高考数学重点诱导公式总结_公式总结
- 格式:docx
- 大小:10.56 KB
- 文档页数:2
高考数学常用公式汇总一、函数1、 若集合A 中有n )(N n ∈个元素,则集合A 的所有不同的子集个数为n 2,所有非空真子集的个数是22-n 。
注:减一个真子集,减一个空集二次函数c bx ax y ++=2的图象的对称轴方程是a bx 2-=,顶点坐标是⎪⎪⎭⎫ ⎝⎛--a b ac ab 4422, 二、 三角函数3、诱导公式可用十个字概括为:奇变偶不变,符号看象限。
(正负看原来的三角比)函数Bx A y ++=)sin(ϕω),(其中00>>ωA 的最大值是B A +,最小值是A B -,周期是ωπ2=T ,频率是Tf 1=,相位是ϕω+x ,初相是ϕ; 13、在△ABC 中:-tanC B)+tan(A -cosC B)+cos(A sinC =B)+sin(A ==三、数列1、等差数列的通项公式是d n a a n )1(1-+=, 2)(1n n a a n S +=2、等比数列的通项公式是11-=n n q a a ,前n 项和公式是:⎪⎩⎪⎨⎧≠--==)1(1)1()1(11q qq a q na S nn3、若m 、n 、p 、q ∈N ,且q p n m +=+,那么: 当数列{}n a 是等差数列时,有q p n m a a a a +=+; 当数列{}n a 是等比数列时,有q p n m a a a a ⋅=⋅。
四、 排列组合1、 加法原理、乘法原理各适用于什么情形?有什么特点? 加法分类,类类加;乘法分步,步步乘。
2、排列数公式是:m n A =)1()1(+--m n n n =!!)(m n n -;组合数公式是:m n C =!m A mn 组合数性质:mn C =mn nC - m n C +1-m n C =mn C 1+五、解析几何1、 A B x x AB -=2、 数轴上两点间距离公式:A B x x AB -=3、 直角坐标平面内的两点间距离公式:22122121)()(y y x x P P -+-=4、 若点P 分有向线段21P P 成定比λ,则λ=21PP PP 5、 若点),(),(),(222111y x P y x P y x P ,,,点P 分有向线段21P P 成定比λ,则: =λλ++121x x =λλ++121y y若),(),(),(332211y x C y x B y x A ,,,则△ABC的重心G的坐标是⎪⎭⎫ ⎝⎛++++33321321y y y x x x ,。
高考数学常用的【诱导公式】高考数学常用的诱导公式有以下几组:公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotα公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与-α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα高中数学重要知识点1、向量的加法向量的加法满足平行四边形法则和三角形法则。
AB+BC=AC。
a+b=(x+x,y+y)。
a+0=0+a=a。
向量加法的运算律:交换律:a+b=b+a;结合律:(a+b)+c=a+(b+c)。
2、向量的减法如果a、b是互为相反的向量,那么a=—b,b=—a,a+b=0。
0的反向量为0 AB—AC=CB。
即“共同起点,指向被减”a=(x,y)b=(x,y)则a—b=(x—x,y—y)。
3、数乘向量实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣·∣a∣。
当λ0时,λa与a同方向;当λ0时,λa与a反方向;当λ=0时,λa=0,方向任意。
当a=0时,对于任意实数λ,都有λa=0。
注:按定义知,如果λa=0,那么λ=0或a=0。
实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩。
当∣λ∣1时,表示向量a的有向线段在原方向(λ0)或反方向(λ0)上伸长为原来的∣λ∣倍;当∣λ∣1时,表示向量a的有向线段在原方向(λ0)或反方向(λ0)上缩短为原来的∣λ∣倍。
