基于视频的运动人体检测技术研究
- 格式:doc
- 大小:24.00 KB
- 文档页数:2
人体运动追踪技术的原理与实现步骤人体运动追踪技术是一种通过计算机视觉和图像处理技术对人体运动进行实时跟踪和分析的技术。
它在许多领域中有着广泛的应用,如体育训练、医疗康复、安防监控等。
本文将介绍人体运动追踪技术的原理和实现步骤。
一、原理1. 图像采集:人体运动追踪技术首先需要获取人体运动的图像或视频。
通常使用摄像机、深度相机或红外热像仪等设备进行图像的采集。
这些设备能够捕捉到人体运动时的位置、姿态、速度等信息。
2. 特征提取:从采集到的图像中提取出与人体有关的特征。
这些特征可以是人体关节的位置、骨骼的姿态、身体的形状等。
通常使用计算机视觉和图像处理技术来进行特征提取,例如边缘检测、图像分割等算法。
3. 运动估计:根据特征的变化来估计人体的运动。
通过分析特征在连续帧之间的差异和变化,可以计算出人体的运动轨迹和轨迹的速度。
常用的运动估计算法包括光流法、KLT算法等。
4. 姿态估计:根据人体的运动估计出人体的姿态。
姿态估计是一个复杂的问题,通常需要先推测人体的骨骼结构,再通过寻找最佳匹配的方法来估计人体的姿态。
现在常用的姿态估计算法有基于模型的方法、基于深度学习的方法等。
二、实现步骤1. 数据采集:使用合适的设备对人体的运动进行采集。
常见的设备包括摄像机、深度相机、红外热像仪等。
采集时需要注意灯光、背景等环境因素的影响,确保图像的质量和准确性。
2. 特征提取与选择:根据具体的应用需求选择合适的特征。
例如,如果需要检测人体的关节位置和姿态,可以选择提取关节点的坐标信息。
如果需要检测人体的形状和轮廓,可以选择进行图像分割和形态学处理。
3. 模型训练与优化:根据采集到的数据进行模型的训练和优化。
常见的方法有机器学习算法和深度学习算法。
在训练时需要对数据进行预处理、特征选择和模型调优,以提高运动追踪的准确性和鲁棒性。
4. 运动追踪与分析:使用训练好的模型对实时的图像或视频进行运动追踪和分析。
根据采集到的特征,计算人体的运动轨迹、姿态和速度等信息。
基于视频的人体异常行为识别与检测方法综述一、本文概述随着视频监控技术的广泛应用和技术的快速发展,基于视频的人体异常行为识别与检测已成为当前研究的热点和难点问题。
该技术旨在通过分析监控视频,自动检测并识别出人体的异常行为,如暴力行为、跌倒、异常行走姿势等,从而为安全监控、智能监控等领域提供有效的技术支持。
本文旨在综述基于视频的人体异常行为识别与检测技术的研究现状、发展趋势以及面临的挑战,以期为后续研究提供参考和借鉴。
本文首先介绍了基于视频的人体异常行为识别与检测的基本概念和研究意义,阐述了该技术在安全监控、智能交通、医疗护理等领域的应用价值。
接着,本文综述了近年来国内外在该领域的研究进展,包括基于传统图像处理的方法、基于机器学习的方法以及基于深度学习的方法等。
在此基础上,本文分析了各种方法的优缺点,并指出了当前研究中存在的问题和挑战。
本文展望了基于视频的人体异常行为识别与检测技术的发展趋势和未来研究方向,以期为相关领域的研究人员提供有益的参考和启示。
二、人体异常行为识别与检测的基本理论人体异常行为识别与检测是计算机视觉和领域的重要研究方向,其基本理论涉及多个学科的知识。
本部分将介绍人体异常行为识别与检测的基本理论,包括人体行为的表示、特征提取、行为分类与识别以及异常检测的基本原理。
人体行为的表示是实现异常行为识别与检测的基础。
