管理系统运筹学模拟精彩试题及问题详解
- 格式:doc
- 大小:459.62 KB
- 文档页数:17
运筹模拟试题及答案
一、选择题
1. 进行运筹学研究时,下列哪种不是需要考虑的因素?
A. 成本
B. 时间
C. 资源
D. 颜色
答案:D
2. 运筹学中常用的优化方法包括以下哪种?
A. 贪心算法
B. 冒泡排序
C. 快速排序
D. 二分查找
答案:A
3. 下列哪种不是传统运筹学方法的代表性问题?
A. 线性规划
B. 背包问题
C. 旅行商问题
D. 贪心算法
答案:D
二、填空题
1. 运筹学最早是在(古代/近代)开始发展的。
答案:近代
2. 线性规划是运筹学中经典的(优化/排列)方法。
答案:优化
3. 旅行商问题是求解搜索过程中的最短(路径/时间)问题。
答案:路径
三、解答题
1. 请简要说明什么是线性规划,以及线性规划的基本原理。
答:线性规划是一种数学优化方法,用于找到使某种目标函数达到
最优的变量取值。
其基本原理是通过建立数学模型,确定决策变量和
约束条件,然后求解最优解,以达到最大化或最小化某项指标的目的。
2. 请简要介绍一下运筹学中的模拟方法以及其应用领域。
答:运筹学中的模拟方法是通过模拟系统的运行过程来进行决策分析和优化设计。
其应用领域包括生产调度、物流管理、金融风险分析等领域,在实际问题中具有广泛的应用。
以上为运筹模拟试题及答案,希望对您的学习和工作有所帮助。
如果还有其他问题,欢迎随时与我们联系。
祝您学习进步!。
一、名词解释 1.模型 2.线性规划 3.树 4.网络 5.风险型决策二、简答题 1.简述运筹学的工作步骤。
2.运筹学中模型有哪些基本形式 3.简述线性规划问题隐含的假设。
4.线性规划模型的特征。
5.如何用最优单纯形表判断线性规划解的唯一性或求出它的另一些最优解 6.简述对偶理论的基本内容。
7.简述对偶问题的基本性质。
8.什么是影子价格?同相应的市场价格之间有何区别,以及研究影子价格的意义。
9.简述运输问题的求解方法。
10.树图的性质。
11.简述最小支撑树的求法。
12.绘制网络图应遵循什么规则。
三、书《收据模型与决策》2.13 14. 有如下的直线方程:2x 1 +x 2 =4 a. 当x 2 =0 时确定x 1 的值。
当x 1 =0 时确定x 2 的值。
b. 以x 1 为横轴x 2 为纵轴建立一个两维图。
使用a 的结果画出这条直线。
c. 确定直线的斜率。
d. 找出斜截式直线方程。
然后使用这个形式确定直线的斜率和直线在纵轴上的截距。
答案: 14. a. 如果x 2 =0,则x 1 =2。
如果x 1 =0,则x 2 =4。
c. 斜率= -2 d. x 2 =-2 x 1 +4 2.40 你的老板要求你使用管理科学知识确定两种活动(和)的水平,使得满足在约束的前提下总成本最小。
模型的代数形式如下所示。
Maximize 成本=15 x 1 +20 x 2 约束条件约束1:x 1 + 2x 2 10 约束2:2x 1 3x 2 6 约束3:x 1 +x 2 6和x 1 0,x 2 0 a. 用图解法求解这个模型。
b. 为这个问题建立一个电子表格模型。
c. 使用Excel Solver 求解这个模型。
答案: a. 最优解:(x 1 , x 2 )=(2, 4),C=110 b c.活动获利 1 2总计水平A B C 1 2 2 3 1 1 10 10 8 6 6 6 单位成本方案15 20 2 4 $110.00 3.2 考虑具有如下所示参数表的资源分配问题: 资源每一活动的单位资源使用量可获得的资源数量 1 2 1 2 3 2 3 2 1 3 4 10 20 20 单位贡献$20 $30 单位贡献=单位活动的利润b. 将该问题在电子表格上建模。
习题答案或解题思路习题1x 1 、x 2吨,则问题是数学模型为: 1.2设一般时间、黄金时间、广播、报纸广告单元数分别为x 1、x 2、x 3、x 4,则线性规划模型为:1.3 设x 1为每周动物饲料量,x 2为每周谷物饮料量。