高三数学知识点:诱导公式全集高三数学知识点:诱导公式全集常用的诱导公式有以下几组:公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinα (k∈Z)cos(2kπ+α)=cosα (k∈Z)tan(2kπ+α)=tanα (k∈Z)cot(2kπ+α)=cotα (k∈Z)公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与 -α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:cot(π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanα(以上k∈Z)注意:在做题时,将a看成锐角来做会比较好做。
诱导公式记忆口诀※规律总结※上面这些诱导公式可以概括为:对于π/2*k ±α(k∈Z)的三角函数值,①当k是偶数时,得到α的同名函数值,即函数名不改变;②当k是奇数时,得到α相应的余函数值,即sin→cos;cos→sin;tan→cot,cot→tan.(奇变偶不变)然后在前面加上把α看成锐角时原函数值的符号。
(符号看象限)例如:sin(2π-α)=sin(4?π/2-α),k=4为偶数,所以取sinα。
当α是锐角时,2π-α∈(270°,360°),sin(2π-α)0,符号为“-”。
所以sin(2π-α)=-sinα上述的记忆口诀是:奇变偶不变,符号看象限。
公式右边的符号为把α视为锐角时,角k?360°+α(k∈Z),-α、180°±α,360°-α所在象限的原三角函数值的符号可记忆水平诱导名不变;符号看象限。
高中数学诱导公式大全高中数学诱导公式大全常用的诱导公式有以下几组:公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinα (k∈Z)cos(2kπ+α)=cosα (k∈Z)XXX(2kπ+α)=tanα (k∈Z)cot(2kπ+α)=cotα (k∈Z)公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαXXX(π+α)=tanαcot(π+α)=cotα公式三:任意角α与-α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαXXX(π-α)=-tanαcot(π-α)=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαXXX(2π-α)=-tanαcot(2π-α)=-cotα公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαXXX(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαXXX(π/2-α)=cotαcot(π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαXXX(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαXXX(3π/2-α)=cotαcot(3π/2-α)=tanα这些诱导公式是在解决三角函数问题时非常有用的。
它们可以帮助我们简化计算,快速得到答案。
九组诱导公式总结及应用题型:九组诱导公式总结及其应用【知识链接】1.公式内容:2.文字概括:奇变偶不变,符号看象限.其中,“奇、偶”是指:.3.诱导公式对三角函数式的求值、化简、证明等具有重要作用,须熟练掌握,灵活运用,运用顺序:负化正,大化小,化到锐角再查表.注:以上各公式的推导思路及过程不需掌握,若有兴趣,详见后面附录.【巩固与应用】③这些关系式就是以上三个公式.例1化简sin()cos[(1)]sin[(1)]cos()kπαkπαkπαkπα-⋅--++⋅+(Z)k∈.结果:分2(Z)k n n=∈、21(Z)k n n=+∈化简,得1-.1.sin210=DAB.C.1D.12-2.sin(300)-=CA.12B.12-CD.3.已知sin(3)13απ-=,则cos()πα+= BA.13B.13-C.D.-4.已知sin(14απ-=,则cos(3)sin(56)παπα+++=.5sin(22)cos1cos()πθθθπθ--⋅=+,(0,)θπ∈,求θ的值.结果:3π,23π6.(05湖南文2)tan600=DA.BC.D7.(08陕西)sin 330= BA .B .12-C .12 D8.tan 2010= .例2 已知sin(3)2sin(32)παπα+=+,求下列各式的值.(1)sin 4cos 5sin 2cos αααα-+; 结果:16- (2)2sin sin 2αα+. 结果:85例3 化简tan(27)tan(49)tan(63)tan(139)αβαβ--+- . 1-1.若cos(5)x π+,[,]x ππ∈-,则x = BA .56π,7πB .56π±C .7π±D .2π±2.