人体行为可以通过多种方式表示,如时空轨迹、姿态序列、骨骼点运动等。
这些表示方法旨在捕捉人体行为的时空特性和动态变化,为后续的特征提取和分类提供基础。
特征提取是行为识别与检测的关键步骤。
通过对人体行为的表示进行特征提取,可以提取出行为的关键信息,如运动模式、姿态变化、行为速度等。
这些特征对于区分正常行为和异常行为至关重要。
常见的特征提取方法包括时域分析、频域分析、运动轨迹分析、姿态分析等。
接下来,行为分类与识别是异常行为检测的核心环节。
通过利用机器学习、深度学习等分类算法,将提取出的特征输入到分类器中,实现对人体行为的分类与识别。
《基于视觉的人体动作识别综述》篇一一、引言随着计算机视觉技术的快速发展,人体动作识别已经成为智能监控、人机交互、医疗康复等领域的重要研究课题。
基于视觉的人体动作识别技术能够从图像或视频中提取和解析人体动作信息,从而实现对人体行为的自动识别和理解。
本文旨在综述基于视觉的人体动作识别的研究现状,包括相关技术、方法和挑战,以期为后续研究提供参考。
二、人体动作识别的技术基础1. 特征提取:特征提取是人体动作识别的关键步骤,主要目的是从图像或视频中提取出与人体动作相关的特征。
常见的特征包括形状特征、纹理特征、光流特征等。
2. 模型构建:基于提取的特征,构建分类模型进行动作识别。
常用的模型包括支持向量机、隐马尔可夫模型、深度学习模型等。
三、基于视觉的人体动作识别方法1. 基于深度学习的方法:深度学习在人体动作识别中发挥着重要作用,尤其是卷积神经网络(CNN)和循环神经网络(RNN)的应用。
通过大量数据的训练,深度学习模型能够自动提取和识别人体动作特征。
2. 基于光流的方法:光流描述了图像序列中物体的运动信息,通过计算光流场可以提取出人体动作的动态特征。
基于光流的方法在人体动作识别中具有较高的准确性和实时性。
3. 基于骨骼信息的方法:通过深度相机或立体相机获取人体骨骼信息,进而进行动作识别。
该方法能够更准确地捕捉人体动作的细节,但需要较高的硬件设备支持。
四、人体动作识别的应用领域1. 智能监控:通过人体动作识别技术,可以实现智能监控和安防报警等功能,提高社会安全水平。
2. 人机交互:人体动作识别技术可以应用于虚拟现实、游戏、医疗康复等领域,实现自然、直观的人机交互。
3. 医疗康复:通过分析患者的康复动作,可以帮助医生评估患者的康复情况,为患者提供个性化的康复方案。
五、挑战与展望1. 数据获取与标注:大规模、多样化的数据集对于提高人体动作识别的性能至关重要。
然而,目前公开可用的数据集仍存在数据量不足、标注不准确等问题。
视频图像中的运动人体检测和人脸识别视频图像中的运动人体检测和人脸识别随着科技的发展和智能设备的普及,视频图像处理技术也日益发展。
视频图像中的运动人体检测和人脸识别技术,作为计算机视觉和图像处理领域的重要研究方向,已经在各个领域得到广泛应用,如安防领域、智能交通领域、人机交互等。
本文将对视频图像中的运动人体检测和人脸识别技术进行探讨。
一、视频图像中的运动人体检测技术运动人体检测技术是指识别视频图像中人体运动目标的过程。
在视频图像中,人体的运动是一个复杂而多变的过程,由于光照、环境、姿态等因素的干扰,运动人体检测技术面临着一定的挑战。
1、运动特征提取运动特征提取是运动人体检测的基础。
通过分析视频图像序列中的像素变化情况,可以提取出目标人体与背景的运动特征。
常用的运动特征包括:光流特征、运动轨迹特征、运动速度特征等。