其数学模型为:1.4 设x 1、x 2、x 3分别为按各种下料所得的钢筋根数,y 1、y 2分别为满足90、60根后多余的根数,Z1.5用图解法得最优解为 X* =(10, 30)T ,Z*= 6800 1.6最优解为:X *= (15/4 , 3/4 , 0 , 0 )T ,Z * = 33/41.7最优解为:X* = (0,10)T ,Z* = 20当 -20 ≤ △b 1 ≤ 60时,原最优解基不变,最优解为:X* = (0,10+1/2△b 1,0,25+1/2△b 1,30-1/2△b 1,60+3/2△b 1)T ,Z* = 20 +△b 1 1.8 (1) 最优解X * = (2.5,25,0,0,0)T ,MaxZ = 57.5(2)最优解X * = (5.5,19,3,0,0)T 1.9 甲395,乙45,丙01.10 A 1生产40万瓶,A 2生产100万瓶,最大利润62万元。
1.11 原问题的最优解如表1所示:1.12 设x j (j=1,…,8)分别表示八种产品的产量,则问题的数学模型如下:1.13 设 x j为第 j 种生产过程的日产量,j=1,2,3;y 为第 j 种生产过程是否可用,y j =0、1。
1.14 设购买远、中、短程客机分别为1.15(1)设定变量名称(各系列机床所安排的产销量)设i 为产品系列种类,i = 1~6;设j 为指标种类,j = 1~3;设x i 为第i 种产品系列的计划产销量,设A ij 为第i 种产品所实现的第j 种指标数值。
(2)编制目标函数(利润最大化)Max Z = (A 11-A 13) x 1 + (A 21-A 23) x 2+ (A 31-A 33) x 3+ (A 41-A 43) x 4 + (A 51-A 53) x 5+ (A 61-A 63) x 6(3)编制约束条件:CA系列生产9124台,小CAK系列生产1720台,普及型生产156台,则满足所有约束,并可得最大利润为6617.6万元。
运筹学 试卷B 及参考答案(本题20分)一、考虑下面的线性规划问题:Min z=6X 1+4X 2约束条件: 2X 1+X 2 ≥13X 1+4X 2≥3 X 1 , X 2 ≥ 0(1) 用图解法求解,并指出此线型规划问题是具有惟一最优解、无穷多最优解、无界解或无可行解;(2) 写出此线性规划问题的标准形式; (3) 求出此线性规划问题的两个剩余变量的值; (4) 写出此问题的对偶问题。
解:(1)阴影部分所示ABC 即为此线性规划问题的可行域。
其中,A (0,1),B (1,3/4),C (1/5,3/5)。
显然,C (1/5,3/5)为该线性规划问题的最优解。
因此,该线性规划问题有唯一最优解,最优解为:121/5,3/5,*18/5x x z ===。
——8分。
说明:画图正确3分;求解正确3分;指出解的情况并写出最优解2分。
(2)标准形式为:121231241234min 6421343,,,0z x x x x x x x x x x x x =++-=⎧⎪+-=⎨⎪≥⎩ X 1 X 2 AB——4分 (3)两个剩余变量的值为:340x x =⎧⎨=⎩——3分(4)直接写出对偶问题如下:12121212max '323644,0z y y y y y y y y =++≤⎧⎪+≤⎨⎪≥⎩——5分(本题10分)二、前进电器厂生产A 、B 、C 三种产品,有关资料下表所示:学模型,不求解)解:设生产A 、B 、C 三种产品的数量分别为x 1,x 2和x 3,则有:——1分123123123123123max 810122.0 1.5 5.030002.0 1.5 1.21000200250100,,0z x x x x x x x x x x x x x x x =++++≤⎧⎪++≤⎪⎪≤⎪⎨≤⎪⎪≤⎪≥⎪⎩ ——14分,目标函数和每个约束条件2分(本题10分)三、某电子设备厂对一种元件的年需求为2000件,订货提前期为零,每次订货费为25元。
《运筹学》模拟试题及参考答案一、判断题(在下列各题中,你认为题中描述的内容为正确者,在题尾括号内写“√”,错误者写“×”。