已知sin(6)14x π+=,则2sin(56)sin (3)πx πx -+-= .3.已知(2,32)αππ∈,tan(7)34απ-=-,则sin cos αα+=A .1±B .15-C .1D .7-4.若cos()12πα+=-,322παπ<<,则sin(2)πα+= DA .12B .CD .5.若sin()sin(32)πθπθ-+-=(02)θπ≤≤,则sin cos(2)θπθ+-= .结果:46.若cos(6)πα-=,则cos(56)πα+= . 7.cos(174)sin(17ππ---= AA B . C .0 D8.已知cos31m = ,则sin 239tan149= BA .2(1)m m -BC .2(1)m m -D .9.化简:332sin ()cos()cos()tan ()cos ()πααπαπααπ+-++--. 3cos α 10.若Z n ∈,则在下列各式 ①sin(3)n ππ+;②sin(23)n ππ±;③sin[(1)3]n n ππ+-;④cos[2(1)n n ππ+-中, 与sin 3π相等的是 .(写上所有符合要求的式子的序号). ③④11=. 1。
高考复习资料:高中数学诱导公式全集设α为任意角,终边相同的角的同一三角函数的值相等:sin=sinαcos=cosαtan=tanαcot=cotα任意角α与-α的三角函数值之间的关系:sin=-sinαcos=cosαtan=-tanαcot=-cotα利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin=sinαcos=-cosαtan=-tanαcot=-cotα利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin=-sinαcos=cosαtan=-tanαcot=-cotαπ/2±α及3π/2±α与α的三角函数值之间的关系:sin=cosαcos=-sinαtan=-cotαcot=-tanαsin=cosαcos=sinαtan=cotαcot=tanαsin=-cosαcos=sinαtan=-cotαcot=-tanαsin=-cosαcos=-sinαtan=cotαcot=tanα上面这些诱导公式可以概括为:对于π/2*k ±α的三角函数值,①当k是偶数时,得到α的同名函数值,即函数名不改变;②当k是奇数时,得到α相应的余函数值,即sin→cos;cos→sin;tan→cot,cot→tan.然后在前面加上把α看成锐角时原函数值的符号。
sin=sin,k=4为偶数,所以取sinα。
当α是锐角时,2π-α∈,sin<0,符号为“-”。
所以sin=-sinα上述的记忆口诀是:奇变偶不变,符号看象限。
公式右边的符号为把α视为锐角时,角k·360°+α,-α、180°±α,360°-α所在象限的原三角函数值的符号可记忆水平诱导名不变;符号看象限。
各种三角函数在四个象限的符号如何判断,也可以记住口诀“一全正;二正弦;三两切;四余弦”.这十二字口诀的意思就是说:第一象限内任何一个角的四种三角函数值都是“+”;第二象限内只有正弦是“+”,其余全部是“-”;第三象限内切函数是“+”,弦函数是“-”;第四象限内只有余弦是“+”,其余全部是“-”.上述记忆口诀,一全正,二正弦,三内切,四余弦函数类型第一象限第二象限第三象限第四象限正弦……+……+……—……—…… 余弦……+……—……—……+…… 正切……+……—……+……—…… 余切……+……—……+……—…… tanα·cotα=1si nα·cscα=1cosα·secα=1sinα/cosα=tanα=secα/cscαcosα/sinα=cotα=cscα/secαsin=sinαcosβ+cosαsinβsin=sinαcosβ-cosαsinβcos=cosαcosβ-sinαsinβcos=cosαcosβ+sinαsinβtan=/tan=/半角的正弦、余弦和正切公式sin =/2cos =/2tan =/另也有tan=/sinα=sinα/sinα=2tan/[1+tan ]cosα=[1-tan ]/[1+tan ]tanα=2tan/[1-tan ]正弦三倍角:3元减4元3角,所以要“挣钱”)余弦三倍角:4元3角减3元☆☆注意函数名,即正弦的三倍角都用正弦表示,余弦的三倍角都用余弦表示。