光流特征是指在连续的图像帧之间,由像素的亮度变化引起的位移的矢量场。
通过计算相邻图像帧之间的像素差异,可以获得目标人体的光流特征。
运动轨迹特征是将目标人体在视频序列中的运动轨迹转化为特征向量,常用的运动轨迹特征包括:形状轨迹、颜色轨迹等。
运动速度特征则是指目标人体在视频序列中的运动速度信息。
通过分析目标人体在连续图像帧中的运动速度变化,可以提取出目标人体的运动速度特征。
2、运动目标检测在从视频图像中提取出运动特征之后,接下来就是运动目标检测的过程。
运动目标检测的目的是将目标人体与背景进行区分,通过运动模型、背景建模等方法,可以准确地检测出视频图像中的运动人体目标。
运动模型是一种基于物体运动的模型,通过对目标人体的运动模式进行建模,可以根据模型推测出目标人体的位置和运动状态。
背景建模则是通过对视频序列中的背景像素进行建模,通过对比当前帧图像与背景模型的差异,可以提取出目标人体。
3、运动人体跟踪基于运动的人体跟踪是指在视频图像中,根据目标人体的运动特征和运动目标检测结果,实时地跟踪目标人体的过程。
基于视频的人体姿态估计技术研究随着AI技术不断发展和普及,视频监控技术在各个领域得到广泛应用。
而基于视频的人体姿态估计技术则是其中的一个重要方向。
该技术可以通过视频中的人体姿态信息,对人物进行识别和跟踪,从而在安防、健康管理、游戏等领域中发挥重要作用。
一、什么是人体姿态估计技术?人体姿态估计技术是指通过计算机视觉和机器学习技术,从图像或视频中自动推断出人体的姿态信息。
它可以识别人体的关节位置、身体动作、运动轨迹等信息,从而进行人物跟踪和分析。
该技术是计算机视觉和机器学习领域中的一个重要研究方向之一。
二、基于视频的人体姿态估计技术原理基于视频的人体姿态估计技术主要分为两个阶段:人体检测和姿态估计。
首先,通过人体检测算法,确定视频中出现的人物位置和数量。
基于目标检测算法的技术,包括区域卷积神经网络(R-CNN)、快速区域卷积神经网络(Fast R-CNN)等,可以实现对视频中的人物位置准确定位。
接着,基于姿态估计算法,对人物进行姿态估计。
目前,常用的姿态估计算法主要分为以下几种:1. 基于刚体模型的姿态估计算法:该算法采用刚体模型对人体进行建模,将人体姿态表示为一系列旋转矩阵,并通过最小二乘法等算法优化模型的参数,实现对人体姿态的估计。
2. 基于特征点的姿态估计算法:该算法先提取出人体关键部位的特征点,包括关节、轮廓、面部等特征点,然后通过从这些特征点间的相对位置和角度等信息中推断出人体姿态。
3. 基于深度学习的姿态估计算法:该算法利用深度学习网络模型进行训练和学习,对人体姿态进行预测。
常见的深度学习模型包括卷积神经网络(CNN)、循环神经网络(RNN)、时空卷积网络(TSN)等。
三、基于视频的人体姿态估计技术应用基于视频的人体姿态估计技术在很多领域都有着广泛的应用,其中主要包括以下几个方面:1. 安防监控:在视频监控中,人体姿态估计技术可以实现对目标物体的快速定位和跟踪,从而提高监控效率和准确率。
《基于视觉的人体动作识别综述》篇一一、引言随着计算机视觉技术的快速发展,人体动作识别技术在许多领域中得到了广泛的应用,如智能监控、人机交互、运动分析、医疗康复等。
基于视觉的人体动作识别是利用图像处理和计算机视觉技术,从视频或图像中提取并分析人体动作信息,从而实现对人体动作的识别和解析。
本文将对基于视觉的人体动作识别的研究现状、关键技术、应用领域以及挑战和未来发展趋势进行综述。