)1. 图解法提供了求解线性规划问题的通用方法。
( )2. 用单纯形法求解一般线性规划时,当目标函数求最小值时,若所有的检验数C j-Z j ≥0,则问题达到最优。
( )3. 在单纯形表中,基变量对应的系数矩阵往往为单位矩阵。
( )4. 满足线性规划问题所有约束条件的解称为基本可行解。
( )5. 在线性规划问题的求解过程中,基变量和非基变量的个数是固定的。
( )6. 对偶问题的目标函数总是与原问题目标函数相等。
( )7. 原问题与对偶问题是一一对应的。
( )8. 运输问题的可行解中基变量的个数一定遵循m+n-1的规则。
( )9. 指派问题的解中基变量的个数为m+n。
( )10. 网络最短路径是指从网络起点至终点的一条权和最小的路线。
( )11. 网络最大流量是网络起点至终点的一条增流链上的最大流量。
( )12. 工程计划网络中的关键路线上事项的最早时间和最迟时间往往不相等。
( )13. 在确定性存贮模型中不许缺货的条件下,当费用项目相同时,生产模型的间隔时间比订购模型的间隔时间长。
( )14. 单目标决策时,用不同方法确定的最佳方案往往是一致的。
( )15. 动态规划中运用图解法的顺推方法和网络最短路径的标号法上是一致的。
( )三、填空题1. 图的组成要素;。
2. 求最小树的方法有、。
3. 线性规划解的情形有、、、。
4. 求解指派问题的方法是。
5. 按决策环境分类,将决策问题分为、、。
6. 树连通,但不存在。
四、下列表是线性规划单纯形表(求Z max ),请根据单纯形法原理和算法。
1. 计算该规划的检验数2. 计算对偶问题的目标函数值3. 确定上表中输入,输出变量五、已知一个线性规划原问题如下,请写出对应的对偶模型21max 6x x S +=⎪⎩⎪⎨⎧≥≥+≤+0,16327212121x x x x x x六、下图为动态规划的一个图示模型,边上的数字为两点间的距离,请用逆推法求出S 至F 点的最短路径及最短路长。
《管理运筹学》考试试卷A,B卷及答案一、选择题(每题2分,共20分)1. 运筹学的英文全称是:A. Operation ResearchB. Operation ManagementC. Operational ResearchD. Operations Management2. 线性规划问题的标准形式中,目标函数是:A. 最大化B. 最小化C. 既可以是最大化也可以是最小化D. 无法确定3. 在线性规划中,约束条件可以用以下哪个符号表示?A. ≤B. ≥C. =D. A、B、C都对4. 简单线性规划问题中,如果一个变量在任何解中都不为零,则称这个变量为:A. 基变量B. 非基变量C. 独立变量D. 依赖变量5. 以下哪个方法可以用来求解线性规划问题?A. 单纯形法B. 拉格朗日乘数法C. 对偶理论D. A、B、C都可以二、填空题(每题3分,共15分)6. 在线性规划中,如果一个约束条件的形式为“≥”,则称这个约束为______约束。
7. 在线性规划问题中,若决策变量为非负整数,则该问题为______规划问题。
8. 在目标规划中,目标函数通常表示为______。
9. 在运输问题中,如果产地和销地的数量相等,则称为______。
10. 在排队论中,顾客到达的平均速率通常表示为______。
三、计算题(每题10分,共30分)11. 某工厂生产甲、乙两种产品,甲产品每件利润为200元,乙产品每件利润为150元。
工厂每月最多生产甲产品100件,乙产品150件。
同时,生产甲产品每件需要3小时,乙产品每件需要2小时,工厂每月最多可利用工时为300小时。
试建立该问题的线性规划模型,并求解。
12. 某公司有三个工厂生产同一种产品,分别供应给四个销售点。
各工厂的产量和各销售点的需求量如下表所示。
求最优的运输方案,并计算最小运输成本。
工厂\销售点 A B C D产量 20 30 50需求量 10 20 30 4013. 设某商店有三个售货员,负责四个收款台。
