小学数学专题梳理-圆柱圆锥习题精编.doc
- 格式:doc
- 大小:47.50 KB
- 文档页数:5
圆柱与圆锥练习题一(1)一个圆柱形蓄水池,直径10米,深2米。
这个蓄水池的占地面积是多少?在池的一周及池底抹上水泥,抹水泥的面积是多少?(2)做十节长2米,直径8厘米的圆柱形铁皮烟囱,需要铁皮多少平方米?(3)压路机的滚筒是圆柱体,它的长是2米,滚筒横截面的半径是0.6米。
如果每分转动5周,每分可以压多大的路面?(4)大厅里有10根圆柱,圆柱底面直径1米,高8米。
在这些圆柱的表面涂油漆,平均每平方米用油漆0.8千克,共需油漆多少千克?(5)一个圆柱的侧面积是25.12平方厘米,底面半径是2厘米,它的表面积是多少?(6)把两个底面直径都是4厘米、长都是3分米圆柱形钢材焊接成一个大的圆柱形钢材,焊接成的圆柱形钢材的表面积比原来两个小圆柱形钢材的表面积之和减少了多少?(7)将高都是1米,底面半径分别为1.5米、1米和0.5米的三个圆柱组成一个物体.这个物体的表面积是多少平方米?(8)一个蓄水池是圆柱形的,底面面积为31.4平方分米,高2.8分米,这个水池最多能容多少升水?(9)一个圆柱体的高是37.68厘米,它的侧面展开后恰好是正方形,这个圆柱体的体积是多少?(保留整数)(10)一个圆柱形水桶的体积是24立方分米,底面积是6平方分米,桶的装满了水,求水面高是多少分米?(11)一个圆柱形量桶,底面半径是5厘米,把一块铁块从这个量桶里取出后,水面下降3厘米,这块铁块的体积是多少?(12)把一根长1.5米的圆柱形钢材截成三段后,表面积比原来增加9.6平方分米,这根钢材原来的体积是多少?(13) 把一段长20分米的圆柱形木头沿着底面直径劈开,表面积增加80平方分米,原来这段圆柱形木头的表面积是多少?(14)砌一个圆柱形水池,底面周长是25.12米,深2米,要在它的底面和四周抹上水泥,如果每平方米用水泥10千克,共需水泥多少千克?(15)一堆圆锥形黄沙,底面周长是25.12米,高1.5米,每立方米的黄沙重1.5吨,这堆沙重多少吨?(16)一个无盖的圆柱形水桶,底面直径20厘米,高30厘米,制造这样一对水桶,至少要多少铁皮?如果用这对水桶盛水,能盛多少千克?(每升水重1千克,得数保留整千克)(17)大厅内有8根同样的圆柱形木柱,每根高5米,底面周长是3.2米,如果每千克油漆可漆4.5平方米,漆这些木柱需油漆多少千克?(18)一个圆锥形沙堆,底面周长是12.56米,高6米,将这些沙铺在宽10米的道路上铺0.04厘米厚,可以铺多少米长?(19)一个圆柱体和一个圆锥体等底等高,它们的体积相差50.24立方厘米。
圆柱圆锥常见题型归纳训练题一、公式转换圆柱和圆锥的关系:1. 等底等高的情况下,圆柱体积是圆锥体积的倍。
2. 等底等高的情况下,圆锥体积是圆柱体积的。
3. 等底等高的情况下,圆锥体积比圆柱体积少。
4. 等底等高的情况下,圆柱体积比圆锥体积多倍。
5. 圆柱与圆锥等底等体积,圆锥的高是圆柱的倍。
6. 圆柱与圆锥等高等体积,圆锥的底面积是圆柱的倍。
基本题型a求表面积:1,一个圆柱的侧面积是25.12平方厘米,底面半径是2厘米,求该圆柱的表面积是多少?求体积:2.一个圆柱型粮囤,底面半径是4米,高2米,若每立方米粮食重500千克,求该粮囤能装多少千克粮食?求侧面积3.一座大厦有四根同样的圆柱,已知圆柱的底面周长是15.7dm,高10m,如果要把圆柱的侧面都包裹上彩布,至少需彩布多少平方分米?4逆推求高一个圆柱,表面积是345.4平方厘米,底半径是5厘米,求它的高。
二,切割拼接问题,表面积增加或减少1.基本公式:a.横切:切面是圆,表面积增加2倍底面积,即S增=2πR2b.竖切(过直径):切面是长方形(如果h=2R,切面为正方形),该长方形的长是圆柱的高,宽是圆柱的底面直径,表面积增加两个长方形的面积,即S增=4Rh基本题型1,把一长为1.6米的圆柱截成3段后,表面积增加了9.6平方米,求圆柱原来的体积?2,把长为20分米的圆柱沿着底面直径劈开,表面积增加了80平方分米,求该圆柱原来的表面积是多少?3.圆柱长2米,把它截成相等的4段后,表面积增加了18.84平方厘米,求每段的体积是多少?4.把3个一样的圆柱,连成一个大圆柱,长9厘米,表面积减少12.56平方分米,求原来每个圆柱的体积是多少立方厘米?5、把两个底面直径都是4厘米,长都是4分米圆柱形钢材焊接成一个长的圆柱形钢材,焊接成的圆柱形钢材的表面积比原来两个小圆柱形钢材的表面积之和减少了多少?6、一根2米长的圆柱形木料, 横截面的半径是10厘米, 沿横截面的直径垂直锯开, 分成相等的两块, 每块的体积和表面积各是多少?三.放入或拿出物体,水面上升或下降。
圆柱和圆锥的练习题公式:正⽅形的周⻓=4a正⽅形的⾯积=a²正⽅体的表⾯积=6a²正⽅体的体积=a³正⽅体的棱⻓总和=12a⻓⽅体的棱⻓总和=4(a+b+c)⻓⽅形的周⻓=2(a+b)⻓⽅形的⾯积=ab⻓⽅体的表⾯积=2(ab+bc+ac)⻓⽅体的体积=abc圆的周⻓=πd=2πr圆的⾯积=πr²圆柱的表⾯积=Ch+2πr²圆柱的体积=Sh=πr²h圆锥的体积=Sh=πr²h圆环的⾯积=π(R²-r²)半圆的周⻓=πr+d圆周⻓的⼀半=πr题型⼀:圆柱和圆锥的体积1.⼀个圆锥的体积是76⽴⽅厘⽶,底⾯积是19平⽅厘⽶.这个圆锥的⾼是()厘⽶。
2.⼀个圆锥体的体积是12⽴⽅分⽶,底⾯积是3平⽅分⽶,⾼是()分⽶。
3.⼀个圆锥的体积是40平⽅⽶,⾼是6⽶,底⾯积是()平⽅⽶。
4.⼀个圆锥体的底⾯半径是2m,体积是25.12m³,这个圆锥的⾼是()⽶。
5.⼀种压路机滚筒是圆柱体,它的底⾯直径1⽶,⻓1.5⽶.如果它转5圈,⼀共压路()m ².1.制作⼀节圆柱形通⻛管,⻓50厘⽶,底⾯直径是20厘⽶,⾄少需要铁⽪多少平⽅厘⽶?2.已知⼀个圆锥体的地⾯周⻓是18.84厘⽶,⾼是3厘⽶,这个圆锥体的体积是多少平⽅厘⽶?3.⼀个圆锥体底⾯周⻓是12.56厘⽶,体积是37.68⽴⽅厘⽶,⾼是多少厘⽶?4.⼀个圆柱的侧⾯积是37.68平⽅厘⽶,底⾯半径是2厘⽶,它的体积是多少⽴⽅厘⽶?5.⼀个圆柱形⽔池,它的容积是64⽴⽅⽶,底⾯积是12平⽅⽶,⽔池中放了的⽔,这时⽔⾯⾼是多少⽶?6.如图,这个杯⼦能否装下500毫升的⽜奶?7.⼀个圆柱形橡⽪泥,底⾯积是12平⽅厘⽶,⾼是5厘⽶.如果把它捏成同样⾼的圆锥,这个圆锥的底⾯积是多少?8.⼀个圆锥形沙堆,⾼是1.5⽶,底⾯半径是4⽶,每⽴⽅⽶沙约重1.7吨.这堆沙约重多少吨?9.⼀个圆锥形⾕堆的底⾯周⻓是12.56⽶,⾼是3⽶,每⽴⽅⽶稻⾕重500千克,这堆稻⾕重多少千克?10.