olap(在线分析处理)
- 格式:ppt
- 大小:2.80 MB
- 文档页数:28
1.知识发现是一个完整的数据分析过程,主要包括以下几个步骤:确定知识发现的目标、数据采集、数据探索、数据预处理、__数据挖掘_、模式评估。
2._特征性描述_是指从某类对象关联的数据中提取这类对象的共同特征(属性)。
3.回归与分类的区别在于:___回归__可用于预测连续的目标变量,___分类__可用于预测离散的目标变量。
4.__数据仓库_是面向主题的、集成的、相对稳定的、随时间不断变化的数据集合,与传统数据库面向应用相对应。
5.Pandas的两种核心数据结构是:__Series__和__DataFrame__。
6.我们可以将机器学习处理的问题分为两大类:监督学习和_无监督学习__。
7.通常,在训练有监督的学习的机器学习模型的时候,会将数据划分为__训练集__和__测试集__,划分比例一般为0.75:0.25。
1.分类问题的基本流程可以分为__训练__和__预测_两个阶段。
2.构建一个机器学习框架的基本步骤:数据的加载、选择模型、模型的训练、__模型的预测_、模型的评测、模型的保存。
3.__回归分析_是确定两种或两种以上变量间相互依赖关系的一种统计分析方法,是应用及其广泛的数据分析方法之一。
4.在机器学习的过程中,我们将原始数据划分为训练集、验证集、测试集之后,可用的数据将会大大地减少。
为了解决这个问题,我们提出了__交叉验证_这样的解决办法。
5.当机器学习把训练样本学得“太好”的时候,可能已经把训练样本自身的一些特点当作所有潜在样本都会具有的一般性质,这样会导致泛化性能下降。
这种现象在机器学习中称为__过拟合__。
6.常用的降维算法有__主成分分析__、___因子分析__和独立成分分析。
7.关联规则的挖掘过程主要包含两个阶段__发现频繁项集_和__产生关联规则__。
1、数据仓库是一个( 面向主题的 ) 、( 集成的 )、( 相对稳定的 )、 ( 反映历史变化 )的数据集合,通常用于( 决策支持的 )目的2、如果df1=pd.DataFrame([[1,2,3],[NaN,NaN,2],[NaN,NaN,NaN],[8,8,NaN]]),则df1.fillna(100)=?([[1,2,3],[100,100,2],[100,100,100],[8,8,100]])3、数据挖掘模型一般分为(有监督学习 )和( 无监督学习 )两大类4、如果df=pd.DataFrame({'key':['A','B','C','A','B','C','A','B','C'],'data':[0,5,10,5,10,15,10,15,20]}),则df.groupby('key').sum()=?(A:15,B:30,C:45)5、聚类算法根据产生簇的机制不同,主要分成(划分聚类)、(层次聚类)和(密度聚类)三种算法6、常见的数据仓库体系结构包括( 两层架构 )、( 独立型数据集市 )、( 依赖型数据集市和操作型数据存储)、( 逻辑型数据集市和实时数据仓库 )等四种7、Pandas最核心的三种数据结构,分别是(Series)、(DataFrame)和(Panel)8、数据挖掘中计算向量之间相关性时一般会用到哪些距离?(欧氏距离、曼哈顿距离、切比雪夫距离、闵可夫斯基距离、杰卡德距离、余弦夹角、相关距离、汉明距离(答对3个即可))等9、在决策树算法中用什么指标来选择分裂属性非常关键,其中ID3算法使用( 信息增益 ),C4.5算法使用( 信息增益率 ),CART算法使用( 基尼系数) 10、OLAP的中文意思是指( 在线分析处理)1、常见的数据仓库体系结构包括( 两层架构 )、( 独立型数据集市 )、( 依赖型数据集市和操作型数据存储)、( 逻辑型数据集市和实时数据仓库 )等四种2、Pandas最核心的三种数据结构,分别是(Series)、(DataFrame)和(Panel)3、数据挖掘中计算向量之间相关性时一般会用到哪些距离?(欧氏距离、曼哈顿距离、切比雪夫距离、闵可夫斯基距离、杰卡德距离、余弦夹角、相关距离、汉明距离(答对3个即可))等4、在决策树算法中用什么指标来选择分裂属性非常关键,其中ID3算法使用( 信息增益 ),C4.5算法使用( 信息增益率 ),CART算法使用( 基尼系数)5、OLAP的中文意思是指( 在线分析处理)6、如果ser = pd.Series(np.arange(4,0,-1),index = ["a","b","c","d"]),则ser.values=?