一、填空题:(每空格2分,共16分)1、线性规划的解有唯一最优解、无穷多最优解、 无界解 和无可行解四种。
2、在求运费最少的调度运输问题中,如果某一非基变量的检验数为4,则说明 如果在该空格中增加一个运量运费将增加4 。
3、“如果线性规划的原问题存在可行解,则其对偶问题一定存在可行解”,这句话对还是错? 错4、如果某一整数规划: MaxZ=X 1+X 2X 1+9/14X 2≤51/14 -2X 1+X 2≤1/3 X 1,X 2≥0且均为整数所对应的线性规划(松弛问题)的最优解为X 1=3/2,X 2=10/3,MaxZ=6/29,我们现在要对X 1进行分枝,应该分为 X1≤1 和 X1≥2 。
5、在用逆向解法求动态规划时,f k (s k )的含义是: 从第k 个阶段到第n 个阶段的最优解 。
6. 假设某线性规划的可行解的集合为D ,而其所对应的整数规划的可行解集合为B ,那么D和B 的关系为 D 包含 B7. 已知下表是制订生产计划问题的一张LP 最优单纯形表(极大化问题,约束条问:(1)写出B -1=⎪⎪⎪⎭⎫ ⎝⎛---1003/20.3/1312(2)对偶问题的最优解: Y =(5,0,23,0,0)T8. 线性规划问题如果有无穷多最优解,则单纯形计算表的终表中必然有___某一个非基变量的检验数为0______;9. 极大化的线性规划问题为无界解时,则对偶问题_无解_________;10. 若整数规划的松驰问题的最优解不符合整数要求,假设X i =b i 不符合整数要求,INT (b i )是不超过b i 的最大整数,则构造两个约束条件:Xi ≥INT (b i )+1 和 Xi ≤INT (b i ) ,分别将其并入上述松驰问题中,形成两个分支,即两个后继问题。
11. 知下表是制订生产计划问题的一张LP 最优单纯形表(极大化问题,约束条问:(1)对偶问题的最优解: Y =(4,0,9,0,0,0)T (2)写出B -1=⎪⎪⎪⎭⎫ ⎝⎛611401102二、计算题(60分)1、已知线性规划(20分)MaxZ=3X 1+4X 2 1+X 2≤5 2X 1+4X 2≤12 3X 1+2X 2≤81,X 2≥02)若C 2从4变成5,最优解是否会发生改变,为什么?3)若b 2的量从12上升到15,最优解是否会发生变化,为什么?4)如果增加一种产品X 6,其P 6=(2,3,1)T ,C 6=4该产品是否应该投产?为什么? 解:1)对偶问题为Minw=5y1+12y2+8y3 y1+2y2+3y3≥3y1+4y2+2y3≥4 y1,y2≥02)当C 2从4变成5时, σ4=-9/8 σ5=-1/4由于非基变量的检验数仍然都是小于0的,所以最优解不变。
《管理运筹学》复习题及参考答案一、选择题1. 管理运筹学的研究对象是()A. 生产过程B. 管理活动C. 经济活动D. 运筹问题参考答案:D2. 以下哪个不属于管理运筹学的基本方法?()A. 线性规划B. 整数规划C. 非线性规划D. 人力资源规划参考答案:D3. 在线性规划中,约束条件是()A. 等式B. 不等式C. 方程组D. 矩阵参考答案:B4. 以下哪种方法不属于线性规划的对偶问题求解方法?()A. 单纯形法B. 对偶单纯形法C. 拉格朗日乘数法D. 牛顿法参考答案:D5. 在目标规划中,以下哪个不是目标约束的类型?()A. 等式约束B. 不等式约束C. 目标函数约束D. 线性约束参考答案:C二、填空题1. 管理运筹学的核心思想是______。
参考答案:最优化2. 在线性规划中,最优解存在的条件是______。
参考答案:可行性、有界性3. 整数规划的求解方法主要有______和______。
参考答案:分支定界法、动态规划法4. 在目标规划中,目标函数的求解方法有______、______和______。
参考答案:单纯形法、拉格朗日乘数法、动态规划法5. 非线性规划问题可以分为______、______和______。
参考答案:无约束非线性规划、约束非线性规划、非线性规划的对偶问题三、判断题1. 管理运筹学的研究对象是管理活动。