⼀个圆锥体建筑物,⾼120分⽶,体积是94.2⽴⽅⽶,这个建筑物的底⾯积是多少?11.学校⻔⼝⼀个圆锥形沙堆,底⾯周⻓是6.28⽶,⾼是10⽶,这堆沙有多少⽴⽅⽶?12.把直径为20cm的圆柱形钢材截下⼀段,锻造成底⾯直径60cm,⾼120cm的圆锥形零件,求要截下多⻓的钢材?13.⼀个圆锥形的稻⾕堆,底周⻓12.56⽶,⾼1.5⽶,把这堆稻⾕装进⼀个圆柱形粮仓,正好装满.这个粮仓⾥⾯的底直径为2⽶,⾼是多少⽶?14.⼀个圆锥形砂堆,底⾯周⻓是31.4⽶,⾼3⽶,每⽅砂重1.8吨,⽤⼀辆载重4.5吨的汽⻋,⼏次可以运完?15.已知直⻆三⻆形ABC的⼀条直⻆边AB=13,另⼀条直⻆边AC=5.以直线BC为轴旋转⼀周得⼀个圆锥,求这个圆锥的体积是多少?16.⼀个圆锥形的漏⽃,它的容积是94.2⽴⽅厘⽶,底⾯半径3厘⽶,求漏⽃的⾼是多少厘⽶?17.把⼀个体积是90⽴⽅厘⽶的圆柱形铁块,加⼯成⼀个⾼是6厘⽶的圆锥形铁块,圆锥形铁块的底⾯是多少?18.下⾯两个图中,左边⼀个是梯形,绕它的6cm的边将这个梯形旋转⼀周得到如右边的⽴体图形,这个⽴体图形的体积是多少⽴⽅厘⽶?19.100个油桶的表⾯要刷漆,每平⽅⽶需油漆0.6千克.每个油桶的底⾯直径是40厘⽶,⾼是60厘⽶,刷100个油桶需多少油漆?20.⼀个圆柱形状的⽆盖⽔桶,从⾥⾯量,底⾯直径40厘⽶,⾼50厘⽶.⽤这个⽔桶装满⽔去浇花,平均每棵花⽤⽔0.4升.这桶⽔最多可以浇多少棵花?21.⼀根⻓1⽶,横截⾯直径是20厘⽶的⽊头浮在⽔⾯上,⼩明发现它正好是⼀半露出⽔⾯,请你求出这根⽊头与⽔接触的⾯的⾯积是多少?题型⼆:圆柱和圆锥的关系1.⼀个圆锥的体积是6.3⽴⽅厘⽶,与它等底等⾼的圆柱的底⾯积是7平⽅厘⽶,圆柱的⾼应该是()厘⽶。
圆柱和圆锥一、单选题1.油漆4根圆柱形柱子,就是油漆柱子的()A. 体积B. 表面积C. 侧面积D. 容积2.求做一个圆柱形铁皮油桶要用多少铁皮,需要计算这个圆柱的()A. 体积B. 表面积C. 侧面积3.圆锥的高有()条。
A. 1B. 2C. 无数4.一个圆柱的底面直径扩大到原来的2倍,高缩小到原来的,圆柱的侧面积()。
A. 扩大到原来的2倍B. 缩小到原来的C. 不变D. 扩大到原来的3倍5.求一个圆柱形的杯子能装多少水,是求圆柱的()A. 表面积B. 体积C. 容积二、判断题6.圆锥的底面积扩大4倍,高不变,体积也扩大4倍。
7.体积相等的两个圆柱一定等底等高。
8.圆柱的体积是圆锥体积的3倍。
9.把一个圆柱体削成一个最大的圆锥体,削去部分的体积与原来圆柱体的体积之比是2∶3。
三、填空题10.自来水管的内直径是2厘米,水管内水的流速是每秒8厘米.一位同学去洗手,走时忘记关掉水龙头,5分钟浪费________升水.11.圆柱的上、下两个面都是________,且面积大小________.圆柱的侧面展开后是________形,这个图形的一组对边是圆柱的________,另一组对边是圆柱的________.12.圆柱的底面周长是3.14dm,高是2dm,这个圆柱的侧面积是________ .13.一个圆柱和一个圆锥的底面积和体积分别相等,圆锥的高是1.8分米,圆柱的高是________分米。
14.如下图,如果把三角形以OA为轴转动一圈,形成的圆锥的体积是________立方厘米?四、解答题15.沙漏是古人用的一种计时仪器。
下面这个沙漏里(装满沙子)的沙子一点点漏入下面空的长方体木盒中,若沙子漏完了,那么在长方体木盒中会平铺上大约多少厘米高的沙子(得数保留两位小数)16.画出下面图形的展开图.(两种)五、综合题17.计算下面图形的体积。
(单位:cm)(1)(2)(3)(4)六、应用题18.把一块长12.56分米,宽5分米,高8分米的长方体钢坯铸造成一根直径为4分米的圆柱形钢筋,这根钢筋的长度是多少分米?参考答案一、单选题1.【答案】C【解析】【解答】解:油漆4根圆柱形柱子,只油在侧面,没有上下底所以是柱子的侧面积.选择C 2.【答案】B【解析】【解答】根据圆柱的表面积知识可知,求做一个圆柱形铁皮油桶要用的铁皮面积就是求这个圆柱的表面积.故答案为:B【分析】求需要铁皮的面积就是这个油桶的两个底面积与侧面积的和,也就是圆柱形油桶的表面积.3.【答案】A【解析】【解答】解:根据圆锥的高的定义可知:圆锥只有一条高;故答案为:A.【分析】紧扣圆锥的特征:从圆锥的顶点到底面圆心的距离是圆锥的高;即可解决问题.4.【答案】C【解析】【解答】解:设圆柱的直径为d;高为h。
小升初数学体积面积(圆柱圆锥)练习题汇总(一)一、判断题1. 物体的大小叫做物体的体积. ()2. 3x=x·x·x ()3. 把一块正方体橡皮泥捏成一个长方体后,虽然它的形状变了,但是它所占有的空间大小不变. ()4. 在一个长方体中,从一个顶点出发的三条棱的和是7.5分米,这个长方体的棱长总和是30分米.()5. 一个正方体的棱长是原来的2倍,它的体积是原来的4倍. ()6. 木箱的体积就是木箱的容积.()7. 正方体的棱长扩大3倍,它的表面积就扩大27倍()8. 长方体的12条棱中,平行的4条棱都相等()9. 将一个长方体切成两个相等的正方体,每个正方体的表面积是长方体表面积的一半.()10.长方体中的三条棱分别叫做长、宽、高。
()11.求一个容器的容积,就是求这个容器的体积。
( )12.一个正方体的棱长之和是12厘米.体积是1立方厘米。
()13.正方体的棱长扩大5倍,它的体积就扩大15倍。
()14.把2块棱长都为2厘米的正方体拼成一个长方体,表面积增加了8平方厘米()15.一个长方体长am,宽bm,高hm,如果高增加1m后,新的长方体体积比原来增加abm3。
()16.用同样大小的小正方体4个可以拼成一个大正方体。
()17.一个长方体,长3.2cm,宽3cm,高2cm,它的棱长之和是(3.2+3+2)×3=24.6(cm3)。