([4, 3, 2, 1]),ser * 2=([8, 6, 4, 2])7、线性回归最常见的两种求解方法,一种是( 最小二乘法),另一种是( 梯度下降法)8、对于回归分析中常见的过拟合现象,一般通过引入( 正则化 )项来改善,最有名的改进算法包括( Ridge岭回归)和( Lasso套索回归)9、Python字符串str = 'Hello World!',print(str[-2])的结果是?(d)10、数据抽取工具ETL主要包括(抽取)、(清洗)、(转换)、(装载)1、数据挖掘中计算向量之间相关性时一般会用到哪些距离?(欧氏距离、曼哈顿距离、切比雪夫距离、闵可夫斯基距离、杰卡德距离、余弦夹角、相关距离、汉明距离(答对3个即可))等2、在决策树算法中用什么指标来选择分裂属性非常关键,其中ID3算法使用( 信息增益 ),C4.5算法使用( 信息增益率 ),CART算法使用( 基尼系数)3、OLAP的中文意思是指( 在线分析处理)4、如果ser = pd.Series(np.arange(4,0,-1),index = ["a","b","c","d"]),则ser.values=?([4, 3, 2, 1]),ser * 2=([8, 6, 4, 2])5、线性回归最常见的两种求解方法,一种是( 最小二乘法),另一种是( 梯度下降法)6、对于回归分析中常见的过拟合现象,一般通过引入( 正则化 )项来改善,最有名的改进算法包括( Ridge岭回归)和( Lasso套索回归)7、Python字符串str = 'Hello World!',print(str[-2])的结果是?(d)8、数据抽取工具ETL主要包括(抽取)、(清洗)、(转换)、(装载)9、CF是协同过滤的简称,一般分为基于(用户)的协同过滤和基于(商品)的协同过滤10、假如Li=[1,2,3,4,5,6],则Li[::-1]的执行结果是([6,5,4,3,2,1])1、数据仓库是一个( 面向主题的 ) 、( 集成的 )、( 相对稳定的 )、 ( 反映历史变化 )的数据集合,通常用于( 决策支持的 )目的2、如果df1=pd.DataFrame([[1,2,3],[NaN,NaN,2],[NaN,NaN,NaN],[8,8,NaN]]),则df1.fillna(100)=?([[1,2,3],[100,100,2],[100,100,100],[8,8,100]])3、数据挖掘模型一般分为(有监督学习 )和( 无监督学习 )两大类4、如果df=pd.DataFrame({'key':['A','B','C','A','B','C','A','B','C'],'data':[0,5,10,5,10,15,10,15,20]}),则df.groupby('key').sum()=?(A:15,B:30,C:45)5、聚类算法根据产生簇的机制不同,主要分成(划分聚类)、(层次聚类)和(密度聚类)三种算法6、如果ser = pd.Series(np.arange(4,0,-1),index = ["a","b","c","d"]),则ser.values=?([4, 3, 2, 1]),ser * 2=([8, 6, 4, 2])7、线性回归最常见的两种求解方法,一种是( 最小二乘法),另一种是( 梯度下降法)8、对于回归分析中常见的过拟合现象,一般通过引入( 正则化 )项来改善,最有名的改进算法包括( Ridge岭回归)和( Lasso套索回归)9、Python字符串str = 'Hello World!',print(str[-2])的结果是?(d)10、数据抽取工具ETL主要包括(抽取)、(清洗)、(转换)、(装载)1、数据仓库是一个( 面向主题的 ) 、( 集成的 )、( 相对稳定的 )、 ( 反映历史变化 )的数据集合,通常用于( 决策支持的 )目的2、数据挖掘模型一般分为(有监督学习 )和( 无监督学习 )两大类3、聚类算法根据产生簇的机制不同,主要分成(划分聚类)、(层次聚类)和(密度聚类)三种算法4、Pandas最核心的三种数据结构,分别是(Series)、(DataFrame)和(Panel)5、在决策树算法中用什么指标来选择分裂属性非常关键,其中ID3算法使用( 信息增益 ),C4.5算法使用( 信息增益率 ),CART算法使用( 基尼系数) 6、如果ser = pd.Series(np.arange(4,0,-1),index = ["a","b","c","d"]),则ser.values=?