2019年高考数学诱导公式大全集锦公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinα (k∈Z)cos(2kπ+α)=cosα (k∈Z)tan(2kπ+α)=tanα (k∈Z)cot(2kπ+α)=cotα (k∈Z)公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与-α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanα(以上k∈Z)一般说来,“教师”概念之形成经历了十分漫长的历史。
诱导公式大全在数学学科中,诱导公式是一种非常重要的工具,它能够帮助我们简化复杂的数学问题,使得计算更加高效和便捷。
本文将为大家介绍一些常见的诱导公式,希望能够对大家的学习和工作有所帮助。
一、三角函数的诱导公式。
1. 余弦函数的诱导公式。
余弦函数的诱导公式是,$\sin'(x) = \cos(x)$。
这个公式可以帮助我们在求解余弦函数的导数时更加方便快捷。
2. 正弦函数的诱导公式。
正弦函数的诱导公式是,$\cos'(x) = -\sin(x)$。
利用这个公式,我们可以更加轻松地求解正弦函数的导数。
3. 切线函数的诱导公式。
切线函数的诱导公式是,$\tan'(x) = \sec^2(x)$。
这个公式在求解切线函数的导数时非常有用。
二、指数函数的诱导公式。
1. 指数函数的诱导公式。
指数函数的诱导公式是,$(a^x)' = a^x \ln(a)$。
通过这个公式,我们可以更加简单地求解指数函数的导数。
2. 对数函数的诱导公式。
对数函数的诱导公式是,$(\log_a(x))' = \frac{1}{x \ln(a)}$。
这个公式可以帮助我们求解对数函数的导数,提高计算效率。
三、常见函数的诱导公式。
1. 幂函数的诱导公式。
幂函数的诱导公式是,$(x^n)' = nx^{n-1}$。
这个公式可以帮助我们求解幂函数的导数,简化计算过程。
2. 三角函数复合函数的诱导公式。
三角函数复合函数的诱导公式是,$(f(g(x)))' = f'(g(x)) \cdot g'(x)$。
通过这个公式,我们可以更加方便地求解三角函数复合函数的导数。
四、其他常用诱导公式。
1. 反常函数的诱导公式。
反常函数的诱导公式是,$(f^{-1}(x))' = \frac{1}{f'(f^{-1}(x))}$。
这个公式在求解反常函数的导数时非常有用。
2. 参数方程的诱导公式。
高考你不容错过的高中数学诱导公式大集合据说史上最全!利用公式二和公式三可以得到与的三角函数值之间的关系:sin(-)=sincos(-)=-costan(-)=-tancot(-)=-cot公式五:利用公式一和公式三可以得到2与的三角函数值之间的关系:sin(2-)=-sincos(2-)=costan(2-)=-tancot(2-)=-cot公式六:/2及3/2与的三角函数值之间的关系:sin(/2+)=coscos(/2+)=-sintan(/2+)=-cotcot(/2+)=-tansin(/2-)=coscos(/2-)=sintan(/2-)=cotcot(/2-)=tansin(3/2+)=-coscos(3/2+)=sintan(3/2+)=-cotcot(3/2+)=-tansin(3/2-)=-coscos(3/2-)=-sintan(3/2-)=cotcot(3/2-)=tan(以上kZ)注意:在做题时,将a看成锐角来做会比较好做。
诱导公式记忆口诀※规律总结※上面这些诱导公式可以概括为:对于/2*k(kZ)的三角函数值,①当k是偶数时,得到的同名函数值,即函数名不改变;②当k是奇数时,得到相应的余函数值,即sincostancot,cottan.(奇变偶不变)然后在前面加上把看成锐角时原函数值的符号。
(符号看象限)例如:sin(2-)=sin(4/2-),k=4为偶数,所以取sin。
当是锐角时,2-(270,360),sin(2-)<0,符号为“-”。
所以sin(2-)=-sin上述的记忆口诀是:奇变偶不变,符号看象限。
公式右边的符号为把视为锐角时,角k360+(kZ),-、180,360-所在象限的原三角函数值的符号可记忆水平诱导名不变;符号看象限。