()二、填空题1. 一种水箱最多可装水120升,我们说这个水箱的()是120升.2. 300厘米=()分米45000立方分米=()立方米9升=()立方分米=()立方厘米4. 一个长方体的横截面是边长为3厘米的正方形,它的长是5厘米,这个长方体的表面积是()平方厘米,体积是()立方厘米.5. 一个正方体的棱长总和是12厘米,它的表面积是()平方厘米,体积是()立方厘米.6. 一个正方体的棱长是3厘米,用两个这样的正方体拼成一个长方体,这个长方体的表面积是()平方厘米,体积是()立方厘米.7、 1立方分米的正方体可以分成()个1立方厘米的小正方体.8、 4.05升=()毫升9、 0.7平方米=()平方分米10. 把一个无盖的长方体铁桶的外面喷上油漆,需要喷()个面.11. 棱长是1米的正方体体积是()立方米.12. 长方体有()面,()条棱,()个顶点.13. 一个表面积是54平方厘米的正方体,它的体积是()立方厘米.14. 5.07立方米=()立方米()立方分米15. 一个长方体,长是2分米,宽和高都是长的一半,这个长方体的表面积是()平方分米,体积是()立方分米.16.4.07立方米=()立方米()立方分米17.9.08立方分米=()升=()毫升18.一个正方体的表面积是72平方分米,占地面积是()平方分米.19.用一根12分米长的铁丝围成一个最大的正方体形状的框架,这个正方体的体积是()立方分米.20.用3个棱长4分米的正方体粘合成一个长方体,长方体的表面积比3个正方体的表面积少()平方分米.表面积是(),体积是().21.一个长方体的体积是96立方分米,底面积是16立方分米,它的高是().22.一个棱长是5分米的正方体水池,蓄水的水面低于池口2分米,水的容量是()升.23.挖一个长和宽都是5米的长方体菜窖,要使菜窖的容积是50立方米,应该挖()深.24.填上合适的计量单位。
六年级下册数学圆柱圆锥练习题(含解析)〔圆柱和圆锥〕【一】认真读题,慎重填写。
〔每空1分,共21分〕1、沿着圆柱旳高剪,侧面展开得到一个〔长方形〕,它旳一条边就等于圆柱旳〔底面周长〕,另一条边就等于圆柱旳〔高〕。
2、8050毫升=〔8〕升〔50〕毫升;5.4平方分米=〔540〕平方厘米2.8立方米=〔2800〕立方分米;5平方米40平方分米=〔5.4〕平方米3、把一段圆柱形木料削成一个最大旳圆锥,削去部分是圆锥体积旳〔2〕倍。
4、一个圆柱旳底面周长是12.56厘米,高是5厘米,它旳侧面积是〔62.8〕平方厘米,表面积是〔87.92〕平方厘米,体积是〔62.8〕立方厘米。
5、一个长方形长5厘米,宽4厘米,假如以宽为轴旋转一周得到一个立体图形,得到旳是〔圆柱体〕,那个图形旳体积是〔314〕立方厘米。
6、一个盛满水旳圆锥体容器高9厘米,假如将水全部倒入与它等底等高旳圆柱体容器中,那么水高〔3〕厘米。
7、做一节底面直径为10分米,长40分米旳烟筒,至少需要〔1334.5〕平方分米铁片。
8、等底等高旳圆柱和圆锥旳体积相差16立方米,那个圆柱旳体积是〔24〕立方米,圆锥旳体积是〔8〕立方米、9、一圆柱形罐头盒,高是1分米,底面周长6.28分米,罐头盒旳侧面商标纸旳面积最大是〔6.28〕平方分米,那个罐头盒至少要用〔12.56〕平方分米旳铁皮。
10、一根长4米,横截面半径为2分米旳圆柱形木料截成同样长旳5段,表面积比原来增加〔100.48〕平方分米。
【二】巧思妙断,推断对错。
〔对旳打“√”,错旳打“×”。
每题2分,共12分〕1、“做圆柱形通风管需要多少铁皮”是求那个圆柱旳侧面积。
………………〔√〕2、一个容器旳体积确实是它旳容积。
……………………………………………〔√〕3、长方体、正方体、圆柱旳体积都可用底面积×高来表示。
…………………〔√〕4、长方形绕着一条边转动所产生旳图形是圆柱。
………………………………〔√〕5、圆锥顶点到底面上任意一点旳距离确实是它旳高。
立体图形表面积 体积 圆柱h r222π2πS rh r =+=+圆柱侧面积个底面积 2πV r h =圆柱圆锥hr 22ππ360n S l r =+=+圆锥侧面积底面积 注:l 是母线,即从顶点到底面圆上的线段长 21π3V r h =圆锥体 板块一 圆柱与圆锥【例 1】 如图,用高都是1米,底面半径分别为1.5米、1米和0.5米的3个圆柱组成一个物体.问这个物体的表面积是多少平方米?(π取3.14)11111.50.5【考点】圆柱与圆锥 【难度】3星 【题型】解答 【解析】 从上面看到图形是右上图,所以上下底面积和为22 3.14 1.514.13⨯⨯=(立方米),侧面积为2 3.14(0.51 1.5)118.84⨯⨯++⨯=(立方米),所以该物体的表面积是14.1318.8432.97+=(立方米).【答案】32.97【例 2】 有一个圆柱体的零件,高10厘米,底面直径是6厘米,零件的一端有一个圆柱形的圆孔,圆孔的直径是4厘米,孔深5厘米(见右图).如果将这个零件接触空气的部分涂上防锈漆,那么一共要涂多少平方厘米?例题精讲圆柱与圆锥【考点】圆柱与圆锥 【难度】3星 【题型】解答【解析】 涂漆的面积等于大圆柱表面积与小圆柱侧面积之和,为266π10π()24π560π18π20π98π307.722⨯+⨯⨯+⨯=++==(平方厘米). 【答案】307.72【例 3】 (希望杯2试试题)圆柱体的侧面展开,放平,是边长分别为10厘米和12厘米的长方形,那么这个圆柱体的体积是________立方厘米.(结果用π表示)【考点】圆柱与圆锥 【难度】3星 【题型】解答【解析】 当圆柱的高是12厘米时体积为210300π()122ππ⨯⨯=(立方厘米) 当圆柱的高是12厘米时体积为212360π()102ππ⨯⨯=(立方厘米).所以圆柱体的体积为300π立方厘米或360π立方厘米. 【答案】300π立方厘米或360π立方厘米【例 4】 如右图,是一个长方形铁皮,利用图中的阴影部分,刚好能做成一个油桶(接头处忽略不计),求这个油桶的容积.(π 3.14=)【考点】圆柱与圆锥 【难度】3星 【题型】解答【解析】 圆的直径为:()16.561 3.144÷+=(米),而油桶的高为2个直径长,即为:428(m)⨯=,故体积为100.48立方米.【答案】100.48立方米【巩固】如图,有一张长方形铁皮,剪下图中两个圆及一块长方形,正好可以做成1个圆柱体,这个圆柱体的底面半径为10厘米,那么原来长方形铁皮的面积是多少平方厘米?(π 3.14=)【考点】圆柱与圆锥 【难度】3星 【题型】解答【解析】做成的圆柱体的侧面是由中间的长方形卷成的,可见这个长方形的长与旁边的圆的周长相等,则剪下的长方形的长,即圆柱体底面圆的周长为:2π1062.8⨯⨯=(厘米),原来的长方形的面积为:10462.81022056()()(平方厘米).⨯+⨯⨯=【答案】2056【例 5】把一个高是8厘米的圆柱体,沿水平方向锯去2厘米后,剩下的圆柱体的表面积比原来的圆柱体表面积减少12.56平方厘米.原来的圆柱体的体积是多少立方厘米?【考点】圆柱与圆锥【难度】3星【题型】解答【解析】沿水平方向锯去2厘米后,剩下的圆柱体的表面积比原来的圆柱体表面积减少的部分为减掉的2厘米圆柱体的侧面积,所以原来圆柱体的底面周长为12.562 6.28÷=厘米,底面半径为6.28 3.1421÷÷=厘米,所以原来的圆柱体的体积是2⨯⨯==(立方厘米).π188π25.12【答案】25.12【巩固】一个圆柱体底面周长和高相等.