电气工程电磁场仿真实验报告
- 格式:docx
- 大小:7.01 MB
- 文档页数:15
北方XX大学
电磁仿真设计报告
学院:
专业:
班级:
姓名:
学号:
时间:
1、尺寸
2、主回路
3、参数
气隙:1.8mm 绕组匝数13 绕组线径:2mm×8mm 直流电阻值:1.51mΩ计算电感:34uH。
4、仿真分析
1)仿真DCDC变换电路中的电抗器,因为电压和电流是时变的,所以选择求解器用瞬态求解器。
2)电抗器铁芯不符合2D模型,所以仿真的时候,模型应该用3D模型仿真3)主回路中有电容器件,所以源需要用外电路
4)根据模型的对称性,可以仿真其1/4部分,降低求解量。
5)因为3D模型的剖分不好控制,所以可以选择导入静态剖分单元进行精度控制,所以需要建立两个工程,一个静态的用来剖分,一个顺态的用来求解。
5、模型
6、外电路
7、磁密度分布(1/4模型)
8、磁场强度矢量
9、输入电压
峰值12V,频率80KHZ,占空比0.5
11、输出电压
13、铜损
14、铁损
15、电感量。
电磁场仿真实验报告运用ansoft求解静电场一.计算题目验证两个半径为6mm轴线相距20mm带电密度分别10C/m和-10C/m的无限长导体圆柱产生的电场与两个相距16mm的带电密度分别为10C/m和-10C/m的无限长导线产生的电场是否相同。
二.计算导体圆柱产生的电场圆柱的半径为6mm,轴线相距20mm,左圆柱带电-10C/m,右圆柱带电10C/m。
图2-1模型设定图2-2材质设定图2-3-1边界条件设定图2-3-2初始条件设定1图2-3-3初始条件设定2图2-4求解目标设定图2-5-1求解设定图2-5-2网格设定图2-6-1结果显示:电压图2-6-2结果显示:电压图2-6-3结果显示:电压图2-7-1结果显示:电场强度图2-7-2结果显示:电场强度图2-7-3结果显示:电场强度图2-8-1结果显示:电场强度矢量图2-8-2结果显示:电场强度矢量图2-8-3结果显示:电场强度矢量图2-9-1结果显示:能量图2-9-2结果显示:能量图2-9-3结果显示:能量三.计算直导线产生的电场导线相距16mm,半径0.1mm,左导线带电-10C/m,右导线带电10C/m。
图3-1模型设定图3-2材质设定图3-3-1边界条件设定图3-3-2初始条件设定图3-3-3初始条件设定图3-4求解目标设定图3-5-1求解设定图3-5-2网格设定图3-6-1结果显示:电压图3-6-2结果显示:电压图3-6-3结果显示:电压图3-7-1结果显示:电场强度图3-7-2结果显示:电场强度图3-7-3结果显示:电场强度图3-8-1结果显示:电场强度矢量图3-8-2结果显示:电场强度矢量图3-8-3结果显示:电场强度矢量图3-9-1结果显示:能量图3-9-2结果显示:能量图3-9-3结果显示:能量四.结论在长直导线的计算过程中,由于尺寸比较小,使得结果显示并不尽如人意,但我们依然可以从电压、电场强度矢量的结果中发现,两者产生的电场是非常相似的。
工程电磁场实验报告电气工程学院XXX2014302540XXX平行输电线电场计算1.问题描述:导线半径0.01m,导线对地高度为10m,导线间距为5m,每根导线对地电压为6V,6根导线平行放置,建立模型并求解电场分布。
2.创建项目,选择求解类型(1)启动并建立项目文件(2)重命名并保存(3)选择分析类型和求解器新建工程文件,单击菜单命令Project/Insert Maxwell 2D Design,或者单击工具栏上的图标。
执行菜单命令Maxwell 2D/Solution Type,在弹出的对话框中选择求解类型Electrostatic,如图2-1所示:图2-1 选择求解器类型3.绘制几何模型(1)设置绘图单位执行菜单命令Modeler/Units,根据需要进行单位设置。
本例中单位为m。
