风电机组电气原理-控制系统(UE)
- 格式:ppt
- 大小:11.05 MB
- 文档页数:65
电气控制系统电气控制系统的作用是确保风力机运行过程的安全性和可靠性,提高机组的运行效率和发电供电质量。
离网型风力发电机组电气控制系统分为直流和交流系统。
直流系统是由风力机驱动直流发电机、经过调压限流器向蓄电池充电及向电阻性负载供电。
交流系统包括交流发电机、整流装置、控制器、分流卸载电阻箱、蓄电池组、逆变器和负载。
它是一个由交流发电机经整流装置整流后向蓄电池充电及向电阻性负载供电,还可以在蓄电池之后连接逆变器向交流负载供电的交直流供电系统。
发电机按类型分为同步和异步发电机;励磁和永磁发电机;直流和交流发电机。
按运行方式又分为内转子和外转子。
现有国产离网型风力发电机多采用同步三相永磁式交流发电机,而且是直接驱动的低转速、内转子运行方式。
这种发电机为永磁体转子,无励磁电流损耗,它比同容量电励磁发电机效率高、重量轻、体积小、制造工艺简便、无输电滑环,运转时安全可靠,容易实现免维护运行。
它的缺点是电压调节性能差。
一种爪极无刷自励磁交流发电机,具备励磁电流自动调节功能。
在为独立运行的小型风力发电机配套时,可以有效的避免因风速变化,发电机转速变化而引起的端电压波动,使发电机的电压和电流输出保持平稳。
控制器功率容量几千瓦的离网型风电系统常配置简易的控制器。
它包括三相全桥整流、电压限制、分流卸载电阻箱、对蓄电池充电时的充放保护和容量10kVA以下逆变电源。
逆变电源输出的交流电波形分正弦波和方波,感性负载宜采用正弦波形的逆变电源。
比较完善的控制器采用:PWM斩波整流,使电气控制系统具备了AC-DC/DC-AC 双向变换功能;(2)PWM升压型(Boost型)整流,弥补了永磁发电机在低风速、低转速时电压偏低的缺陷;(3)根据风力发电机的运行特性切入了最大功率跟踪技术(PTTP);(4)向蓄电池智能充电功能;(5)通过改善输出的交流波形,大幅提高风力发电系统的运行效率和年发电量;(6)设置风速及风力机转速传感器并在风速和转速达到限定值时启动执行机构实施制动停机;(7)设置了状态显示和主参数通讯接口。
风力发电系统的控制原理风力涡轮机特性:1,风能利用系数Cp风力涡轮从自然风能中吸取能量的大小程度用风能利用系数Cp表示:P---风力涡轮实际获得的轴功率r---空气密度S---风轮的扫风面积V---上游风速根据贝兹〔Betz〕理论可以推得风力涡轮机的理论最大效率为:Cpmax=0.593。
2,叶尖速比l为了表示风轮在不同风速中的状态,用叶片的叶尖圆周速度与风速之比来衡量,称为叶尖速比l。
n---风轮的转速w---风轮叫角频率R---风轮半径V---上游风速在桨叶倾角b固定为最小值条件下,输出功率P/Pn与涡轮机转速N/Nn的关系如图1所示。
从图1中看,对应于每个风速的曲线,都有一个最大输出功率点,风速越高,最大值点对应得转速越高。
如故能随风速变化改变转速,使得在所有风速下都工作于最大工作点,则发出电能最多,否则发电效能将降低。
涡轮机转速、输出功率还与桨叶倾角b有关,关系曲线见图2 。
图中横坐标为桨叶尖速度比,纵坐标为输出功率系统Cp。
在图2 中,每个倾角对应于一条Cp=f(l)曲线,倾角越大,曲线越靠左下方。
每条曲线都有一个上升段和下降段,其中下降段是稳定工作段〔若风速和倾角不变,受扰动后转速增加,l加大,Cp减小,涡轮机输出机械功率和转矩减小,转子减速,返回稳定点。
〕它是工作区段。
在工作区段中,倾角越大,l和Cp越小。
3,变速发电的控制变速发电不是根据风速信号控制功率和转速,而是根据转速信号控制,因为风速信号扰动大,而转速信号较平稳和准确〔机组惯量大〕。
三段控制要求:低风速段N<Nn,按输出功率最大功率要求进行变速控制。
联接不同风速下涡轮机功率-转速曲线的最大值点,得到PTARGET=f〔n〕关系,把PTARGET作为变频器的给定量,通过控制电机的输出力矩,使风力发电实际输出功率P=PTARGET。
图3是风速变化时的调速过程示意图。