如果高缩短4厘米,表面积就减少50.24平方厘米.求这个圆柱体的表面积是多少?【考点】圆柱与圆锥【难度】3星【题型】解答【解析】圆柱体底面周长和高相等,说明圆柱体侧面展开是一个正方形.高缩短4厘米,表面积就减少50.24平方厘米.阴影部分的面积为圆柱体表面积减少部分,值是50.24平方厘米,所以底面周长是50.24412.56⨯=(平方厘米),两÷=(厘米),侧面积是:12.5612.56157.7536个底面积是:()2⨯÷÷⨯=(平方厘米).所以表面积为:3.1412.56 3.142225.12+=(平方厘米).157.753625.12182.8736【答案】182.8736【例 6】(两岸四地”华罗庚金杯”少年数学精英邀请赛)一个圆柱体形状的木棒,沿着底面直径竖直切成两部分.已知这两部分的表面积之和比圆柱体的表面积大22008cm,则这个圆柱)体木棒的侧面积是________2cm.(π取3.14【考点】圆柱与圆锥【难度】3星【题型】解答第2题【解析】根据题意可知,切开后表面积增加的就是两个长方形纵切面.设圆柱体底面半径为r,高为h,那么切成的两部分比原来的圆柱题表面积大:2r h⨯=,所以,圆柱体侧面积为:502(cm)222008(cm)r h⨯⨯=,所以22⨯⨯⨯=⨯⨯=.r h2π2 3.145023152.56(cm)【答案】3152.56【巩固】已知圆柱体的高是10厘米,由底面圆心垂直切开,把圆柱分成相等的两半,表面积增加了=)40平方厘米,求圆柱体的体积.(π3【考点】圆柱与圆锥【难度】3星【题型】解答【解析】圆柱切开后表面积增加的是两个长方形的纵切面,长方形的长等于圆柱体的高为10厘米,宽为圆柱底面的直径,设为2r,则210240r=(厘米).圆柱体积为:r⨯⨯=,12⨯⨯=(立方厘米).π11030【答案】30【例 7】一个圆柱体的体积是50.24立方厘米,底面半径是2厘米.将它的底面平均分成若干个扇形后,再截开拼成一个和它等底等高的长方体,表面积增加了多少平方厘米? (π 3.14=)【考点】圆柱与圆锥【难度】3星【题型】解答【解析】从图中可以看出,拼成的长方体的底面积与原来圆柱体的底面积相同,长方体的前后两个侧面面积与原来圆柱体的侧面面积相等,所以增加的表面积就是长方体左右两个侧面的面积.(法1)这两个侧面都是长方形,且长等于原来圆柱体的高,宽等于圆柱体底面半径.可知,圆柱体的高为()2÷⨯=(厘米),所以增加的表面积为2421650.24 3.1424⨯⨯=(平方厘米);(法2)根据长方体的体积公式推导.增加的两个面是长方体的侧面,侧面面积与长方体的长的乘积就是长方体的体积.由于长方体的体积与圆柱体的体积相等,为50.24立方厘米,而拼成的长方体的长等于圆柱体底面周长的一半,为3.142 6.28⨯=厘米,所以侧面长方形的面积为50.24 6.288÷=平方厘米,所以增加的表面积为8216⨯=平方厘米.【答案】16【例 8】右图是一个零件的直观图.下部是一个棱长为40cm的正方体,上部是圆柱体的一半.求这个零件的表面积和体积.【考点】圆柱与圆锥【难度】3星【题型】解答【解析】这是一个半圆柱体与长方体的组合图形,通过分割平移法可求得表面积和体积分别为:11768平方厘米,89120立方厘米.【答案】89120【例 9】输液100毫升,每分钟输2.5毫升.如图,请你观察第12分钟时图中的数据,问:整个吊瓶的容积是多少毫升?【考点】圆柱与圆锥【难度】3星【题型】解答【解析】100毫升的吊瓶在正放时,液体在100毫升线下方,上方是空的,容积是多少不好算.但倒过来后,变成圆柱体,根据标示的格子就可以算出来.由于每分钟输2.5毫升,12分钟已输液2.51230⨯=(毫升),因此开始输液时液面应与50毫升的格线平齐,上面空的部分是50毫升的容积.所以整个吊瓶的容积是10050150+=(毫升).【答案】150【例 10】(”希望杯”五年级第2试)一个拧紧瓶盖的瓶子里面装着一些水(如图),由图中的数据可推知瓶子的容积是_______ 立方厘米.(π取3.14)8(单位:厘米)4106【考点】圆柱与圆锥【难度】3星【题型】解答【解析】由于瓶子倒立过来后其中水的体积不变,所以空气部分的体积也不变,从图中可以看出,瓶中的水构成高为6厘米的圆柱,空气部分构成高为1082-=厘米的圆柱,瓶子的容积为这两部分之和,所以瓶子的容积为:24π()(62) 3.1432100.482⨯⨯+=⨯=(立方厘米).【答案】100.48【巩固】一个酒精瓶,它的瓶身呈圆柱形(不包括瓶颈),如图.已知它的容积为26.4π立方厘米.当瓶子正放时,瓶内的酒精的液面高为6厘米;瓶子倒放时,空余部分的高为2厘米.问:瓶内酒精的体积是多少立方厘米?合多少升?【考点】圆柱与圆锥 【难度】3星 【题型】解答【解析】 由题意,液体的体积是不变的,瓶内空余部分的体积也是不变的,因此可知液体体积是空余部分体积的623÷=倍.所以酒精的体积为326.4π62.17231⨯=+立方厘米,而62.172立方厘米62.172=毫升0.062172=升.【答案】0.062172【巩固】一个酒瓶里面深30cm ,底面内直径是10cm ,瓶里酒深15cm .把酒瓶塞紧后使其瓶口向下倒立这时酒深25cm .酒瓶的容积是多少?(π取3)253015【考点】圆柱与圆锥 【难度】3星 【题型】解答【解析】 观察前后,酒瓶中酒的总量没变,即瓶中液体体积不变.当酒瓶倒过来时酒深25cm ,因为酒瓶深30cm ,这样所剩空间为高5cm 的圆柱,再加上原来15cm 高的酒即为酒瓶的容积. 酒的体积:101015π375π22⨯⨯= 瓶中剩余空间的体积1010(3025)π125π22-⨯⨯= 酒瓶容积:375π125π500π1500(ml)+==【答案】1500【巩固】一个盖着瓶盖的瓶子里面装着一些水,瓶底面积为10平方厘米,(如下图所示),请你根据图中标明的数据,计算瓶子的容积是______.【考点】圆柱与圆锥 【难度】3星 【题型】解答【解析】 由已知条件知,第二个图上部空白部分的高为752cm -=,从而水与空着的部分的比为4:22:1=,由图1知水的体积为104⨯,所以总的容积为()4022160÷⨯+=立方厘米.【答案】60【巩固】一个透明的封闭盛水容器,由一个圆柱体和一个圆锥体组成,圆柱体的底面直径和高都是12厘米.其内有一些水,正放时水面离容器顶11厘米,倒放时水面离顶部5厘米,那么这个容器的容积是多少立方厘米?(π3=)5cm【考点】圆柱与圆锥 【难度】3星 【题型】解答【解析】 设圆锥的高为x 厘米.