(2)绘制模型(a)绘制导线绘制导线1:点击快捷键(或者执行命令Draw/Circle),绘图区下方坐标状态栏输入(-2.5,10,0)后回车,此时坐标(X,Y,Z)变为(dX,dY,dZ),在其中输入(0,0.01,0),如图3-1所示,回车则会出现面圆Circle1。
图3-1 第一根导线坐标示意图同理,绘制导线2-6,导线2的圆心坐标为(-7.5,10,0),半径为(0,0.01,0);导线3的圆心坐标为(-12.5,10,0),半径为(0,0.01,0);导线4的圆心坐标为(2.5,10,0),半径为(0,0.01,0);导线5的圆心坐标为(7.5,10,0),半径为(0,0.01,0);导线6的圆心坐标为(12.5,10,0),半径为(0,0.01,0);(b)绘制求解区域执行菜单命令Draw/Circle或单击工具栏上的,输入坐标(0,0,0)回车,输入(0,62.5,0)回车确认,得到cricle7。
只选择上半区域进行求解,选中circle7,执行菜单命令Modeler/Boolean/Split或单击工具栏上的,选择XZ平面,点击确定,如图3-2所示。
电气工程中电磁场的仿真研究在电气工程领域,电磁场的研究一直是至关重要的课题。
随着科技的不断进步,仿真技术的应用为电磁场的研究提供了强大的工具和手段,使得我们能够更加深入地理解和分析电磁场的特性与行为。
电磁场是一种由电荷和电流产生的物理场,它在电气设备的运行、电力系统的传输以及电子器件的设计等方面都起着关键作用。
然而,电磁场的实际情况往往非常复杂,难以通过直接的实验测量和理论计算来完全准确地描述。
这时,仿真技术就展现出了其独特的优势。
电磁场仿真的基本原理是基于麦克斯韦方程组,通过数值计算的方法来求解电磁场的分布和变化。
在仿真过程中,需要对研究对象进行建模,包括几何形状、材料属性、边界条件等的设定。
然后,选择合适的仿真算法和软件工具,对模型进行计算和分析。
常见的电磁场仿真算法有有限元法、有限差分法和矩量法等。
有限元法是一种非常灵活的方法,适用于复杂几何形状和非均匀介质的问题;有限差分法则在规则的网格上进行计算,计算效率较高;矩量法常用于求解散射问题。
不同的算法各有其优缺点,在实际应用中需要根据具体问题进行选择。
在电气工程中,电磁场仿真有着广泛的应用。
例如,在电机设计中,通过仿真可以优化电机的磁场分布,提高电机的性能和效率。
我们可以分析电机定子和转子之间的气隙磁场,研究磁场的谐波含量对电机转矩脉动的影响。
还可以对电机的绕组结构进行优化,降低铜损和铁损。
在电力变压器的设计中,电磁场仿真可以帮助我们确定变压器的漏磁场分布,评估绕组的涡流损耗和热点温度,从而提高变压器的可靠性和使用寿命。
对于高压输电线路,仿真可以研究电场和磁场对周围环境的影响,为线路的规划和建设提供依据。
此外,在电子电路和器件的设计中,电磁场仿真也发挥着重要作用。
比如,在集成电路的布线设计中,可以通过仿真分析信号传输过程中的电磁干扰,优化布线布局,提高电路的性能。
在微波器件的设计中,仿真能够帮助我们设计出具有特定频率响应和辐射特性的器件。
然而,电磁场仿真也并非完美无缺。
江西师范大学物理与通信电子学院
教学实验报告
注意:在分析过程中,要把该文件保存到默认的temp文件夹里面,否则将无法正常分析出结果。
江西师范大学物理与通信电子学院
教学实验报告
注意:在进行分析过程的时候,可以先在results中建立模型,节省分析的时间。
江西师范大学物理与通信电子学院
教学实验报告
天线参数如下:
(Theta, Phi) rEX (Theta, Phi) rEY (Theta, Phi) rEZ (Theta, Phi) rEPhi
注意:实验过程中注意选取BOX的数值应缩小10倍,或者是视图画面要缩小,否则创建的长方体会太大,影响后面选取的直立面。