([4, 3, 2, 1]),ser * 2=([8, 6, 4, 2])7、对于回归分析中常见的过拟合现象,一般通过引入( 正则化 )项来改善,最有名的改进算法包括( Ridge岭回归)和( Lasso套索回归)8、数据抽取工具ETL主要包括(抽取)、(清洗)、(转换)、(装载)9、CF是协同过滤的简称,一般分为基于(用户)的协同过滤和基于(商品)的协同过滤10、假如Li=[1,2,3,4,5,6],则Li[::-1]的执行结果是([6,5,4,3,2,1])1如果df1=pd.DataFrame([[1,2,3],[NaN,NaN,2],[NaN,NaN,NaN],[8,8,NaN]]),则df1.fillna(100)=?([[1,2,3],[100,100,2],[100,100,100],[8,8,100]]) 2、如果df=pd.DataFrame({'key':['A','B','C','A','B','C','A','B','C'], 'data':[0,5,10,5,10,15,10,15,20]}),则df.groupby('key').sum()=?(A:15,B:30,C:45)3、常见的数据仓库体系结构包括( 两层架构 )、( 独立型数据集市 )、( 依赖型数据集市和操作型数据存储)、( 逻辑型数据集市和实时数据仓库 )等四种4、数据挖掘中计算向量之间相关性时一般会用到哪些距离?(欧氏距离、曼哈顿距离、切比雪夫距离、闵可夫斯基距离、杰卡德距离、余弦夹角、相关距离、汉明距离(答对3个即可))等5、OLAP的中文意思是指( 在线分析处理)6、线性回归最常见的两种求解方法,一种是( 最小二乘法),另一种是( 梯度下降法)7、Python字符串str = 'Hello World!',print(str[-2])的结果是?(d)8、数据抽取工具ETL主要包括(抽取)、(清洗)、(转换)、(装载)9、CF是协同过滤的简称,一般分为基于(用户)的协同过滤和基于(商品)的协同过滤10、假如Li=[1,2,3,4,5,6],则Li[::-1]的执行结果是([6,5,4,3,2,1])1、数据挖掘模型一般分为(有监督学习 )和( 无监督学习 )两大类2、聚类算法根据产生簇的机制不同,主要分成(划分聚类)、(层次聚类)和(密度聚类)三种算法3、常见的数据仓库体系结构包括( 两层架构 )、( 独立型数据集市 )、( 依赖型数据集市和操作型数据存储)、( 逻辑型数据集市和实时数据仓库 )等四种4、数据挖掘中计算向量之间相关性时一般会用到哪些距离?(欧氏距离、曼哈顿距离、切比雪夫距离、闵可夫斯基距离、杰卡德距离、余弦夹角、相关距离、汉明距离(答对3个即可))等5、如果ser = pd.Series(np.arange(4,0,-1),index = ["a","b","c","d"]),则ser.values=?([4, 3, 2, 1]),ser * 2=([8, 6, 4, 2])6、对于回归分析中常见的过拟合现象,一般通过引入( 正则化 )项来改善,最有名的改进算法包括( Ridge岭回归)和( Lasso套索回归)7、Python字符串str = 'Hello World!',print(str[-2])的结果是?(d)8、数据抽取工具ETL主要包括(抽取)、(清洗)、(转换)、(装载)9、CF是协同过滤的简称,一般分为基于(用户)的协同过滤和基于(商品)的协同过滤10、假如Li=[1,2,3,4,5,6],则Li[::-1]的执行结果是([6,5,4,3,2,1])1、数据仓库是一个( 面向主题的 ) 、( 集成的 )、( 相对稳定的 )、 ( 反映历史变化 )的数据集合,通常用于( 决策支持的 )目的2、如果df=pd.DataFrame({'key':['A','B','C','A','B','C','A','B','C'], 'data':[0,5,10,5,10,15,10,15,20]}),则df.groupby('key').sum()=?(A:15,B:30,C:45)3、数据挖掘中计算向量之间相关性时一般会用到哪些距离?(欧氏距离、曼哈顿距离、切比雪夫距离、闵可夫斯基距离、杰卡德距离、余弦夹角、相关距离、汉明距离(答对3个即可))等4、在决策树算法中用什么指标来选择分裂属性非常关键,其中ID3算法使用( 信息增益 ),C4.5算法使用( 信息增益率 ),CART算法使用( 基尼系数)5、OLAP的中文意思是指( 在线分析处理)6、如果ser = pd.Series(np.arange(4,0,-1),index = ["a","b","c","d"]),则ser.values=?([4, 3, 2, 1]),ser * 2=([8, 6, 4, 2])7、线性回归最常见的两种求解方法,一种是( 最小二乘法),另一种是( 梯度下降法)8、对于回归分析中常见的过拟合现象,一般通过引入( 正则化 )项来改善,最有名的改进算法包括( Ridge岭回归)和( Lasso套索回归)9、数据抽取工具ETL主要包括(抽取)、(清洗)、(转换)、(装载)10、CF是协同过滤的简称,一般分为基于(用户)的协同过滤和基于(商品)的协同过滤。