由于两次放置瓶中空气部分的体积不变,有:()22215π611π6π63x x ⨯⨯=-⨯⨯+⨯⨯⨯,解得9x =, 所以容器的容积为:221π612π69540π16203V =⨯⨯+⨯⨯⨯==(立方厘米). 【答案】1620【例 11】 (希望杯2试试题)如图,底面积为50平方厘米的圆柱形容器中装有水,水面上漂浮着一块棱长为5厘米的正方体木块,木块浮出水面的高度是2厘米.若将木块从容器中取出,水面将下降________厘米.【考点】圆柱与圆锥 【难度】3星 【题型】解答【解析】 在水中的木块体积为55375⨯⨯=(立方厘米),拿出后水面下降的高度为7550 1.5÷=(厘米)【答案】1.5【例 12】 有两个棱长为8厘米的正方体盒子,A 盒中放入直径为8厘米、高为8厘米的圆柱体铁块一个,B 盒中放入直径为4厘米、高为8厘米的圆柱体铁块4个,现在A 盒注满水,把A 盒的水倒入B 盒,使B 盒也注满水,问A 盒余下的水是多少立方厘米?【考点】圆柱与圆锥 【难度】3星 【题型】解答【解析】 将圆柱体分别放入A 盒、B 盒后,两个盒子的底面被圆柱体占据的部分面积相等,所以两个盒子的底面剩余部分面积也相等,那么两个盒子的剩余空间的体积是相等的,也就是说A 盒中装的水恰好可以注满B 盒而无剩余,所以A 盒余下的水是0立方厘米.【答案】A 盒余下的水是0立方厘米【例 13】 兰州来的马师傅擅长做拉面,拉出的面条很细很细,他每次做拉面的步骤是这样的:将一个面团先搓成圆柱形面棍,长1.6米.然后对折,拉长到1.6米;再对折,拉长到1.6米……照此继续进行下去,最后拉出的面条粗细(直径)仅有原先面棍的164.问:最后马师傅拉出的这些细面条的总长有多少米?(假设马师傅拉面的过程中.面条始终保持为粗细均匀的圆柱形,而且没有任何浪费)【考点】圆柱与圆锥 【难度】3星 【题型】解答【解析】 最后拉出的面条直径是原先面棍的164,则截面积是原先面棍的2164,细面条的总长为:21.6646553.6⨯=(米).注意运用比例思想.【答案】6553.6【例 14】 一个圆柱形容器内放有一个长方形铁块.现打开水龙头往容器中灌水.3分钟时水面恰好没过长方体的顶面.再过18分钟水灌满容器.已知容器的高为50厘米,长方体的高为20厘米,求长方体底面面积与容器底面面积之比.【考点】圆柱与圆锥 【难度】3星 【题型】解答【解析】 因为18分钟水面升高:502030-=(厘米).所以圆柱中没有铁块的情形下水面升高20厘米需要的时间是:20181230⨯=(分钟),实际上只用了3分钟,说明容器底面没被长方体底面盖住的部分只占容器底面积的13:124=,所以长方体底面面积与容器底面面积之比为3:4. 【答案】3:4【例 15】 一只装有水的圆柱形玻璃杯,底面积是80平方厘米,高是15厘米,水深8厘米.现将一个底面积是16平方厘米,高为12厘米的长方体铁块竖放在水中后.现在水深多少厘米?【考点】圆柱与圆锥 【难度】3星 【题型】解答【解析】 根据等积变化原理:用水的体积除以水的底面积就是水的高度.(法1):808(8016)6406410⨯÷-=÷=(厘米);(法2):设水面上升了x 厘米.根据上升部分的体积=浸入水中铁块的体积列方程为:8016(8)x x =+,解得:2x =,8210+=(厘米).(提问”圆柱高是15厘米”,和”高为12厘米的长方体铁块”这两个条件给的是否多余?)【答案】10【巩固】一只装有水的圆柱形玻璃杯,底面积是80平方厘米,高是15厘米,水深10厘米.现将一个底面积是16平方厘米,高为12厘米的长方体铁块竖放在水中后.现在水深多少厘米?【考点】圆柱与圆锥 【难度】3星 【题型】解答【解析】 8010(8016)12.5⨯÷-=,因为12.512>,所以此时水已淹没过铁块,8010(8016)1232⨯--⨯=,32800.4÷=,所以现在水深为120.412.4+=厘米【答案】12.4【巩固】一只装有水的圆柱形玻璃杯,底面积是80平方厘米,高是15厘米,水深13厘米.现将一个底面积是16平方厘米,高为12厘米的长方体铁块竖放在水中后.现在水深多少厘米?【考点】圆柱与圆锥 【难度】3星 【题型】解答【解析】 玻璃杯剩余部分的体积为80(1513)160⨯-=立方厘米,铁块体积为1612192⨯=立方厘米,因为160192<,所以水会溢出玻璃杯,所以现在水深就为玻璃杯的高度15厘米【总结】铁块放入玻璃杯会出现三种情况:①放入铁块后,水深不及铁块高;②放入铁块后,水深比铁块高但未溢出玻璃杯;③水有溢出玻璃杯.【说明】教师可以在此穿插一个关于阿基米德测量黄金头冠的体积的故事. 一天国王让工匠做了一顶黄金的头冠,不知道工匠有没有掺假,必须知道黄金头冠的体积是多少,可是又没有办法来测量.(如果知道体积,就可以称一下纯黄金相应体积的重量,再称一下黄金头冠的重量,就能知道是否掺假的结果了)于是,国王就把测量头冠体积的任务交给他的大臣阿基米德.(小朋友们,你们能帮阿基米德解决难题吗?)阿基米德苦思冥想不得其解,就连晚上沐浴时还在思考这个问题.当他坐进水桶里,看到水在往外满溢时,突然灵感迸发,大叫一声:”我找到方法了……”,就急忙跑出去告诉别人,大家看到了一个还光着身子的阿基米德.他的方法是:把水桶装满水,当把黄金头冠放进水桶,浸没在水中时,所收集的溢出来的水的体积正是头冠的体积.【答案】15【例 16】 一个圆柱形玻璃杯内盛有水,水面高2.5厘米,玻璃杯内侧的底面积是72平方厘米.在这个杯中放进棱长6厘米的正方体铁块后,水面没有淹没铁块.这时水面高多少厘米?【考点】圆柱与圆锥 【难度】3星 【题型】解答【解析】 把放入铁块后的玻璃杯看作一个底面如右图的新容器,底面积是72—6×6=36(平方厘米).水的体积是72 2.5180⨯=(立方厘米).后来水面的高为180÷36=5(厘米).【答案】5【例 17】 一个盛有水的圆柱形容器,底面内半径为5厘米,深20厘米,水深15厘米.今将一个底面半径为2厘米,高为17厘米的铁圆柱垂直放入容器中.求这时容器的水深是多少厘米?【考点】圆柱与圆锥 【难度】3星 【题型】解答【解析】 若圆柱体能完全浸入水中,则水深与容器底面面积的乘积应等于原有水的体积与圆柱体在水中体积之和,因而水深为:222515217517.72πππ⨯⨯+⨯⨯⨯=(厘米).它比圆柱体的高度要大,可见圆柱体可以完全浸入水中.于是所求的水深便是17.72厘米.【答案】17.72【例 18】 有甲、乙两只圆柱形玻璃杯,其内直径依次是10厘米、20厘米,杯中盛有适量的水.甲杯中沉没着一铁块,当取出此铁块后,甲杯中的水位下降了2厘米;然后将铁块沉没于乙杯,且乙杯中的水未外溢.问:这时乙杯中的水位上升了多少厘米?