. 0- C. 5- D. -12. 如果一个数的相反数是-7,那么这个数是:- A. 7- B. -7- C. 0- D. 143. 绝对值是它本身的数是:- A. 任何数- B. 负数- C. 正数- D. 零4. 有理数的加法运算中,两个负数相加的结果是:- A. 正数- B. 负数- C. 零- D. 无法确定5. 下列哪个不是有理数?- A. √2- B. -2- C. 0.5- D. 3.146. 一个数的立方等于它本身,这个数可能是: - A. 1- B. -1- C. 0- D. 所有选项7. 一个数的平方是正数,这个数:- A. 一定是正数- B. 一定是负数- C. 可以是正数或负数- D. 无法确定8. 以下哪个是奇数?- A. 2- B. 3- C. 4- D. 69. 一个数的倒数是它本身,这个数只能是: - A. 1- B. -1- C. 0- D. 1或-110. 以下哪个不是偶数?- A. 2- B. 4- C. 6- D. 8#### 二、填空题(每题2分,共20分)1. 一个数的相反数是它自己,这个数是______。
2. 绝对值等于5的数有两个,分别是______和______。
3. 若a > 0,则a的倒数是______。
4. 两个数的和是正数,这两个数都是______。
5. 一个数的平方是16,这个数可以是______或______。
6. 一个数的立方是-8,这个数是______。
7. 一个数的绝对值是它本身,这个数是非负数,即______或______。
8. 一个数的相反数是-7,那么这个数是______。
9. 一个数的平方是9,这个数可以是______或______。
10. 一个数的立方是27,这个数是______。
七年级数学第一章测试题(本文以"七年级数学第一章测试题"为标题进行论述,排版整洁美观,语句通顺,表达流畅,无影响阅读体验的问题)第一题:计算下列各题。
1. 12 + 7 =2. 42 - 19 =3. 5 × 6 =4. 48 ÷ 8 =5. 3² =6. √81 =7. 3/4 + 2/5 =8. 2/3 - 1/4 =解答:1. 12 + 7 = 192. 42 - 19 = 233. 5 × 6 = 304. 48 ÷ 8 = 65. 3² = 96. √81 = 97. 3/4 + 2/5 = 23/208. 2/3 - 1/4 = 5/12第二题:填空题1. 如果a = 5,b = 3,c = 2,则a + b × c = 11。
2. 如果x = 4,y = 7,z = 2,则(x - y) ÷ z = -1.5。
第三题:解方程1. 3x + 5 = 14解:首先将5移到等号右边,得到3x = 14 - 5,化简得3x = 9,再除以3,得到x = 3。
2. 2(4x + 3) = 10x - 6解:首先将等式两边的括号展开,得到8x + 6 = 10x - 6。
将6移到等号右边,得到8x = 10x - 12,再将10x移到等号左边,得到8x - 10x = -12,化简得到-2x = -12,再除以-2,得到x = 6。
第四题:选择题1. 一个三角形的内角和是多少?A. 90°B. 180°C. 270°D. 360°正确答案是B。
2. 哪个不是整数?A. 0B. -3C. 5D. 1/2正确答案是D。
3. 一个长方形的边长分别为3cm和8cm,它的面积是多少?A. 15cm²B. 24cm²C. 25cm²D. 48cm²正确答案是D。
1. 1 生活中的立体图形
1.人们通常根据底面图形的边数将棱柱分为三棱柱、四棱柱、五棱柱、六棱柱……它们底面图形的形状分别是________、_______、_______、_______……
2.长方体、正方体都是________.直棱柱的各个侧面都是________.
3.粉笔盒的形状类似于_______,它是由______个面围成,_____个顶点,共有_____条棱.
4.图形是由____、____、____构成的,面与面相交得到_____,线与线相交得到_____.
5.如果把笔尖看成一个点,那么当笔尖在纸移动时就能画出线,这说明__________;如果把铅笔看成一条直线,那么铅笔水平落地的过程形成一个平面,这说明__________;笔记本绕它的一边所在直线旋转一周形成一个圆柱,这说明__________.
6.下列说法正确的是().
A.棱柱的各条棱都相等.
B.有九条棱的棱柱的底面,一定是三角形.
C.长方体和正方体不是棱柱.
D.棱柱上下两底面可以大小不一样.
7.在下图中,是棱柱的有______________;是圆柱的有__________;是圆锥的有_______;(填序号)
8.如图的图形绕轴旋转一周,便能形成a~f中的某个几何体,请你用线把它们连起来.