OLAP(在线分析处理)这个名词是在1993年由E.F.Codd提出来的,不过,目前市场上的主流产品几乎都是在1993年之前就已出来,有的甚至已有三十多年的历史了.OLAP产品不少,本文将主要涉及Cognos(Powerplay)、Hyperion (Essbase)、微软(Analysis Service)以及MicroStrategy几大厂商的产品.快枪手VS 多面手单纯从成本角度考虑,微软的产品算是最能节省成本的,Cognos和MicroStrategy则在同一水平线,都比微软贵一些.而Hyperion (Essbase)产品比较独立,也曾占有美国OLAP市场最大的份额,其产品价格又要更高一些.从市场份额来看,就国外的市场报告分析,微软、Cognos、Hyerion三家占据主流.在国内,目前还没有权威的市场报告,如果仅从所接触到的项目来看的话,用Cognos的很多,买Essbase的也不少.这些年都是一些大企业建设BI项目,有足够的预算,多选用Cognos、Essbase;而Microstrategy,进入中国不算早,这几年在政府、金融行业也颇有建树.若论开发应用,微软的产品向来以友好的用户界面著称,上手迅速.在OLAP产品上,微软依然发扬了这一优良传统,并有进一步标准化的趋势,开发了OLE DB for OLAP以及MDX(Multi-Dimensional Express多维表达式);参与XMLA(XML for Analysis)规范制定,也是想作为OLAP服务器和前端分析应用的数据传输标准.而Cognos以桌面OLAP开始,一直以轻便、快捷的操作闻名.所谓桌面OLAP,是可以用客户端将cube下载到本地进行访问.虽然Poweplay早已演变成C/S结构的OLAP服务器,但其轻便的特点还是延续下来,而且提供可以简洁部署且具有交互性的PowerPlay Web Explorer界面.从互联网上,我们可以很快搜索出许多基于PowerPlay Web的分析应用.Essbase作为老牌的OLAP服务器,是一个比较复杂的产品.所谓复杂,有两层意思,一是提供了丰富的API,让你可以充分定制开发;二是开发的难度较大,部署起来不容易.这也是国内很多用户难以将这个产品用好的一大原因.比较Essbase和Powerplay,会发现截然相反的两个特点:Essbase的复杂和Powerplay的简洁.对于这两者,单独说哪一种更好都不够客观,因为当你抱怨Essbase繁杂的接口时,也有人在抱怨Powerplay的定制功能怎么如此之少.这种情形其实跟这两种产品的定位有关,Essbase比较专注于高性能的多维存储服务,而Powerplay则更专注于快捷的多维访问.换句话讲,Essbase之于Powerplay正像专业相机之于傻瓜相机,在选哪一个更好的问题上,不同的人肯定有不一样的答案.当然,如果你想在找复杂和简洁之间找一个中间者,我想微软的Analysis Service就是这样的产品.不过要注意的是,这个产品和SQL Server绑定得比较紧,这是微软的一贯策略.百花争艳VS 一支独秀根据多维数据存储的位置,OLAP一般分为MOLAP(Multi-Dimensional OLAP)和ROLAP(Relational OLAP)两种,此外,还有混合的HOLAP(Hybrid OLAP).其中,Cognos的Powerplay、Hyperion 的Essbase和微软的Analysis Service这些产品都是MOLAP产品..这类产品将数据从关系数据库(甚至是文本文件、Excel文件)中抽取出来,存储在自己的数据库中.这种数据库跟平常我们所见的Oracle、DB2这类关系数据库不同之处在于,它是专有格式的,且没有标准的访问接口.因此,这些产品如何实现多维存储也都不尽相同,大致的原理是以编程语言中多维数组的方式存放数据.度量值存放在数组的单元格中,而数组每个维就对应一个维度,其中,维元素就维的坐标.