()参考答案:正确2. 在线性规划中,最优解一定存在。
()参考答案:错误3. 整数规划的求解方法比线性规划复杂。
()参考答案:正确4. 目标规划的求解方法与线性规划相同。
()参考答案:错误5. 非线性规划问题一定比线性规划问题复杂。
()参考答案:错误四、计算题1. 某工厂生产甲、乙两种产品,甲产品每件利润为10元,乙产品每件利润为8元。
生产甲产品每件需消耗2小时机器工作时间,3小时人工工作时间;生产乙产品每件需消耗1小时机器工作时间,2小时人工工作时间。
工厂每周最多可利用机器工作时间100小时,人工工作时间150小时。
管理运筹学试题(A)一.单项选择(将唯一正确答案前面的字母填入题后的括号里。
正确得1分,选错、多选或不选得0分。
共15分)1.在线性规划模型中,没有非负约束的变量称为()A.多余变量B.松弛变量C.自由变量D.人工变量正确答案:A: B: C: D:2.约束条件为AX=b,X≥0的线性规划问题的可行解集是()A.补集B.凸集C.交集D.凹集正确答案:A: B: C: D:3.线性规划问题若有最优解,则一定可以在可行域的()上达到。
A.内点B.外点C.极点D.几何点正确答案:A: B: C: D:4.对偶问题的对偶是()A.基本问题B.解的问题C.其它问题D.原问题正确答案:A: B: C: D:5.若原问题是一标准型,则对偶问题的最优解值就等于原问题最优表中松弛变量的()A.值B.个数C.机会费用D.检验数正确答案:A: B: C: D:6.若运输问题已求得最优解,此时所求出的检验数一定是全部()A.大于或等于零B.大于零C.小于零D.小于或等于零正确答案:A: B: C: D:7.设V是一个有n个顶点的非空集合,V={v1,v2,……,vn},E是一个有m条边的集合,E={e1,e2,……em},E中任意一条边e是V 的一个无序元素对[u,v],(u≠v),则称V和E这两个集合组成了一个()A.有向树B.有向图C.完备图D.无向图正确答案:A: B: C: D:8.若开链Q中顶点都不相同,则称Q为()A.基本链B.初等链C.简单链D.饱和链正确答案:A: B: C: D:9.若图G 中没有平行边,则称图G为()A.简单图B.完备图C.基本图D.欧拉图正确答案:A: B: C: D:10.在统筹图中,关键工序的总时差一定()A.大于零B.小于零C.等于零D.无法确定正确答案:A: B: C: D:11.若Q为f饱和链,则链中至少有一条后向边为f ()A.正边B.零边C.邻边D.对边正确答案:A: B: C: D:12.若f 是G的一个流,K为G的一个割,且Valf=CapK,则K一定是()A.最小割B.最大割C.最小流D.最大流正确答案:A: B: C: D:13.对max型整数规划,若最优非整数解对应的目标函数值为Zc,最优整数解对应的目标值为Zd,那么一定有( )A.Zc ∈Zd B.Zc =Zd C.Zc ≤Zd D.Zc ≥Zd正确答案:A: B: C: D:14.若原问题中xI为自由变量,那么对偶问题中的第i个约束一定为()A.等式约束B.“≤”型约束C.“≥”约束D.无法确定正确答案:A: B: C: D:15.若f*为满足下列条件的流:Valf*=max{Valf |f为G的一个流},则称f*为G的()A.最小值B.最大值C.最大流D.最小流正确答案:A: B: C: D:二.多项选择题(每题至少有一个答案是正确的。
《管理运筹学》试题及参考答案第一章运筹学概念一、填空题1.运筹学的主要研究对象是各种有组织系统的管理问题,经营活动。
2.运筹学的核心主要是运用数学方法研究各种系统的优化途径及方案,为决策者提供科学决策的依据。
3.模型是一件实际事物或现实情况的代表或抽象。
4通常对问题中变量值的限制称为约束条件,它可以表示成一个等式或不等式的集合。
5.运筹学研究和解决问题的基础是最优化技术,并强调系统整体优化功能。
运筹学研究和解决问题的效果具有连续性。
6.运筹学用系统的观点研究功能之间的关系。
7.运筹学研究和解决问题的优势是应用各学科交叉的方法,具有典型综合应用特性。