二、人体动作识别的研究现状近年来,基于视觉的人体动作识别技术得到了广泛关注,并在多个领域取得了显著的进展。
该领域的研究主要集中在特征提取、算法优化、数据集构建等方面。
目前,人体动作识别的准确性和实时性都有了显著的提高,为后续的应用提供了有力的支持。
三、关键技术1. 特征提取:特征提取是人体动作识别的关键步骤,主要包括基于手工设计的特征和基于深度学习的特征。
手工设计的特征如HOG、SIFT等,能够提取人体运动的时空信息;而深度学习特征则通过神经网络自动学习数据的特征表示,具有更强的表征能力。
2. 算法优化:针对不同的应用场景,研究人员提出了多种优化算法,如基于深度学习的卷积神经网络(CNN)、循环神经网络(RNN)和长短时记忆网络(LSTM)等。
这些算法能够有效地处理时序数据和空间数据,提高人体动作识别的准确性和实时性。
3. 数据集构建:数据集的规模和质量对人体动作识别的性能具有重要影响。
目前,研究人员已经构建了多个大规模的人体动作数据集,如UCF-101、KTH等。
此外,还有一些公开的竞赛平台如Kinetics等,为研究者提供了丰富的数据资源和交流平台。
四、应用领域基于视觉的人体动作识别技术在多个领域得到了广泛应用。
在智能监控领域,该技术可用于监控公共安全、交通监控等;在人机交互领域,该技术可实现自然的人机交互方式;在运动分析领域,该技术可用于运动员的技术分析和训练;在医疗康复领域,该技术可用于患者的康复训练和评估等。
五、挑战与未来发展趋势尽管基于视觉的人体动作识别技术取得了显著的进展,但仍面临一些挑战。
人体动作识别与行为分析算法综述研究人体动作识别与行为分析是计算机视觉和机器学习领域的重要研究方向,其旨在自动识别和理解人体的动作与行为。
这一领域的研究具有广泛的应用前景,如人机交互、智能监控、虚拟现实等。
本文将综述人体动作识别与行为分析算法的研究进展、挑战与应用。
一、引言随着计算机视觉和机器学习的快速发展,人体动作识别与行为分析研究得到了广泛关注。
人体动作识别旨在从视频序列或者传感器输入中提取关键的身体动作信息,而行为分析则是对这些动作的语义解释和分类。
这两者相互依赖,共同构成了人类行为理解的重要内容。
二、人体动作识别算法研究人体动作识别算法的研究主要包括以下几个方面:1. 视频特征提取视频特征提取是人体动作识别的关键步骤,常用的特征包括外观特征、运动特征和空间-时域特征。
外观特征基于人体的外观特点,如颜色、纹理等进行描述;运动特征则是基于人体运动的模式进行描述;空间-时域特征一般使用视频序列进行描述,并结合了前两者的信息。
常用的视频特征提取算法有HOG、HOF、MBH等。
2. 动作表示与建模动作表示与建模是将视频序列映射到一个低维的向量空间中,常用的方法包括基于距离度量的方法(如DTW、OT、LCS等)、基于状态模型的方法(如HMM、CRF等)和基于深度学习的方法。
其中,深度学习方法凭借其强大的特征学习和表示能力,在人体动作识别中取得了很大的成功。
3. 动作识别与分类动作识别与分类是对动作进行分类或者识别的过程,常用的方法包括支持向量机(SVM)、最近邻算法(KNN)和深度学习算法(如卷积神经网络、循环神经网络等)。
这些方法能够通过学习训练数据集中的动作模式,从而对新的测试数据进行分类或者识别。
三、人体行为分析算法研究人体行为分析算法研究是对人体动作进行进一步的语义解释和分类,其目标是理解人类的行为动机和意图。
人体行为分析算法的研究主要包括以下几个方面:1. 行为表示与建模行为表示与建模是将人体动作映射到一个高级的语义空间中,以实现更细粒度的行为分析和理解。