可以想象,多维数据库的单元格跟维度、维元素的多少有莫大关系,而随着维度增加,数据库也迅速膨胀.因此,对于MLOAP产品,多维存储的存储空间、性能自然是比较关键的.Essbase在这方面提供很多优化工作,但有时候也会显得过于复杂.Powerplay也提供某些选项,诸如cube分区等,这是比较简单的优化方法.OLAP产品的核心功能是提供多维存储,另外就是能够将OLAP访问操作转换为对数据的请求并返回,这些OLAP访问操作大多是用户通过前端发出的,因此要考虑OLAP产品能够和哪些前端工具对接.Cognos Powerplay是个相对封闭的产品,它有自己的客户端和Web Explorer,你也甭想着用其他前端来访问它.Hyperion和微软都采用开放式接口,提供丰富的访问API,第三方可以用这些API访问其数据库.上文曾提到微软开发的MDX和参与的XMLA(XML for Analysis)规范,事实上,一些第三方的前端工具正是基于这样的标准和OLAP产品对接,比如可以用BO WebI连接Essbase.更有甚者,微软的服务器还提供用MDX来查询多维数据,就像用SQL来访问关系数据库一样.诚然,这看起来的确比较酷,但有一点也要明确:目前虽然有XMLA、MDX这样的标准,但还不是非常成熟,且并非唯一标准.所以即使有第三方前端工具访问这些OLAP服务器,但只能说是多了一些选择,真正在前端功能上,并不能保证比封闭结构更丰富.如果说OLAP产品市场几乎都被MOLAP占领,那么,有一家公司肯定不同意,那就是MicroStrategy,它几乎是目前唯一一家还占据一定市场份额的ROLAP产品.这是一件非常奇怪的事情,从第一个ROLAP产品Metaphor到Metacube、WhiteLight、MicroStrategy,这些独立的ROLAP厂商似乎都是难以生存下去,只有MicroStrategy坚挺到现在.究竟是它的产品厉害,还是市场做得到位?目前还不得而知.从原理上讲,ROLAP将数据存放在关系数据库中,当然要求关系模型要非常严格,比如要遵循星型模式或雪花模式,才能定义出维度、度量、事实表、聚集表等元数据.但这样就增加了部署的难度,并且如果聚集表构建得不好,最后的访问性能就难以保证.恐怕这也是ROLAP难以生存下去的原因吧.目前,很多OLAP产品都会混合MOLAP和ROLAP,特别是那些本身就做关系数据库的厂商,在现有数据库上面增加一些ROLAP 的特性并不困难.IBM在与Essbase终止OEM合同之后,推出一个名为CubeViews的产品,就可以说是一个ROLAP产品.虽然国内市场上已经涌现出这么多产品,但实际上,OLAP并没有被广泛接受,即使在已经建设BI系统好几年的电信行业也是如此.OLAP提供了一套系统的方法,将维度、度量、层次、切片、钻取概念化,但在前几年,原始的cube被直接推送给市场人员、领导,复杂的界面(对于领导来说,那已经够复杂了)让这种应用难以得到推广.为此,OLAP产品的定位无疑还需要进一步明确.。
OLAP和DM的区别和联系1.基本概念OLAP(Online Analysis Processing):在线分析处理。
侧重于对信息的分析,通常涉及对信息的切分、多维化、前推和回溯,以及回答what-if问题。
更与中高管理层的业务范围相关,并更集中于对企业管理决策的支持。
常见的分析处理应用如多维视图、预测、敏感性分析、成本控制等。
同时,在线处理往往需要较强大的软、硬件及复杂的分析方法与工具的支持。
DM:2.区别和联系所谓OLAP(Online Analytical Process)意指由数据库所连结出来的在线分析处理程序。
有些人会说:我已经有OLAP的工具了,所以我不需要Data Mining。
事实上两者间是截然不同的,主要差异在于Data Mining用在产生假设,OLAP 则用于查证假设。
简单来说,OLAP是由使用者所主导,使用者先有一些假设,然后利用OLAP来查证假设是否成立;而Data Mining则是用来帮助使用者产生假设。
所以在使用OLAP或其它Query的工具时,使用者是自己在做探索(Exploration),但Data Mining是用工具在帮助做探索。
举个例子来看,一市场分析师在为超市规划货品架柜摆设时,可能会先假设婴儿尿布和婴儿奶粉会是常被一起购买的产品,接着便可利用OLAP的工具去验证此假设是否为真,又成立的证据有多明显;但Data Mining则不然,执行Data Mining的人将庞大的结帐数据整理后,并不需要假设或期待可能的结果,透过Mining技术可找出存在于数据中的潜在规则,于是我们可能得到例如尿布和啤酒常被同时购买的意料外之发现,这是OLAP所做不到的。