电气仿真实训实习报告3篇电气仿真实训实习报告篇1一、采用标准 JBIT5325二、主要技术参数:1、精度等级1.5、2.02、测量管径DN25∽3000mm3、工作压力小于等于40Mpa4、工作温度-40∽250℃最高温度可达450℃5、环境温度-40∽85℃6、流体条件被测介质必须充满整个管道并充分发展的条流状态,且单相连续流动非临界流的流体。
插入内藏式双文丘利插入内藏式双文丘利也是基于差压原理的一种流量测量装置。
该装置是由一个与管道尺寸一样的短节及与插入在内的双文丘利组成。
主要应用于大管道、矩形管道风量的测量,由于其具有以下特点:灵敏度高,性能稳定体积小,压力损失少安装方便,便于维护因此可广泛用于新老电站锅炉的建造和改造、工业锅炉以及其它大口径底风速的空气流量测量。
阀式孔板节流装置,分高级、简易两种,其共同特点如下:1、应用最普遍的孔板流量计结构易于复制、简单、牢固、性能稳定,使用期限长,价格低廉;2、检测元件与差压显示仪表可分开不同生产,便于专业化形成规模经济生产,它们的结合非常灵活方便;3、应用范围极为广泛,至今尚未有任何一类流量计可以与之相比,全部单相流体,包括液、气皆可测量,部分混相留,如气固、气液、液固等亦可应用,一般生产过程的管径,工作状态(压力温度)皆有产品;4、检测件,特别是标准型的为全世界通用,并得到国际化组织和根据计量组织的认可,标准型节流装置无须标定即可投入使用。
采用的主要标准有: GB/T2624----93 流量测量节流装置用孔板、喷嘴和文丘里 SY/T6143----1996 管测量充满圆管的流体流量 JJG640------94 差压式流量计 JJG193------96 阀式孔板节流装置七、实习感悟生产实习是攀枝花学院为培养高素质工程技术人才安排的一个重要实践性教学环节,是将学校教学与生产实际相结合,理论与实践相联系的重要途径。
其目的是使我们通过实习在专业知识和人才素质两方面得到锻炼和培养,从而为毕业后走向工作岗位尽快成为业务骨干打下良好基础。
一、实验目的1. 理解电磁场的基本概念和基本定律。
2. 掌握电磁场模拟实验的方法和步骤。
3. 通过实验验证电磁场理论,加深对电磁场理论的理解。
二、实验原理电磁场是电荷和电流在空间中产生的场,具有电场和磁场两个基本部分。
电磁场的基本定律包括库仑定律、法拉第电磁感应定律和麦克斯韦方程组。
三、实验仪器1. 电磁场模拟器2. 直流电源3. 电阻、电容、电感元件4. 连接线5. 示波器6. 数据采集器四、实验内容1. 构建电磁场模拟电路2. 测量电路中的电场和磁场3. 分析实验数据,验证电磁场理论五、实验步骤1. 按照电路图搭建电磁场模拟电路,连接直流电源和电阻、电容、电感元件。
2. 使用示波器测量电路中的电场和磁场,记录数据。
3. 将实验数据导入数据采集器,进行数据分析。
4. 根据实验数据,验证电磁场理论。
六、实验结果与分析1. 电场和磁场的测量结果实验中,我们搭建了一个简单的LC振荡电路,测量了电路中的电场和磁场。
实验结果显示,电场和磁场的变化与理论计算相符。
2. 数据分析通过对实验数据的分析,我们验证了以下电磁场理论:(1)库仑定律:在真空中,两点电荷之间的相互作用力与它们电荷量的乘积成正比,与它们之间距离的平方成反比。
(2)法拉第电磁感应定律:当闭合回路中的磁通量发生变化时,回路中会产生感应电动势。
(3)麦克斯韦方程组:麦克斯韦方程组描述了电磁场的分布规律,包括高斯定律、法拉第电磁感应定律、安培环路定律和麦克斯韦-安培方程。
3. 实验误差分析实验中可能存在的误差包括:(1)测量仪器的精度限制:示波器和数据采集器的精度可能影响实验结果的准确性。
(2)电路搭建误差:电路搭建过程中可能存在连接不良、元件参数偏差等问题,导致实验结果与理论计算存在偏差。
七、实验总结本次电磁模拟试验实验,我们通过搭建电磁场模拟电路,测量电路中的电场和磁场,验证了电磁场理论。
实验结果表明,电磁场理论在实际情况中具有普遍性和准确性。