1.2 展开与折叠
一、选择题
1. 下面四个图形是多面体的展开图,其中哪一个是四棱锥的展开图( )
A. B. C. D.
2. 如图,是一个几何体的表面展开图,则该几何体是()
A.三棱柱
B.四棱锥
C.长方体
D.正方体
3. 如图不能折叠成正方体的是()
A. B. C. D.
4.下图中哪个图形经过折叠后可以围成一个棱柱()
A. B.
C. D.
5.如图是一个正方体的表面展开图,则图中“西”字所在面的对面所标的字是()
A.风
B.景
C.独
D.好
二、填空题
6.某正方体的每个面上都有一个汉字,如图是它的一个展开图,则在原正方体中,与“想”字所在面相对的面上的汉字是________.
第6 图第7题图
7.将“创建文明城市”六个字分别写在一个正方体的六个面上,这个正方体的平面展开图如图所示,那么在这个正方体中,和“创”相对的字是________.
8.如图是一个立体图形的平面展开图,则该立体图形是________.
第8题图第9题图
9.下面的卡片和卡片中,能折成正方体的________.
10. 一个正方体的平面展开图如图,已知正方体相对两个面上的数之和相等,则________,
________.
第10题图第11题图
11.如图是一个正方体盒子的展开图,请把、、、、、分别填入图中的个正方形中,使得将其折成正方体后,相对面上的两个数互为相反数.
12.下列选项能折叠成正方体的是()
1.3 截一个几何体
一、选择题
1. 立方体的截面不可能是()
A.三角形
B.四边形
C.六边形
D.七边形
2. 用一平面截下面的几何体,无法得到长方形截面的是()
A.正方体
B.长方体
C.圆锥
D.圆柱
3. 用平面截下列几何体,相应的截面形状是()
A. B. C.
4. 用平面去截一个几何体,如截面为长方形,则几何体不可能是()
A.圆柱
B.圆锥
C.长方体
D.正方体
5. 用一个平面截一个几何体,得到的截面是四边形,则这个几何体可能是()
A.球体
B.圆柱
C.圆锥
D.以上都不对
6. 在球、圆柱、正方体、长方体、圆锥、三棱柱中,能截出圆的几何体有()
A.个
B.个
C.个
D.个
二、填空题
7. 用一个平面截一个正方体,截面最多是________边形.
8.用一个平面去截某一个立体图形,无论如何截,它的截面都是一个圆,则这个几何体一定是________.
9.在圆柱、圆锥、正方体、长方体、棱柱、球这些几何体中,截面中有圆形的几何体是________.
10. 用一个平面去截一个几何体,所得的截面始终是一个圆,那么这个几何体是________.
11.如图所示,用四个不同的平面去截一个正方体,请根据截面的形状填空:
截面的形状是________;截面的形状是________;
截面的形状是________;(4)截面的形状是________.
1.4 从三个方向看物体的形状
一、选择题
1.如图所示的几何体,从上面看到的几何体的形状图为()
A. B. C. D.
正面
2.如图,由四个正方体组成的几何体,从正面看到的几何体的形状图是()
A. B. C. D.
正面
3.如图所示的物体是由两个紧靠在一起的圆柱体组成,下列四个选项中从正面看到的几何体
的形状图应该是()
A. B. C. D.
正面
4.如图是一个由4个相同的正方体组成的立体图形,从正面看到的几何体的形状图是()
A. B. C. D.
正面
5.如图是由4个大小相同的正方体组合而成的几何体,从左面看到的几何体的形状图是
()
A. B. C. D.
6.如图所示的几何体是由五个小正方体组成的,从左面看到的几何体的形状图是()
A. B. C. D.
7.下列四个几何体从上面看到的形状图与众不同的是()
A. B. C. D.
8.一个几何体由大小相同小立方块搭成,从上面看到几何体形状图,如图所示,其中小正方
体中数字表示该位置上小立方块个数,请画出从正面看、从左面看这个几何体的形状图.
9.如图,这是一个小正方体所搭几何体的从上面看到的几何体的形状图,正方形中的数字表
示在该位置小正方体的个数.请你分别画出从左面看、从正面看的形状图.
10.如图,是由小立方块搭成的几何体的从上面看到的形状图,小正方形中的数字是表示在该
位置的小立方块的个数,再根据从左面看到的形状图提供的信息,求x,y的值,并画出从正面看到的形状图.
从上面看从左面看。