【考点】圆柱与圆锥 【难度】3星 【题型】解答【解析】 两个圆柱直径的比是1:2,所以底面面积的比是1:4.铁块在两个杯中排开的水的体积相同,所以乙杯中水升高的高度应当是甲杯中下降的高度的14,即120.54⨯=(厘米). 【答案】0.5【巩固】有一只底面半径是20厘米的圆柱形水桶,里面有一段半径是5厘米的圆柱体钢材浸在水中.钢材从水桶里取出后,桶里的水下降了6厘米.这段钢材有多长?【考点】圆柱与圆锥 【难度】3星 【题型】解答【解析】 根据题意可知,圆柱形钢材的体积等于桶里下降部分水的体积,因为钢材底面半径是水桶底面半径的520,即41,钢材底面积就是水桶底面积的161.根据体积一定,圆柱体的底面积与高成反比例可知,钢材的长是水面下降高度的16倍.6÷(520)2=96(厘米),(法2):3.14×202×6÷(3.14×52)=96(厘米). 【答案】96【例 19】 一个盛有水的圆柱形容器底面内半径为5厘米,深20厘米,水深15厘米.今将一个底面半径为2厘米,高为18厘米的铁圆柱垂直放人容器中.求这时容器的水深是多少厘米?【考点】圆柱与圆锥 【难度】3星 【题型】解答【解析】 若铁圆柱体能完全浸入水中,则水深与容积底面积的乘积应等于原有水的体积与圆柱体在水中体积之和,因而水深为:22251521817.725πππ⨯⨯+⨯⨯=⨯(厘米);它比铁圆柱体的高度要小,那么铁圆柱体没有完全浸入水中.此时容器与铁圆柱组成一个类似于下图的立体图形.底面积为225221πππ-=,水的体积保持不变为2515315ππ⨯=.所以有水深为315617217ππ=(厘米),小于容器的高度20厘米,显然水没有溢出于是6177厘米即为所求的水深. 【答案】6177【例 20】 如图11-7,有一个圆柱和一个圆锥,它们的高和底面直径都标在图上,单位是厘米.那么,圆锥体积与圆柱体积的比是多少?【关键词】华杯赛,初赛,3题【考点】圆柱与圆锥 【难度】3星 【题型】解答 【解析】 圆锥的体积是211624,33ππ⨯⨯⨯=,圆柱的体积是248128ππ⨯⨯=.所以,圆锥体积与圆柱体积的比是16:1281:243ππ=. 【答案】1:24【例 21】 一个圆锥形容器高24厘米,其中装满水,如果把这些水倒入和圆锥底面直径相等的圆柱形容器中,水面高多少厘米? 【考点】圆柱与圆锥 【难度】3星 【题型】解答【解析】 设圆锥形容器底面积为S ,圆柱体内水面的高为h ,根据题意有:1243S Sh ⨯⨯=,可得8h =厘米. 【答案】8【例 22】 (”希望杯”一试六年级)如图,圆锥形容器中装有水50升,水面高度是圆锥高度的一半,这个容器最多能装水 升.【考点】圆柱与圆锥 【难度】3星 【题型】解答【解析】 圆锥容器的底面积是现在装水时底面积的4倍,圆锥容器的高是现在装水时圆锥高的2倍,所以容器容积是水的体积的8倍,即508400⨯=升.【答案】400【例 23】 如图,甲、乙两容器相同,甲容器中水的高度是锥高的13,乙容器中水的高度是锥高的23,比较甲、乙两容器,哪一只容器中盛的水多?多的是少的的几倍?甲乙【考点】圆柱与圆锥 【难度】3星 【题型】解答【解析】 设圆锥容器的底面半径为r ,高为h ,则甲、乙容器中水面半径均为23r ,则有21π3V r h =容器,221228ππ33381V r h r h =⨯=乙水(),222112219πππ333381V r h r h r h =-⨯=甲水(),2219π198188π81r h V V r h ==甲水乙水,即甲容器中的水多,甲容器中的水是乙容器中水的198倍. 【答案】198倍【例 24】 张大爷去年用长2米、宽1米的长方形苇席围成容积最大的圆柱形粮囤.今年改用长3米宽2米的长方形苇席围成容积最大的圆柱形的粮囤.问:今年粮囤的容积是去年粮囤容积的多少倍? 【关键词】华杯赛,决赛,口试,23题【考点】圆柱与圆锥 【难度】3星 【题型】解答【解析】 底面周长是3,半径是32π,2233()24πππ⨯=所以今年粮囤底面积是234π,高是2.同理,去年粮囤底面积是224π,高是1.2232(2)(1) 4.5.44ππ⨯÷⨯=因此,今年粮囤容积是去年粮囤容积的4.5倍.【答案】4.5【例 25】 (仁华考题)如图,有一卷紧紧缠绕在一起的塑料薄膜,薄膜的直径为20厘米,中间有一直径为8厘米的卷轴,已知薄膜的厚度为0.04厘米,则薄膜展开后的面积是 平方米.【考点】圆柱与圆锥 【难度】3星 【题型】解答【解析】 缠绕在一起时塑料薄膜的体积为:22208ππ1008400π22⎡⎤⎛⎫⎛⎫⨯-⨯⨯=⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦(立方厘米),薄膜展开后为一个长方体,体积保持不变,而厚度为0.04厘米,所以薄膜展开后的面积为8400π0.04659400÷=平方厘米65.94=平方米.另解:也可以先求出展开后薄膜的长度,再求其面积.由于展开前后薄膜的侧面的面积不变,展开前为22208ππ84π22⎛⎫⎛⎫⨯-⨯= ⎪ ⎪⎝⎭⎝⎭(平方厘米),展开后为一个长方形,宽为0.04厘米,所以长为84π0.046594÷=厘米,所以展开后薄膜的面积为6594100659400⨯=平方厘米65.94=平方米.【答案】65.94【巩固】图为一卷紧绕成的牛皮纸,纸卷直径为20厘米,中间有一直径为6厘米的卷轴.已知纸的厚度为0.4 毫米,问:这卷纸展开后大约有多长?【考点】圆柱与圆锥 【难度】3星 【题型】解答【解析】 将这卷纸展开后,它的侧面可以近似的看成一个长方形,它的长度就等于面积除以宽.这里的宽就是纸的厚度,而面积就是一个圆环的面积. 因此,纸的长度 :()22 3.1410093.1410 3.1437143.50.040.04⨯-⨯-⨯≈≈==纸卷侧面积纸的厚度(厘米)所以,这卷纸展开后大约71.4米.【答案】71.4【巩固】如图,厚度为0.25毫米的铜版纸被卷成一个空心圆柱(纸卷得很紧,没有空隙),它的外直径是180厘米,内直径是50厘米.这卷铜版纸的总长是多少米?【考点】圆柱与圆锥 【难度】3星 【题型】解答【解析】 卷在一起时铜版纸的横截面的面积为2218050ππ7475π22⎛⎫⎛⎫⨯-⨯= ⎪ ⎪⎝⎭⎝⎭(平方厘米),如果将其展开,展开后横截面的面积不变,形状为一个长方形,宽为0.25毫米(即0.025厘米),所以长为7475π0.025938860÷=厘米9388.6=米.所以这卷铜版纸的总长是9388.6米. 本题也可设空心圆柱的高为h ,根据展开前后铜版纸的总体积不变进行求解,其中h 在计算过程将会消掉.