基于视觉的人体运动分析技术研究人体运动分析是研究人体姿态、动作和运动过程的科学方法。
随着计算机视觉和图像处理技术的发展,基于视觉的人体运动分析技术逐渐成为研究的热点。
本文将介绍基于视觉的人体运动分析技术的研究进展和应用前景。
基于视觉的人体运动分析技术主要利用计算机视觉的方法对图像或视频中的人体姿态和动作进行分析和识别。
该技术不仅可以实时捕捉和重建人体运动,还可以提取运动特征,并进行运动模型的建立和分析。
它广泛应用于运动医学、动作捕捉、人机交互、虚拟现实等领域。
在运动医学中,基于视觉的人体运动分析技术可以帮助医生和康复师评估和监测患者的运动功能。
通过分析患者的运动姿态和动作,可以提供准确的诊断和康复方案。
此外,该技术还可以应用于运动训练和运动损伤预防,帮助运动员改善运动技能和动作效果。
在动作捕捉领域,基于视觉的人体运动分析技术可以实时捕捉和跟踪人体的运动姿态和动作。
传统的动作捕捉技术需要使用传感器或特殊设备,而基于视觉的技术可以通过摄像机对人体进行非接触式的捕捉和跟踪。
这种技术的优势在于成本低、操作简便,并且适用于室内外各种环境。
在人机交互和虚拟现实领域,基于视觉的人体运动分析技术可以实现自然、直观的交互方式。
用户可以通过身体动作和手势来与计算机进行交互,而无需使用鼠标和键盘。
这种技术的应用前景非常广阔,可以用于游戏、教育、健身等多个领域。
尽管基于视觉的人体运动分析技术在理论和算法上取得了很大进展,但仍面临一些挑战。
例如,复杂背景和光照条件可能会影响运动分析的准确性。
此外,多人运动的分析和跟踪也是一个难题。
未来的研究应该致力于提高算法的鲁棒性和实时性,以及解决多人运动分析的问题。
综上所述,基于视觉的人体运动分析技术在医学、动作捕捉、人机交互和虚拟现实等领域具有广泛的应用前景。
随着计算机视觉和图像处理技术的不断发展,相信该技术将为人们带来更多便利和创新。
《基于视觉的人体动作识别综述》篇一一、引言随着计算机视觉技术的飞速发展,基于视觉的人体动作识别技术在许多领域中得到了广泛应用。
这种技术可以实现对人体动作的自动识别与理解,对于人机交互、智能监控、体育分析、医疗康复等领域具有重要意义。
本文旨在全面综述基于视觉的人体动作识别技术的研究现状,并展望其未来发展趋势。
二、人体动作识别的基本原理基于视觉的人体动作识别主要通过计算机视觉技术,对人体在空间中的运动轨迹进行捕捉、分析和理解。
其基本原理包括图像采集、特征提取、分类识别等步骤。
首先,通过图像采集设备(如摄像头)获取人体运动的视频或图像序列。
然后,利用图像处理技术提取出人体运动的特征信息,如关节点位置、运动轨迹、速度等。
最后,通过分类器对提取的特征信息进行分类识别,实现人体动作的识别。
三、人体动作识别的关键技术1. 特征提取:特征提取是人体动作识别的关键技术之一。
目前常用的特征包括关节点特征、光流特征、形状特征等。
其中,关节点特征通过检测人体骨骼关键点来描述人体动作,具有较高的准确性。
2. 深度学习:深度学习在人体动作识别中发挥了重要作用。
通过训练深度神经网络,可以自动学习和提取人体动作的复杂特征,提高识别的准确性和鲁棒性。
3. 行为分析:行为分析是对人体动作进行深入理解的过程。
通过分析人体动作的时空关系、运动规律等信息,可以实现对人体行为的全面理解。
四、人体动作识别的应用领域1. 人机交互:基于视觉的人体动作识别可以实现人与计算机之间的自然交互,提高人机交互的便捷性和智能化程度。
