第6章工况及边界条件.
- 格式:ppt
- 大小:226.00 KB
- 文档页数:9
室外风环境模拟软件边界条件模拟目标:通过室外风环境模拟,指导建筑在规划时合理布局建筑群,优化场地过渡季、夏季的自然通风,避开冬季主导风向的不利影响。
实际工程中需采用可靠的计算机模拟程序,合理确定边界条件,基于典型的风向、风速进行建筑风环境模拟,并符合以下要求:1)冬季典型风速和风向条件下,建筑物周围人行区风速低于5m/s,且风速放大系数小于2;(如难以达到V<5m/s的要求,经专家论证后可适当降低要求,但室外风速放大系数必须满足;) 第2排建筑迎风面与背风面(或主要开窗)表面风压差不超过5Pa;2)过渡季、夏季典型风速和风向条件下,场地内人活动区不出现涡旋或无风区,50%以上可开启外窗室内外表面的风压差大于0.5Pa。
模拟边界条件:为保证模拟的准确性,室外风环境模拟边界条件设置应符合下列规定:1)模拟工况:根据《中国建筑热环境分析专用气象数据集》中地区典型气象年的数据统计,按表1.1选择过渡季、夏季和冬季出现频率最高的风向和平均风速作为对应季节的模拟条件;表1.1 地区室外风环境模拟工况工况风频(%)风向风速过渡季15.98 ESE 3.34夏季10.87 S 3.60冬季27.78 E 3.242)建模域:评价建筑(群)应充分考虑周围建筑的影响,得到的风环境计算结果方具有可参考价值。
而过多的考虑周围建筑,则会导致建模工作量过大。
建议最低建模工作量,既可以反映出最主要的影响因素对目标建筑周边风环境的影响,又将建模工作量限定在合理的范围;3)计算域:水平方向的长和宽不宜小于7H(含建筑本身)、垂直方向高度不宜小于3H;建- 1 -- 2 - 筑阻挡率不宜大于5%,不应大于10%。
当模拟关注建筑物后的尾流时,下风方向的长度可适当扩大;图1.1 计算域和建模域推荐尺寸示意图根据风洞实验技术的要求,计算区域的选取应保证室外梯度风充分发展形成大气边界层特征的流动,且建筑阻挡率不宜>5%,以尽可能接近真实大气流动,不致于产生气流在“受限”空间内流动从而影响模拟精度的情况。
X边界条件和载荷10.1边界条件施加的力和/或者约束叫做边界条件。
在HyperMesh中,边界条件存放在叫做load collectors的载荷集中。
Load collectors可以通过在模型浏览器中点击右键来创建(Create > Load Collector)。
经常(尤其是刚开始)需要一个load collector来存放约束(也叫做spc-单点约束),另外一个用来存放力或者压力。
记住,你可以把任何约束(比如节点约束自由度1和自由度123)放在一个load collector中。
这个规则同样适用于力和压力,它们可以放在同一个load collector中而不管方向和大小。
下面是将力施加到结构的一些基本规则。
1.集中载荷(作用在一个点或节点上)将力施加到单个节点上往往会出现不如人意的结果,特别是在查看此区域的应力时。
通常集中载荷(比如施加到节点的点力)容易产生高的应力梯度。
即使高应力是正确的(比如力施加在无限小的区域),你应该检查下这种载荷是不是合乎常理?换句话说,模型中的载荷代表了哪种真实加载的情形?因此,力常常使用分布载荷施加,也就是说线载荷,面载荷更贴近于真实情况。
2.在线或边上的力上图中,平板受到10N的力。
力被平均分配到边的11个节点上。
注意角上的力只作用在半个单元的边上。
上图是位移的云图。
注意位于板的角上的红色“热点”。
局部最大位移是由边界效应引起的(例如角上的力只作用在半个单元的边上),我们应该在板的边线上添加均匀载荷。
上述例子中,平板依然承受10N的力。
但这次角上节点的受力减少为其他节点受力的一半大小。
上图显示了由plate_distributed.hm文件计算得到的平板位移的云图分布。
位移分布更加均匀。
3.牵引力(或斜压力)牵引力是作用在一块区域上任意方向而不仅仅是垂直于此区域的力。
垂直于此区域的力称为压力。
4.分布载荷(由公式确定的分布力)如何施加一个大小变化的力?分布载荷(大小随着节点或单元坐标变化)可以由一个公式来创建。