【答案】9388.6米【例 26】 (人大附中分班考试题目)如图,在一个正方体的两对侧面的中心各打通一个长方体的洞,在上下底面的中心打通一个圆柱形的洞.已知正方体边长为10厘米,侧面上的洞口是边长为4厘米的正方形,上下底面的洞口是直径为4厘米的圆,求此立体图形的表面积和体积.【考点】圆柱与圆锥 【难度】3星 【题型】解答【解析】 ⑴先求表面积.表面积可分为外侧表面积和内侧表面积.外侧为6个边长10厘米的正方形挖去4个边长4厘米的正方形及2个直径4厘米的圆,所以,外侧表面积为:210106444π225368π⨯⨯-⨯⨯-⨯⨯=-(平方厘米);内侧表面积则为右上图所示的立体图形的表面积,需要注意的是这个图形的上下两个圆形底面和前后左右4个正方形面不能计算在内,所以内侧表面积为:()24316244π22π232192328π24π22416π⨯⨯+⨯⨯-⨯+⨯⨯⨯=+-+=+(平方厘米),所以,总表面积为:22416π5368π7608π785.12++-=+=(平方厘米).⑵再求体积.计算体积时将挖空部分的立体图形取出,如右上图,只要求出这个几何体的体积,用原立方体的体积减去这个体积即可.挖出的几何体体积为:24434444π2321926424π25624π⨯⨯⨯+⨯⨯+⨯⨯⨯=++=+(立方厘米);所求几何体体积为:()10101025624π668.64⨯⨯-+=(立方厘米). 【答案】668.64板块二 旋转问题【例 27】 如图,ABC 是直角三角形,AB 、AC 的长分别是3和4.将ABC ∆绕AC 旋转一周,求ABC ∆扫出的立体图形的体积.(π 3.14=)CB A43【考点】旋转问题 【难度】3星 【题型】解答【解析】 如右上图所示,ABC ∆扫出的立体图形是一个圆锥,这个圆锥的底面半径为3,高为4,体积为:21π3412π37.683⨯⨯⨯==.【答案】37.68【例 28】 已知直角三角形的三条边长分别为3cm ,4cm ,5cm ,分别以这三边轴,旋转一周,所形成的立体图形中,体积最小的是多少立方厘米?(π取3.14) 【考点】旋转问题 【难度】3星 【题型】解答【解析】 以3cm 的边为轴旋转一周所得到的是底面半径是4cm ,高是3cm 的圆锥体,体积为2313.144350.24(cm )3⨯⨯⨯= 以4cm 的边为轴旋转一周所得到的是底面半径是3cm ,高是4cm 的圆锥体,体积为2313.143437.68(cm )3⨯⨯⨯= 以5cm 的边为轴旋转一周所得到的是底面半径是斜边上的高345 2.4⨯÷=cm 的两个圆锥,高之和是5cm 的两个圆的组合体,体积为2313.14 2.4530.144(cm )3⨯⨯⨯=【答案】30.144【巩固】如图,直角三角形如果以BC 边为轴旋转一周,那么所形成的圆锥的体积为16π,以AC 边为轴旋转一周,那么所形成的圆锥的体积为12π,那么如果以AB 为轴旋转一周,那么所形成的几何体的体积是多少?ABC【考点】旋转问题 【难度】3星 【题型】解答【解析】 设BC a =,AC b =,那么以BC 边为轴旋转一周,所形成的圆锥的体积为2π3ab ,以AC 边为轴旋转一周,那么所形成的圆锥的体积为2π3a b ,由此可得到两条等式:224836ab a b ⎧=⎪⎨=⎪⎩,两条等式相除得到43b a =,将这条比例式再代入原来的方程中就能得到34a b =⎧⎨=⎩,根据勾股定理,直角三角形的斜边AB 的长度为5,那么斜边上的高为2.4.如果以AB 为轴旋转一周,那么所形成的几何体相当于两个底面相等的圆锥叠在一起,底面半径为2.4,高的和为5,所以体积是22.4π59.6π3⨯=.【答案】9.6π【例 29】 如图,ABCD 是矩形,6cm BC =,10cm AB =,对角线AC 、BD 相交O .E 、F 分别是AD 与BC 的中点,图中的阴影部分以EF 为轴旋转一周,则白色部分扫出的立体图形的体积是多少立方厘米?(π取3)。
范文 .范例 .参考(四)例 1、(圆柱和圆锥的特征)圆柱和圆锥分别有什么特点?圆柱圆锥底两个底面完全相同,都是圆一个底面,是圆形。
面形。
曲面,沿高剪开,展开后是曲面,沿顶点到底面圆周上的一条线侧面长方形。
段剪开,展开后是扇形。
两个底面之间的距离,有无高顶点到底面圆心的距离,只有一条。
数条。
例 2、求下面立体图形的底面周长和底面积。
半径 3 厘米直径10米例 3、判断:圆柱和圆锥都有无数条高。
例 4、(圆柱的侧面积)体育一个圆柱,底面直径是 5 厘米,高是12 厘米。
求它的侧面积。
例 6、(辨析)一个无盖的圆柱铁皮水桶,底面直径是30 厘米,高是50 厘米。
做这样一个水桶,至少需用铁皮6123 平方厘米。
例 7、(考点透视)一个圆柱的侧面积展开是一个边长15.7 厘米的正方形。
这个圆柱的表面积是多少平方厘米?例 8、(考点透视)一个圆柱形的游泳池,底面直径是10 米,高是 4 米。
在它的四周和底部涂水泥,每千克水泥可涂 5 平方米,共需多少千克水泥?例9、(考点透视)把一个底面半径是 2 分米,长是 9 分米的圆柱形木头锯成长短不同的三小段圆柱形木头,表面积增加了多少平方分米?4、求下列圆柱体的侧面积(1)底面半径是 3 厘米,高是 4 厘米。
(3)底面周长是 12.56 厘米,高是 4 厘米。
5、求下列圆柱体的表面积(1)底面半径是 4 厘米,高是 6 厘米。
(3)底面周长是 25.12 厘米,高是 8 厘米。
6、用铁皮制作一个圆柱形烟囱,要求底面直径是 3 分米,高是 15 分米,制作这个烟囱至少需要铁皮多少平方分米?(接头处不计,得数保留整平方分米)7、请你制作一个无盖圆柱形水桶,有以下几种型号的铁皮可供搭配选择。
8、一个圆柱形蓄水池,底面周长是25.12 米,高是 4 米,将这个蓄水池四周及底部抹上水泥。
如果每平方米要用水泥20 千克,一共要用多少千克水泥?一、圆柱体积1、求下面各圆柱的体积。
北师大版六年级数学下册《圆柱和圆锥》知识要点总结及典型例题北师大版六年级数学下册《圆柱和圆锥》知识要点总结及典型例题(赶紧收藏)其他单元陆续更新……第一单元、圆柱和圆锥一、面的旋转1、“点、线、面、体”之间的关系是:点的运动形成线;线的运动形成面;面的旋转形成体。
2.面的旋转:圆柱(1)圆柱是由是由长方形绕长或宽旋转360度得到的立体图形,这个长方形的长和宽就是圆柱体的底面半径和高,沿高线切割后的切面是长方形;如果由正方形旋转则得到的圆柱体底面半径和高相等,沿高线切割后的切面是正方形。
(2)基本特征:a、圆柱有三个面,2个底面+1个侧面;圆柱的两个底面是半径相等的(或完全相等的)两个圆,侧面是一个曲面。
b、圆柱上下两个底面间的距离叫做圆柱的高。