设开始工作与A2点,风速增大至V2后,由于惯性影响,转速还没来得与变化,工作点从A2移至A1,这时涡轮机产生的机械功率大于电机发出的电功率,机组加速,沿对应于V2的曲线向A3移动,最后稳定于A3点,风速减小至V3时的转速下降过程也类似,将沿B2-B1-B3轨迹运动。
风力发电原理(控制)一、风力发电的基本原理风力发电是指利用风能转换成电力的一种清洁能源,其基本原理是将风能转化为机械能,再由发电机将机械能转化为电能。
因此,风力发电系统主要包括风能转化系统和发电系统两大部分。
风能转化系统风能转化系统一般由风轮、变桨机构和转速限制器组成。
具体来说,风轮是通过风能驱动旋转,变桨机构可以改变风轮叶片的角度以便控制风轮的旋转速度和转向,而转速限制器则可以限制风轮的旋转速度,以防风轮过快损坏风力发电系统。
发电系统发电系统由发电机、变流器和电子控制系统组成。
发电机将机械能转化为电能并输出到电网中,变流器则将交流电转化为直流电,并控制电能输出的电压和频率。
电子控制系统则可以实现对风力发电系统的监控和维护。
二、风力发电的控制风力发电系统的控制方案主要分为以下几种:1. 恒功率控制恒功率控制是指在风速超过额定风速时,通过调节风轮的旋转速度来控制风力发电系统的输出功率,以便让发电机输出恒定的电功率。
这种控制方式可以保证风力发电系统的稳定运行,但是当风速超过一定限制时,风轮的旋转速度会超过允许范围,从而导致发电系统的停机或受损。
2. 变桨控制变桨控制是指通过改变风轮叶片的角度来控制风力发电系统的输出功率。
当风速超过额定风速时,风力发电系统会自动调节叶片角度,以减小叶片受到的风力,从而控制风力发电系统的输出功率。
这种控制方式可以确保风力发电系统的安全运行,但是其控制精度相对较低,且需要涉及到大量的机械运动部件,容易受到外部环境的影响。
3. 惯性控制惯性控制是指通过测量风轮旋转速度和转向来控制发电机的输出功率。
当风速超过额定风速时,惯性控制系统会立即闸掉风轮,以避免风力发电系统受到损坏。
这种控制方式可以使风力发电系统的响应速度更快,但是需要消耗大量的电能,不太适合长期运行。
三、风力发电系统的优点相比于传统的化石能源和核能发电技术,风力发电有以下几个优点:1.清洁能源。
风力发电不会产生任何污染物,对环境更加友好。
风力发电机组的控制系统风力发电作为一种清洁、可再生的能源,越来越得到人们的重视和使用。
而风力发电最核心的部分就是风力发电机组控制系统。
本文将深入探讨风力发电机组控制系统的相关知识。
一、风力发电机组的基本组成部分风力发电机组通常由3个主要部分组成:风力涡轮、变速器和发电机。
其中变速器是为了将风力涡轮的旋转速度转变成适合发电机的速度,同时保证风力涡轮在各种风速下都能正常转动。
而发电机则是将机械能转变为电能。
二、风力发电机组的控制系统的分类根据控制对象的不同,风力发电机组控制系统可以分为风力涡轮控制系统和整机控制系统。
1. 风力涡轮控制系统风力涡轮控制系统主要由风速测量仪、方向传感器、转矩信号传感器、角度传感器、变桨控制器等部分组成。
其主要作用是对风速和转矩进行检测和获取,然后根据这些数据控制机组桨叶的角度,调节风力涡轮的输出功率,以适应不同的风速和负载要求。
当遭遇大风或预期外部异常情况时,风力涡轮控制系统还可以自动停机。
2. 整机控制系统整机控制系统主要由仪表、控制器、通信模块、电动机传动机构、机械部分等部分组成。
整机控制系统起到了协调、控制各部分工作的作用,可以实现以最佳的效率输出电能。
其主要作用是监控发电机组的运转状态,通过检测各项参数实时调整变速器的转速,并及时进行告警和自动停机。
三、风力发电机组控制系统的关键技术1. 风力涡轮桨叶轴系统的控制风力涡轮桨叶轴系统的控制是风力发电机组控制系统的核心部分之一,也是解决风机输出功率波动和抖动问题的重要技术。
目前常见的调节方式包括机械调节和电动调节两种。
机械调节方式主要采用伺服驱动的伸缩臂与桨叶之间的连杆机构实现,而电动调节则利用变速器的电动油门、电子液压伺服系统或液压拉杆控制桨毂角度。
其中,电动调节方式更加智能化、精准化。
2. 整机控制系统的优化算法整机控制系统的优化算法是风力发电机组控制系统技术的另一个重要方向。