8.运筹学的发展趋势是进一步依赖于_计算机的应用和发展。
9.运筹学解决问题时首先要观察待决策问题所处的环境。
10.用运筹学分析与解决问题,是一个科学决策的过程。
11.运筹学的主要目的在于求得一个合理运用人力、物力和财力的最佳方案。
12.运筹学中所使用的模型是数学模型。
用运筹学解决问题的核心是建立数学模型,并对模型求解。
13用运筹学解决问题时,要分析,定议待决策的问题。
14.运筹学的系统特征之一是用系统的观点研究功能关系。
15.数学模型中,“s·t”表示约束。
16.建立数学模型时,需要回答的问题有性能的客观量度,可控制因素,不可控因素。
17.运筹学的主要研究对象是各种有组织系统的管理问题及经营活动。
18. 1940年8月,英国管理部门成立了一个跨学科的11人的运筹学小组,该小组简称为OR。
二、单选题1.建立数学模型时,考虑可以由决策者控制的因素是(A )A.销售数量B.销售价格C.顾客的需求D.竞争价格2.我们可以通过(C )来验证模型最优解。
A.观察B.应用C.实验D.调查3.建立运筹学模型的过程不包括(A )阶段。
A.观察环境B.数据分析C.模型设计D.模型实施4.建立模型的一个基本理由是去揭晓那些重要的或有关的( B )A数量B变量 C 约束条件 D 目标函数5.模型中要求变量取值(D )A可正B可负C非正D非负6.运筹学研究和解决问题的效果具有( A )A 连续性B 整体性C 阶段性D 再生性7.运筹学运用数学方法分析与解决问题,以达到系统的最优目标。
四 川 大 学 网 络 教 育 学 院 模 拟 试 题( A )《管理运筹学》一、 单选题(每题2分,共20分。
)1.目标函数取极小(minZ )的线性规划问题可以转化为目标函数取极大的线性规划问题求解,原问题的目标函数值等于( C )。
A. maxZB. max(-Z)C. –max(-Z)D.-maxZ 2. 下列说法中正确的是( B )。
A.基本解一定是可行解 B.基本可行解的每个分量一定非负 C.若B 是基,则B 一定是可逆D.非基变量的系数列向量一定是线性相关的 3.在线性规划模型中,没有非负约束的变量称为 ( D )多余变量 B .松弛变量 C .人工变量 D .自由变量 4. 当满足最优解,且检验数为零的变量的个数大于基变量的个数时,可求得( A )。
A.多重解 B.无解 C.正则解 D.退化解 5.对偶单纯型法与标准单纯型法的主要区别是每次迭代的基变量都满足最优检验但不完全满足 ( D )。
A .等式约束B .“≤”型约束C .“≥”约束D .非负约束 6. 原问题的第i个约束方程是“=”型,则对偶问题的变量i y是( B )。
A.多余变量 B.自由变量 C.松弛变量 D.非负变量 7.在运输方案中出现退化现象,是指数字格的数目( C )。
A.等于m+nB.大于m+n-1C.小于m+n-1D.等于m+n-18. 树T的任意两个顶点间恰好有一条( B )。
A.边 B.初等链 C.欧拉圈 D.回路 9.若G 中不存在流f 增流链,则f 为G 的 ( B )。
A .最小流B .最大流C .最小费用流D .无法确定10.对偶单纯型法与标准单纯型法的主要区别是每次迭代的基变量都满足最优检验但不完全满足( D )A.等式约束 B.“≤”型约束 C.“≥”型约束 D.非负约束二、多项选择题(每小题4分,共20分)1.化一般规划模型为标准型时,可能引入的变量有 ( )A .松弛变量B .剩余变量C .非负变量D .非正变量E .自由变量2.图解法求解线性规划问题的主要过程有 ( )A .画出可行域B .求出顶点坐标C .求最优目标值D .选基本解E .选最优解3.表上作业法中确定换出变量的过程有 ( )A .判断检验数是否都非负B .选最大检验数C .确定换出变量D .选最小检验数E .确定换入变量4.求解约束条件为“≥”型的线性规划、构造基本矩阵时,可用的变量有 ( )A .人工变量B .松弛变量 C. 负变量 D .剩余变量 E .稳态变量5.线性规划问题的主要特征有 ( )A .目标是线性的B .约束是线性的C .求目标最大值D .求目标最小值E .非线性三、 计算题(共60分)1. 下列线性规划问题化为标准型。