Data Mining常能挖掘出超越归纳范围的关系,但OLAP仅能利用人工查询及可视化的报表来确认某些关系,是以Data Mining此种自动找出甚至不会被怀疑过的数据模型与关系的特性,事实上已超越了我们经验、教育、想象力的限制,OLAP可以和Data Mining互补,但这项特性是Data Mining无法被OLAP取代的。
OS Java CORBA COM+ Middleware XML&WebService Patterns ONE&NET P2P Development Database Download Doc什么是联机分析处理(OLAP )(转载自北大高科网站,/)联机分析处理 (OLAP) 的概念最早是由关系数据库之父E.F.Codd 于1993年提出的,他同时提出了关于OLAP 的12条准则。
OLAP 的提出引起了很大的反响,OLAP 作为一类产品同联机事务处理 (OLTP) 明显区分开来。
当今的数据处理大致可以分成两大类:联机事务处理OLTP (on-line transaction processing )、联机分析处理OLAP (On-Line Analytical Processing )。
OLTP 是传统的关系型数据库的主要应用,主要是基本的、日常的事务处理,例如银行交易。
OLAP 是数据仓库系统的主要应用,支持复杂的分析操作,侧重决策支持,并且提供直观易懂的查询结果。
下表列出了OLTP 与OLAP 之间的比较。
OLAP是使分析人员、管理人员或执行人员能够从多角度对信息进行快速、一致、交互地存取,从而获得对数据的更深入了解的一类软件技术。
OLAP的目标是满足决策支持或者满足在多维环境下特定的查询和报表需求,它的技术核心是"维"这个概念。
“维”是人们观察客观世界的角度,是一种高层次的类型划分。
“维”一般包含着层次关系,这种层次关系有时会相当复杂。
通过把一个实体的多项重要的属性定义为多个维(dimension),使用户能对不同维上的数据进行比较。
因此OLAP也可以说是多维数据分析工具的集合。
OLAP的基本多维分析操作有钻取(roll up和drill down)、切片(slice)和切块(dice)、以及旋转(pivot)、drill across、drill through 等。
OLAP与OLTP系统的特点与区别在当今互联网时代,数据处理成为各种企业以及组织中不可或缺的重要部分。
随着数据的不断积累和增长,面临着对数据进行分析和处理的需求日益迫切。
OLAP(联机分析处理)和OLTP(联机事务处理)系统是常用的数据处理系统,它们在数据处理的不同阶段起着重要的作用。
本文将重点讨论OLAP和OLTP系统的特点和区别。
OLAP系统是一种用于进行多维分析的数据处理系统。
它主要用于对大规模数据集进行查询和分析,以便从多个维度来研究数据。
OLAP系统适用于环境中需要进行复杂多维度分析的场景,例如市场营销、销售预测、业绩评估等。
OLAP系统具有以下几个特点:1. 多维数据分析:OLAP系统可以通过各种维度对数据进行切片和切块,从而进行多维度的数据分析。
用户可以对数据进行透视、钻取和分组操作,以获取细致的数据视图。
2. 超大规模数据处理:OLAP系统能够处理海量的数据,支持从亿级到万亿级的数据规模。
这使得它成为对大数据进行高效处理和分析的理想选择。
3. 快速查询和响应:OLAP系统具有高速查询和响应能力。
它使用了预计算和预聚合技术,将数据预先计算并存储到多维数据库中,从而加快了查询速度和响应时间。
相比之下,OLTP系统主要用于处理和管理日常事务性操作数据,如订单处理、库存管理等。
它具有以下特点:1. 精确和实时的数据处理:OLTP系统对数据的准确性和实时性要求较高,因此它通常处理实时产生的数据。
它需要快速地执行大量的事务,并确保数据的一致性和可靠性。
2. 事务处理:OLTP系统采用了并发控制和锁机制,以确保多个事务的一致性和隔离性。
它支持事务的原子性、一致性、隔离性和持久性特性。
3. 高并发处理能力:OLTP系统通常需要处理大量同时发生的事务。
它使用精细的并发控制和事务管理技术,以支持多用户同时对数据库进行访问和操作。
OLAP和OLTP系统之间的区别主要体现在以下几个方面:1. 数据库设计架构:OLAP系统使用多维数据结构,通常采用星型或雪花型的数据模型,而OLTP系统通常使用关系数据库模型。