第1篇一、实验目的本次实验旨在通过磁力仿真分析,探究电磁铁磁力大小与电流大小、线圈匝数、铁芯材料等因素之间的关系,并验证理论分析的正确性。
二、实验原理电磁铁的磁力大小与电流大小、线圈匝数、铁芯材料等因素有关。
根据安培环路定律和法拉第电磁感应定律,电磁铁的磁感应强度B可以表示为:\[ B = \mu_0 \cdot \frac{N \cdot I}{l} \]其中,\(\mu_0\)为真空磁导率,N为线圈匝数,I为电流大小,l为线圈长度。
三、实验材料1. 仿真软件:COMSOL Multiphysics2. 电磁铁模型:铁芯、线圈、导线3. 电流源、电压源、电阻等元件4. 铁芯材料:软磁性材料、硬磁性材料四、实验步骤1. 建立电磁铁模型:使用COMSOL Multiphysics软件建立电磁铁模型,包括铁芯、线圈、导线等部分。
2. 设置边界条件:根据实验需求设置边界条件,如电流源、电压源、电阻等。
3. 材料属性:根据实验需求设置铁芯材料属性,包括磁导率、电阻率等。
4. 求解:使用COMSOL Multiphysics软件进行仿真求解,得到电磁铁的磁感应强度分布。
5. 结果分析:分析仿真结果,验证理论分析的正确性,并探究电磁铁磁力大小与电流大小、线圈匝数、铁芯材料等因素之间的关系。
五、实验结果与分析1. 电流大小对磁力的影响:仿真结果表明,随着电流大小的增加,电磁铁的磁感应强度也随之增加。
这与理论分析相符,说明电流大小对电磁铁磁力有显著影响。
2. 线圈匝数对磁力的影响:仿真结果表明,随着线圈匝数的增加,电磁铁的磁感应强度也随之增加。
这与理论分析相符,说明线圈匝数对电磁铁磁力有显著影响。
3. 铁芯材料对磁力的影响:仿真结果表明,不同铁芯材料对电磁铁磁力有显著影响。
软磁性材料具有较高的磁导率,因此电磁铁磁力较大;而硬磁性材料磁导率较低,电磁铁磁力较小。
六、结论1. 电磁铁磁力大小与电流大小、线圈匝数、铁芯材料等因素有关。
一、引言电磁场是现代工程领域中不可或缺的一部分,涉及通信、电子、电力、医疗等多个领域。
为了加深对电磁场理论知识的理解,提高实际操作能力,我们参加了为期两周的工程电磁场实训。
通过本次实训,我们不仅巩固了电磁场的基本理论,还学会了如何运用这些理论解决实际问题。
以下是本次实训的总结报告。
二、实训内容1. 电磁场基本理论实训首先对电磁场的基本理论进行了回顾,包括麦克斯韦方程组、电磁波、电磁场能量等。
通过理论学习,我们深入了解了电磁场的基本性质和规律。
2. 电磁场模拟软件的使用实训过程中,我们学习了电磁场模拟软件的使用方法。
以Ansys Maxwell为例,我们学会了如何建立模型、设置边界条件和求解电磁场问题。
通过实际操作,我们掌握了软件在工程中的应用。
3. 电磁场仿真实验在仿真实验环节,我们针对实际工程问题进行了电磁场仿真。
例如,我们模拟了天线辐射、传输线特性、电磁屏蔽等场景,分析了电磁场参数对实际工程的影响。
4. 电磁场测量实验实训还安排了电磁场测量实验,包括电磁场强度测量、电磁波传播特性测量等。
通过实验,我们掌握了电磁场测量仪器的使用方法,了解了电磁场参数的测量方法。
三、实训收获1. 理论知识得到巩固通过本次实训,我们对电磁场基本理论有了更深入的理解,为今后在相关领域的学习和工作打下了坚实的基础。
2. 实际操作能力得到提高实训过程中,我们学会了使用电磁场模拟软件和测量仪器,提高了实际操作能力。
这些技能将有助于我们在今后的工作中解决实际问题。
3. 团队协作能力得到锻炼实训过程中,我们分组进行实验和仿真,培养了团队协作精神。
在遇到问题时,我们共同讨论、解决问题,提高了团队协作能力。
4. 创新意识得到培养在实训过程中,我们针对实际问题进行仿真和实验,培养了创新意识。
通过不断尝试和改进,我们找到了更优的解决方案。
四、不足与反思1. 理论与实践结合不够紧密在实训过程中,我们发现部分理论知识在实际操作中应用不够灵活。