(10分)123min +5-2Z x x x =-123123121236235100,0,x x x x x x x x x x x +-≤-+≥+=≥≤符号不限2. 写出下列问题的对偶问题 (10分)123min 42+3Z x x x =+123123121234+56=78910111213140,0x x x x x x x x x x x --+≥+≤≤≥无约束,3. 用最小元素法求下列运输问题的一个初始基本可行解(10分)4.某公司有资金10万元,若投资用于项目(1,2,3)i i i x =的投资额为时,其收益分别为11122()4,()9,g x x g x x ==33()2,g x x =问应如何分配投资数额才能使总收益最大?(15分)5. 求图中所示网络中的最短路。
(15分)四 川 大 学 网 络 教 育 学 院 模 拟 试 题( A )《管理运筹学》参考答案满足满足一、单选题1.C2.B3.D4. A5. D6. B7. C8.B9. B 10.D 二、多选题1. ABE2. ABE3. ACD4. AD5. AB 三、计算题1、max(-z)=''''123352()x x x x -+-2、写出对偶问题maxW=12371114y y y ++3、解:4.解:状态变量k s 为第k 阶段初拥有的可以分配给第k 到底3个项目的资金额;决策变量k x 为决定给第k 个项目的资金额;状态转移方程为1k k k s s x +=-;最优指标函数()k k f s表示第k 阶段初始状态为k s 时,从第k 到第3个项目所获得的最大收益,()k k f s 即为所求的总收益。
递推方程为:{}10()()()(1,2,3)max k kk k k k k k x s f s g x f s k ++≤≤=+= 44()0f s = 当k=3时有{}3323330()2max x s f s x ≤≤=当33x s =时,取得极大值223s ,即:{}332233330()22max x s f s x x ≤≤==当k=2时有:{}222222330()9()max x s f s x f s ≤≤=+{}22223092max x s xs ≤≤+={}22222092()max x s x s x ≤≤+-=令 2222222(,)92()h s x x s x =+- 用经典解析方法求其极值点。
由 222292()(1)0dh s x dx =+--= 解得:2294x s =-而 222240d h d x=所以2294x s =-是极小值点。
极大值点可能在[0,2s ]端点取得:222(0)2f s =, 222()9f s s =当222(0)()f f s =时,解得 29/2s =当29/2s 时,222(0)()f f s ,此时,*20x =当29/2s 时,222(0)()f f s ,此时,*22x s =当k=1时,{}11111220()4()max x s f s x f s ≤≤=+当 222()9f s s =时,{}11111110()499max x s f s x s x ≤≤=+-{}111110959max x s s x s ≤≤=-=但此时 211100109/2s s x =-=-=,与29/2s 矛盾,所以舍去。
当2222()2f s s =时,{}121111010(10)42()max x f x s x ≤≤=+-令 2111111(,)42()h s x x s x =+-由 122144()(1)0dh s x dx =+--=解得: 211x s =-而 222210d h d x= 所以 111x s =-是极小值点。