各种三角函数在四个象限的符号如何判断,也可以记住口诀“一全正;二正弦(余割);三两切;四余弦(正割)”.这十二字口诀的意思就是说:第一象限内任何一个角的四种三角函数值都是“+”;第二象限内只有正弦是“+”,其余全部是“-”;第三象限内切函数是“+”,弦函数是“-”;第四象限内只有余弦是“+”,其余全部是“-”.上述记忆口诀,一全正,二正弦,三内切,四余弦还有一种按照函数类型分象限定正负:函数类型第一象限第二象限第三象限第四象限正弦...........+............+................................余弦...........+....................................+........正切...........+........................+....................余切...........+........................+....................同角三角函数基本关系同角三角函数的基本关系式倒数关系:tancot=1sincsc=1cossec=1商的关系:sin/cos=tan=sec/csccos/sin=cot=csc/sec平方关系:sin^2()+cos^2()=11+tan^2()=sec^2()1+cot^2()=csc^2()同角三角函数关系六角形记忆法:构造以上弦、中切、下割;左正、右余、中间1的正六边形为模型。
高考数学诱导公式公式一设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinα (k∈Z)cos(2kπ+α)=cosα (k∈Z)tan(2kπ+α)=tanα (k∈Z)cot(2kπ+α)=cotα (k∈Z)公式二设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三任意角α与 -α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanα(以上k∈Z)注意:在做题时,将a看成锐角来做会比较好做。
规律总结上面这些诱导公式可以概括为:对于π/2_ ±α(k∈Z)的三角函数值,①当k是偶数时,得到α的同名函数值,即函数名不改变;②当k是奇数时,得到α相应的余函数值,即sin→cos;cos→sin;tan→cot,cot→tan.(奇变偶不变)然后在前面加上把α看成锐角时原函数值的符号。
高考数学诱导公式大全2019高考数学诱导公式大全常用的诱导公式有以下几组:公式一:设为任意角,终边相同的角的同一三角函数的值相等:sin(2k+)=sin (kZ)cos(2k+)=cos (kZ)tan(2k+)=tan (kZ)cot(2k+)=cot (kZ)公式二:设为任意角,的三角函数值与的三角函数值之间的关系:sin(+)=-sincos(+)=-costan(+)=tancot(+)=cot公式三:任意角与 -的三角函数值之间的关系:sin(-)=-sincos(-)=costan(-)=-tancot(-)=-cot公式四:利用公式二和公式三可以得到与的三角函数值之间的关系:cos(3/2+)=sintan(3/2+)=-cotcot(3/2+)=-tansin(3/2-)=-coscos(3/2-)=-sintan(3/2-)=cotcot(3/2-)=tan(以上kZ)注意:在做题时,将a看成锐角来做会比较好做。
诱导公式记忆口诀※规律总结※上面这些诱导公式可以概括为:对于/2*k (kZ)的三角函数值,①当k是偶数时,得到的同名函数值,即函数名不改变;②当k是奇数时,得到相应的余函数值,即sincos;cossin;tancot,cottan.(奇变偶不变)然后在前面加上把看成锐角时原函数值的符号。
(符号看象限)例如:sin(2-)=sin(4/2-),k=4为偶数,所以取sin。
当是锐角时,2-(270,360),sin(2-)<0,符号为“-”。
所以sin(2-)=-sin上述的记忆口诀是:奇变偶不变,符号看象限。
公式右边的符号为把视为锐角时,角k360+(kZ),-、180,360-所在象限的原三角函数值的符号可记忆水平诱导名不变;符号看象限。
各种三角函数在四个象限的符号如何判断,也可以记住口诀“一全正;二正弦(余割);三两切;四余弦(正割)”.这十二字口诀的意思就是说:第一象限内任何一个角的四种三角函数值都是“+”;第二象限内只有正弦是“+”,其余全部是“-”;第三象限内切函数是“+”,弦函数是“-”;第四象限内只有余弦是“+”,其余全部是“-”.上述记忆口诀,一全正,二正弦,三内切,四余弦还有一种按照函数类型分象限定正负:函数类型第一象限第二象限第三象限第四象限正弦 ...........+............+................................余弦 ...........+....................................+........正切 ...........+........................+....................余切 ...........+........................+....................同角三角函数基本关系同角三角函数的基本关系式倒数关系:tancot=1sincsc=1cossec=1商的关系:sin/cos=tan=sec/csccos/sin=cot=csc/sec平方关系:sin^2()+cos^2()=11+tan^2()=sec^2()1+cot^2()=csc^2()同角三角函数关系六角形记忆法六角形记忆法:(参看图片或参考资料链接)构造以上弦、中切、下割;左正、右余、中间1的正六边形为模型。