c、圆柱有无数条高,且高的长度都相等。
圆锥(1)圆锥是由直角三角形绕一条直角边旋转360度得到的立体图形,围绕旋转的直角边是圆锥的高,另一条直角边是圆锥的底面半径;沿高线切割后的切面是等腰三角形。
(2)基本特征:a、圆锥有两个面,1个底面+1个侧面;圆锥的底面是一个圆,和底面相对的位置是顶点,侧面是一个曲面,展开是一个扇形。
b、圆锥顶点到底面圆心的距离是圆锥的高。
c、圆锥只有一条高。
二、圆柱的表面积1、沿圆柱的高剪开,圆柱的侧面展开图是一个长方形(或正方形)。
长方形的长相当于圆柱的底面周长,宽相当于圆柱的高;如果展开是一个正方形则说明圆柱的底面周长和高相等。
(如果不是沿高剪开,有可能还会是平行四边形或其他不规则图形,但都可以剪拼成长方形或正方形)2、.圆柱的侧面积=底面周长×高,用字母表示为:S侧=ch。
3、圆柱的侧面积公式的应用:(1)已知底面周长和高,求侧面积,可运用公式:S侧=ch;(2)已知底面直径和高,求侧面积,可运用公式:S侧=πdh;(3)已知底面半径和高,求侧面积,可运用公式:S侧=2πrh4、圆柱表面积的计算方法:如果用S侧表示一个圆柱的侧面积,S底表示底面积,d表示底面直径,r表示底面半径,h表示高,那么这个圆柱的表面积为:S表=S侧+2S底或 S表=2πrh+2πr25、圆柱表面积的计算方法的特殊应用:(1)圆柱的表面积只包括侧面积和一个底面积的,例如无盖水桶等圆柱形物体。
圆柱圆锥习题精编
一、对号入座。
1.一个正方体的棱长缩小到原来的1/2,它的体积就缩小到原来的()。
2.一个圆柱的侧面展开得到一个长方形,长方形的长是9.42厘米,宽是3厘米,这个圆柱体的侧面积是()平方厘米,表面积是()平方厘米,体积是()立方厘米,将它削成一个最大的圆锥体,应削去()立方厘米。
3.把下边的长方形以15厘米长的边为轴旋转一周,会得到一个(),它的表面积是()平方厘米,体积是()立方厘米。
,倒入()内正好倒满。
4.圆柱内的沙子占圆柱的1
3
5.把一个正方体木块削成一个最大的圆柱,圆柱的体积是正方体体积的()%。
6.一个圆柱和一个圆锥等底等高,圆锥的体积比圆柱的体积少0.8立方分米,那么,圆锥的体积是()立
方分米,圆柱的体积是()立方分米。
7.一个圆锥形砂堆,底面积是12.56平方米,高是6米,用这堆砂在10米宽的公路上铺20厘米厚的路面,能铺()米。
8.将一根长5米的圆柱形木料锯成4段,表面积增加60平方分米。
这根木料的体积是()立方分米。
9.一个圆柱体和一个圆锥体的体积相等,它们底面积的比是3:5,圆柱的高8厘米,圆锥的高是()厘米。
二、解决问题。
1.砌一个圆柱形的沼气池,底面直径是3米,深2米。
在池的周围与底面抹上水泥。
(1)沼气池的占地面积是多少平方米?
(2)抹水泥部分的面积是多少平方米?
(3)这个沼气池可以容纳多少立方米的沼气?
2.一个无盖的圆柱形铁皮水桶,底面半径30厘米,高50厘米,做这个水桶需要多少铁皮?如果每升水重1千克,这个水桶能装水多少千克?
3.一只圆柱形的木桶,底面直径5分米,高8分米,在这个木桶底部加一条铁箍,接头处重叠0.3分米,铁箍的长是多少?这个木桶的容积是多少?
4.有一只底面半径为3分米的圆柱形水桶,桶内盛满水,并浸有一块底面边长为2分米的长方体铁块。
当铁块从水中取出时,桶内的水面下降了5厘米,求这块长方体铁块的高。
(得数保留一位小数)
5.在一个长、宽、高分别是2分米、2分米、5分米的长方体盒子中,正好能放下一个圆柱形物体(如下左图)。
这个圆柱形物体的体积最大是多少立方分米?盒子中空余的空
间是多少立方分米?
6.巧求胶水的体积。
一个胶水瓶(如上右图),它的瓶身呈
圆柱形(不包括瓶颈),容积为32.4立方厘米。
当瓶子正放时,瓶内胶水液面高为8厘米,瓶子倒放时,空余部分高为2厘米。
请你算一算,瓶内胶水的体积是多少立方厘米?
1、Thank you very much for taking me with you on that splendid outing to London. It was the first time that I had seen
the Tower or any of the other famous sights. If I'd gone alone, I couldn't have seen nearly as much, because I wouldn't
have
known my way about.The weather was splendid on that day, which I thought was rare. I still remember some people told me that in Britain there was weather and no climate. During the same day, it might snow in the morning, rain
at
noon, shine in the afternoon and be windy before the night falls. So I think I was lucky 。
20.6.176.17.202010:5910:59:49Jun-2010:59
2、最困难的事情就是认识自己。
二〇二〇年六月十七日
2020年6月17日星期三 3、有勇气承担命运这才是英雄好汉。
10:596.17.202010:596.17.202010:5910:59:496.17.202010:596.17.2020 4、与肝胆人共事,无字句处读书。
6.1
7.20206.17.202010:5910:5910:59:4910:59:49 5、阅读使人充实,会谈使人敏捷,写作使人精确。
Wednesday, June 17, 2020June 20Wednesday, June 17, 20206/17/2020
6、最大的骄傲于最大的自卑都表示心灵的最软弱无力。
10时59分10时59分17-Jun-206.17.2020 7、志气这东西是能传染的,你能感染着笼罩在你的环境中的精神。
那些在你周围不断向上奋发的人的胜利,会鼓励激发你作更艰苦
的奋斗,以求达到如象他们所做的样子。
20.6.1720.6.1720.6.17。
2020年6月17日星期三二〇二〇年六月十七日 8、时间是一位可爱的恋人,对你是多么的爱慕倾心,每分每秒都在叮嘱:劳动,创造!别虚度了一生! 亲爱的读者: 春去春又回,新桃换旧符。
在那桃花盛开的地方,在这醉人芬芳的季节,愿你生活像春天一样阳光,心情像桃花一样美丽,感谢你的阅读。