通过对风能、转速、功率、角度等数据进行分析,整机控制系统可通过智能算法,实现最大效率的输出电能。
风电机组电气系统1. 简介风电机组电气系统是指风力发电机组中包含的所有电气设备和组件,用于将风能转化为电能并进行供电。
它包括风力发电机、变压器、电缆、控制系统等。
本文将对风电机组电气系统的组成、工作原理和常见故障进行介绍。
2. 组成风电机组电气系统主要由以下几个组成部分组成:2.1 风力发电机风力发电机是将风能转化为机械能的关键设备。
它通常由风轮、发电机和传动系统组成。
风轮通过风力的作用转动,驱动发电机发电。
风力发电机的类型有水平轴风力发电机和垂直轴风力发电机两种。
2.2 变压器变压器用于将风力发电机输出的低电压电能升压为适用于输送的高电压电能。
它起到了电能传输和分配的关键作用。
常见的变压器包括升压变压器和降压变压器。
2.3 电缆电缆用于将变压器输出的高电压电能输送到外部电网或用于风力发电机组内部的供电。
它要具备良好的绝缘性能和导电性能,以确保电能的安全传输和有效利用。
2.4 控制系统控制系统是风电机组电气系统的大脑,用于监控和控制机组的运行状态。
它由集中控制器、传感器和执行器等组成。
通过对风力发电机和变压器进行监测和调节,控制系统可以确保风电机组的安全运行和最大发电效率。
3. 工作原理风电机组电气系统的工作原理如下:1.风力发电机受到风的作用,风轮开始转动;2.转动的风轮通过传动系统将机械能传递给发电机;3.发电机利用转动的风轮产生的机械能,将其转化为电能;4.通过变压器将低电压的电能升压为高电压,便于输送;5.输送电能的电缆将电能传输到大型电网中,或者供电给其他设备;6.控制系统监测发电机、变压器和电缆的运行状态,并控制风力发电机组的运行。
4. 常见故障及处理风电机组电气系统可能会遇到一些常见故障,下面是其中一些故障及处理方法:4.1 发电机故障发电机故障可能包括电气故障和机械故障。
电气故障可能是由于线圈短路、绝缘破损等原因导致的。
机械故障可能是由于轴承磨损、风轮损坏等原因导致的。
处理方法包括维修或更换故障部件。
风力发电机基础知识及电气控制1. 引言风力发电是一种常见的可再生能源的发电方式,利用风力驱动风力发电机转动发电机,将风能转换为电能。
本文将介绍风力发电机的基础知识及其电气控制系统。
2. 风力发电机的工作原理风力发电机的工作原理基于风能转换为机械能,然后通过发电机将机械能转换为电能。
其主要构成包括风轮、发电机、传动系统和控制系统。
2.1 风轮风轮是风力发电机的核心部件,其作用是捕捉和利用风能来驱动转子旋转。
风轮一般由数个风叶组成,风叶的形状和材料会影响风轮的效率和性能。
2.2 发电机发电机是将机械能转换为电能的设备。
在风力发电机中,常使用的发电机类型有直流发电机和交流发电机。
直流发电机一般用于小规模的风力发电机组,而交流发电机则广泛应用于大型风力发电场。
发电机的输出功率与风速、风轮的转速以及发电机的效率有关。
2.3 传动系统传动系统将风轮的转动力矩传递给发电机,使发电机能够进行电能的转换。
传动系统一般由减速器和轴承组成,减速器的作用是将风轮高速旋转转化为发电机所需的合适速度。
2.4 控制系统控制系统对风力发电机进行监测和控制,使其在不同的风速条件下都能够运行稳定,并提高其发电效率。
控制系统一般包括风速测量、风向测量、发电机输出功率控制等模块。
3. 风力发电机的电气控制系统风力发电机的电气控制系统主要负责监测和控制发电机的运行状态,以实现稳定的发电性能。
3.1 风速与风向测量风速和风向测量是风力发电机电气控制系统的基础。
通过安装风速测量装置和风向测量装置,可以实时监测风力的大小和方向,并将数据传输给控制系统进行处理和分析。
3.2 发电机输出功率控制发电机输出功率控制是保证风力发电机稳定运行的关键。
通过对发电机输出功率进行控制,可以使其在不同的风速条件下都能够保持合适的输出功率。
3.3 电网连接与逆变控制风力发电机一般需要将产生的电能输送到电网中,供用户使用。
因此,电气控制系统还需要实现电网连接和逆变控制功能,以确保发电机输出的电能能够与电网进行正常连接。