高考数学诱导公式汇总公式一设α为任意角,终边相同的角的同一三角函数的值相等:sin2kπ+α=sinαk∈Zcos2kπ+α=cosαk∈ztan2kπ+α=tanαk∈Zcot2kπ+α=cotαk∈z二级方程式设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sinπ+α=-sinαcosπ+α=-cosαtanπ+α=tanαcotπ+α=cotα公式三三角函数值之间的任意角度α和-α关系:sin-α=-sinαcos-α=cosαtan-α=-tanαcot-α=-cotα公式四π可以通过公式2和公式3得到-α和α之间的三角函数值关系:sinπ-α=sinαcosπ-α=-cosαtanπ-α=-tanαCotπ-α=-Cotα公式五利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin2π-α=-sinαcos2π-α=cosαα-tanπ=cot2π-α=-cotα公式VIπ/2±α和3π/2±α与α之间的三角函数值关系:sinπ/2+α=cosαcosπ/2+α=-sinαtanπ/2+α=-cotαcotπ/2+α=-tanαsinπ/2-α=cosαcosπ/2-α=sinαtanπ/2-α=cotαcotπ/2-α=tanαsin3π/2+α=-cosαcos3π/2+α=sinαtan3π/2+α=-cotαcot3π/2+α=-tanαsin3π/2-α=-cosαcos3π/2-α=-sinαtan3π/2-α=cotαcot3π/2-α=tanα以上k∈z注意:在提问时,更容易将a视为锐角。
这些诱导公式可以概括为:对于π/2*k±α三角函数,k的值∈ Z①当k是偶数时,得到α的同名函数值,即函数名不改变;② 当k是奇数时,我们得到相应的余函数值α,即sin→ 余弦;余弦→罪棕褐色的→小床,小床→棕褐色的奇变偶不变然后在锐角处将原始函数值的符号加上一个α。
高考数学重点诱导公式总结_公式总结
公式一:
设α为任意角,终边相同的角的同一三角函数的值相等:
sin(2kπ+α)=sinα(k∈Z)
cos(2kπ+α)=cosα(k∈Z)
tan(2kπ+α)=tanα(k∈Z)
cot(2kπ+α)=cotα(k∈Z)
公式二:
设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinα
cos(π+α)=-cosα
tan(π+α)=tanα
cot(π+α)=cotα
公式三:
任意角α与-α的三角函数值之间的关系:
sin(-α)=-sinα
cos(-α)=cosα
tan(-α)=-tanα
cot(-α)=-cotα
公式四:
利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinα
cos(π-α)=-cosα
tan(π-α)=-tanα
cot(π-α)=-cotα
公式五:
利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinα
cos(2π-α)=cosα
tan(2π-α)=-tanα
cot(2π-α)=-cotα
公式六:
π/2±α及3π/2±α与α的三角函数值之间的关系:
sin(π/2+α)=cosα
cos(π/2+α)=-sinα
tan(π/2+α)=-cotα
cot(π/2+α)=-tanα
sin(π/2-α)=cosα
cos(π/2-α)=sinα
tan(π/2-α)=cotα
cot(π/2-α)=tanα
sin(3π/2+α)=-cosα
cos(3π/2+α)=sinα
tan(3π/2+α)=-cotα
cot(3π/2+α)=-tanα
sin(3π/2-α)=-cosα
cos(3π/2-α)=-sinα
tan(3π/2-α)=cotα
cot(3π/2-α)=tanα
(以上k∈Z)
注意:在做题时,将a看成锐角来做会比较好做。