2. 智能监控:通过识别和跟踪人体动作,可以实现对公共场所的安全监控和预警。
3. 体育分析:对人体运动进行精确的识别和分析,可以用于运动员的训练和比赛分析,提高运动成绩。
4. 医疗康复:通过分析患者的康复训练过程,可以评估康复效果,帮助医生制定更有效的康复方案。
五、人体动作识别的研究现状与挑战目前,基于视觉的人体动作识别技术已经取得了显著的进展,但在实际应用中仍面临一些挑战。
基于视频图像的运动人体目标跟踪检测系统研究与设计的开题报告一、选题背景及意义现代智能视频监控系统已经在安防领域得到了广泛的应用,而基于视频图像的运动人体目标跟踪检测技术是其中关键的一环。
传统的人体目标跟踪算法主要基于像素级的物体分割与轮廓描述,这种方法存在一些问题,例如对快速运动的物体跟踪效果较差,对目标旋转、遮挡等情况处理能力较弱。
因此,近年来研究人员开始尝试基于深度学习等方法改进人体目标跟踪技术,取得了显著的成果。
本论文旨在研究设计一种基于视频图像的运动人体目标跟踪检测系统,实现对运动目标的精确跟踪与检测,提高视频监控系统的安防性能,具有重要意义。
二、研究内容及方法本文将研究以下内容:1. 基于深度学习技术的人体目标检测算法研究,包括Faster RCNN、YOLO 等目标检测算法的原理、优缺点等。
2. 基于视觉目标跟踪算法研究,包括粒子滤波、卡尔曼滤波、Meanshift 等视觉目标跟踪算法的原理、优缺点等。
3. 综合运用深度学习技术和视觉目标跟踪技术,设计一种基于视频图像的运动人体目标跟踪检测系统。
研究方法包括文献调研、数据采集、算法实现与比较。
三、预期成果及创新点预期成果包括:1. 设计一种基于视频图像的运动人体目标跟踪检测系统,并进行有效性验证。
2. 分析比较不同算法在目标跟踪与检测表现上的优缺点。
3. 探索深度学习技术与视觉跟踪技术的结合方式,提高系统运行效率与准确度。
创新点包括:1. 设计一种基于视频图像的运动人体目标跟踪检测系统,与传统目标跟踪算法相比,具有更好的跟踪效果和适应性。
2. 综合运用深度学习技术和视觉跟踪技术,能够有效地解决目标快速运动和旋转、遮挡等问题。
3. 对目标跟踪与检测算法做出深入的分析和比较,为后续相关研究提供参考。
四、论文进度安排第一阶段(2021年4月— 2021年6月):文献调研与数据采集第二阶段(2021年7月— 2021年9月):基于深度学习技术的人体目标检测算法研究第三阶段(2021年10月— 2022年1月):基于视觉目标跟踪算法研究第四阶段(2022年2月— 2022年5月):综合运用深度学习技术和视觉目标跟踪技术,设计一种基于视频图像的运动人体目标跟踪检测系统。
基于视频的运动人体检测技术研究
摘要在视频监控领域中,快速准确地检测出运动人体,是后续进行运动分析的初级处理。
本文将单摄像头拍摄的视频流,首先转换成静止的图像帧,通过MATLAB利用中值法进行背景模型的重建,背景减除来进行运动目标检测,并通过图像后处理技术,将运动人体快速准确地检测出来。
通过对公共视频数据库及自拍视频的检测实验,均得到了较理想的运动人体图像,证明了该技术的可行性。
关键词视频序列;运动人体;MATLAB;目标检测
前言
当今社会,智能视频监控已分布到各行各业,是安全防范系统的重要组成部分。
运动人体的检测是视频监控系统进行运动分析的最底层,是后续进行各种高级处理如目标分类、行为理解等的基础。