比较[0,10]两个端点 10x =时,1(10)200f = 110x =时,1(10)40f =*10x =所以再由状态转移方程顺推:*21110010s s x =-=-=因为 29/2s所以 *20x =,*32210010s s x =-=-=因此 *3310x s ==最优投资方案为全部资金用于第3个项目,可获得最大收益200万元。
5. 解:用Dijkstra 算法的步骤如下, P (1v )=0T (j v)=∞(j =2,3…7) 第一步:因为()21,v v ,()31,v v A ∈且2v ,3v 是T 标号,则修改上个点的T 标号分别为:()()()[]12122,m in w v P v T v T +==[]min ,055∞+=()()()[]13133,m in w v P v T v T +==[]min ,022∞+=所有T 标号中,T (3v )最小,令P (3v )=2第二步:3v 是刚得到的P 标号,考察3v()34,v v ,()36,v v A ∈,且5v ,6v 是T 标号 ()()()44334min ,T v T v P v w =+⎡⎤⎣⎦=[]min ,279∞+= ()[]6min ,2T v =∞+4=6所有T 标号中,T (2v )最小,令P (2v )=5第三步:2v 是刚得到的P 标号,考察2v()()()44224min ,T v T v P v w =+⎡⎤⎣⎦=[]min 9,527+=()()()55225min ,T v T v P v w =+⎡⎤⎣⎦=[]min ,5712∞+=所有T 标号中,T (6v )最小,令P (6v )=6第四步:6v 是刚得到的P 标号,考察6v()()()44664min ,T v T v P v w =+⎡⎤⎣⎦=[]min 9,627+=()()()55665min ,T v T v P v w =+⎡⎤⎣⎦=[]min 12,617+=()()()77667min ,T v T v P v w =+⎡⎤⎣⎦=[]min ,6612∞+=所有T 标号中,T (4v ),T (5v )同时标号,令P (4v )=P (5v )=7第五步:同各标号点相邻的未标号只有7v()()()[]57577,m in w v P v T v T +==[]min 12,7310+=至此:所有的T 标号全部变为P 标号,计算结束。
故1v 至7v 的最短路为10。
《管理运筹学》模拟试题2一、单选题(每题2分,共20分。
)1.目标函数取极小(minZ )的线性规划问题可以转化为目标函数取极大的线性规划问题求解,原问题的目标函数值等于( )。
A. maxZB. max(-Z)C. –max(-Z)D.-maxZ 2. 下列说法中正确的是( )。
A.基本解一定是可行解 B.基本可行解的每个分量一定非负C.若B 是基,则B 一定是可逆 D.非基变量的系数列向量一定是线性相关的3.在线性规划模型中,没有非负约束的变量称为( )A .多余变量B .松弛变量C .人工变量D .自由变量 4. 当满足最优解,且检验数为零的变量的个数大于基变量的个数时,可求得( )。
A.多重解 B.无解 C.正则解 D.退化解5.对偶单纯型法与标准单纯型法的主要区别是每次迭代的基变量都满足最优检验但不完全满足( )。
A .等式约束B .“≤”型约束C .“≥”约束D .非负约束 6. 原问题的第i个约束方程是“=”型,则对偶问题的变量i y是( )。
A.多余变量 B.自由变量 C.松弛变量 D.非负变量 7. 在运输方案中出现退化现象,是指数字格的数目( )。
A.等于m+nB.大于m+n-1C.小于m+n-1D.等于m+n-18. 树T的任意两个顶点间恰好有一条( )。
A.边 B.初等链 C.欧拉圈 D.回路 9.若G 中不存在流f 增流链,则f 为G 的( )。
A .最小流B .最大流C .最小费用流D .无法确定10.对偶单纯型法与标准单纯型法的主要区别是每次迭代的基变量都满足最优检验但不完全满足( )A.等式约束 B.“≤”型约束 C.“≥”型约束 D.非负约束二、判断题题(每小题2分,共10分)1.线性规划问题的一般模型中不能有等式约束。