本文以视频监控系统的应用为目的,将单摄像头拍摄的彩色视频流,首先转换成静止的图像帧,通过MATLAB利用中值法进行背景模型的重建,背景减除来进行运动目标检测,并通过图像后处理技术,检测到了较理想的运动人体图像。
1 运动目标检测
背景减除是当前最简单也是最常用的一种检测方法。
该方法通过将当前图像帧与背景图像的灰度值直接进行相减操作,并将得到的差值与某一阈值T进行比较,大于阈值T的即被认定为是目标点,赋值为1;反之,认定为是背景点,赋值为0,进而检测出运动人体目标。
1.1 中值法背景建模
根据视频序列的特点,在时间序列上,运动人体经过视频图像上某一位置的时间是非常短暂的,大部分时间在该位置上显示的都是背景图像,因此本文利用中值法[1-2]来进行背景模型的重新建立,该方法能够利用图像序列中的一部分图像重新构造出精确的背景图像。
其思想就是将图像序列中的部分图像按照其中像素的顺序进行排列,然后选出中间的像素值以此作为背景图像中对应位置处的像素值,遍历图像序列中所有的像素,即可以获得精确的背景图像。
1.2 差分及二值化
采用前述的背景减除法对图像进行差分操作,得到的差分结果为灰度图像,而在后续的处理过程中,用到更多的是二值化图像。
将灰度图像进行二值化的常用方法是阈值分割法,其中阈值的选取至关重要。
根据阈值选取的不同一般分为局部阈值算法和全局阈值算法。
全局阈值算法
就是根据整幅图像的像素分布情况,选取一个固定的阈值进行二值化。
而局部阈值法则是将整幅图像划分为若干个子图像,结合当前像素点和其邻域像素点的灰度值关系来确定考察点的二值化阈值。
本文选取OTSU大津法进行阈值的选取。
OTSU算法(又称最大类间方差法或大津法)是基于整幅图像的统计特性实现阈值的自动选取,是全局阈值选取方法中的典型方法。
其基本思想是将图像的灰度情况用一假定的灰度值分为两类,两类的类间方差达到最大时的灰度值就是图像二值化的最佳阈值。
1.3 图像后处理
图像后处理包括膨胀、腐蚀、开运算、闭运算等一系列操作。
通过这一系列操作可以使图像变得更加清晰明显。
膨胀是将与物体接触的所有背景点合并到该物体中,使边界向外部扩张的过程,可以填补物体中的空洞。
在對数字图像的处理中,对于一定形状大小的结构元素,通过膨胀操作可以实现一些相距较短的区域的连接。
但是,图像的膨胀操作对于杂点是敏感的,一些细小的杂点通过膨胀操作处理后,通常会变得比较明显。
而腐蚀操作则可以删除对象边界的某些像素点,通过消除图像边界点,可以让边界向内部收缩。
2 检测结果及其分析
实验一:公共数据库
视频图像取自UCSD公共数据库。
该数据库中包含2名女性,4名男性,共6个人,采集背景为室外,每段视频序列中仅有一人从右到左做单一方向的步态运动,帧图像大小为像素,帧速率为30帧/秒。
整个检测的过程如下图所示。
图1为原始视频序列中的任意一帧图像,图2为利用中值法建立的背景模型,可见很好的估计出了背景图像。
3 结束语
介绍了一种简单、快速的运动人体检测方法,通过MATLAB仿真,得到了较理想的检测结果。
但也存在一些问题与不足,如多人同时运动时,对检测方法会有更高要求。
参考文献
[1] Little J,Boyd J.E. Describing motion for recognition[C]. Proceedings of International Symposium on Computer Vision,1995:235-240.
[2] 苏礼坤,陈怀新. 中值滤波的视频背景更新[J]. 光电工程,2010,37(1):131-135.。