(整理)傅里叶变换和傅里叶级数的收敛问题.
- 格式:doc
- 大小:169.50 KB
- 文档页数:7
1、傅里叶变换和傅里叶级数的收敛问题由于傅里叶级数是一个无穷级数,因而存在收敛问题。
这包含两方面的意思:是否任何周期信号都可以表示为傅里叶级数;如果一个信号能够表示为傅里叶级数,是否对任何t 值级数都收敛于原来的信号。
关于傅里叶级数的收敛,有两组稍有不同的条件。
第一组条件:如果周期信号()t x 在一个周期内平方可积,即()∞<⎰dt Tt x 2则其傅里叶级数表达式一定存在。
第二组条件,与第一组条件稍有不同,就是狄里赫利条件,它包括以下三点: (1)在任何周期内,x 必须绝对可积,即()∞<⎰dt t x T 0(2)在任何周期内,()t x 只有有限个极值点,且在极值点处的级值为有限值。
(3)在任何有限区间内,()t x 只有有限个间断点,且在这些不连续点处,()t x 为有限值。
傅里叶变换的收敛问题也有两组类似的条件: 第一组条件:如果()t x 平方可积,即()∞<⎰∞∞-dt t x 2则()t x 的傅里叶变换存在。
满足上式可以保证()ΩX 为有限值。
第二组条件也称为狄里赫利条件,这就是: (1)()t x 绝对可积,即()∞<⎰∞∞-dt t x(2)在任何有限区间内,()t x 只有有限个极值点,且在这些极值点处的极值是有限值。
(3)在任何有限区间内,()t x 只能有有限个间断点,而且这些间断点都必须是有限值。
吉布斯现象:当简单地把信号频谱截断时,相当于给信号频谱加上了一个矩形窗口函数,正是由于矩形窗口函数的时域特性导致了在间断点处的吉布斯现象的产生。
2、周期序列的傅里叶级数展开和傅里叶变换之间的问题假定()t x 是一个长度为N 的有限长序列,将()t x 以N 为周期延拓而成的周期序列为()n x ~,则有()()∑∞-∞=-=r rN n x n x ~或表示为()()()N n x n x =~。
于是()n x ~与()n x 的关系表示为:()()()Nn x n x =~()()()n R n x n x N ~=将()n x ~表示为离散时间傅里叶级数有:()()kn NN n Wk X Nn x --=⋅=∑10~~1()()kn NN n W n x k X ⋅=∑-=10~~其中()k X ~是傅里叶级数的系数,这样做的目的是使其表达形式与离散时间傅里叶变换的形式相类似。
第十五章 傅里叶级数 3收敛定理的证明预备定理1:(贝塞尔不等式)若函数f 在[-π,π]上可积,则2a 20+∑∞=1n 2n 2n )b +(a ≤⎰ππ-2(x)f π1dx ,其中a n , b n 为f 的傅里叶系数.证:令S m (x)=2a 0+∑=+m1n n n sinnx )b cosnx (a ,则⎰ππ-2m (x )]S -[f(x )dx=⎰ππ-2(x )f dx-2⎰ππ-m (x )f(x )S dx+⎰ππ-2m (x)S dx. 其中 ⎰ππ-m (x )f(x )S dx=⎰ππ-0f(x)2a dx+dx cosnx f(x )a m1n ππ-n ∑⎰= ⎝⎛+⎪⎭⎫⎰sinnxdx f(x)b ππ-n =20a 2π+π∑=m1n 2n 2n )b +(a . 由三角函数的正交性,有 ⎰ππ-2m (x )S dx=⎰∑⎥⎦⎤⎢⎣⎡++=ππ-2m 1n n n 0sinnx)b cosnx (a 2a dx =⎰⎪⎭⎫ ⎝⎛ππ-202a dx+⎰∑⎰⎰=⎥⎦⎤⎢⎣⎡+ππ-m 1n ππ-22n ππ-22n nx dx sin b nx dx cos a dx=20a 2π+π∑=m 1n 2n 2n )b +(a . ∴⎰ππ-2m (x )]S -[f(x )dx=⎰ππ-2(x )f dx-2πa -2π∑∞=1n 2n2n )b +(a +20a 2π+π∑=m1n 2n 2n )b +(a=⎰ππ-2(x )f dx-⎢⎣⎡20a 2π+π⎥⎦⎤∑=m1n 2n 2n )b +(a ≥0. ∴2a 20+∑=m1n 2n 2n )b +(a ≤⎰ππ-2(x)f π1dx 对任何正整数m 都成立. 又 ⎰ππ-2(x)f π1dx 为有限值,∴正项级数2a 20+∑∞=1n 2n 2n )b +(a 的部分和数列有界, ∴2a 20+∑∞=1n 2n 2n )b +(a 收敛且有2a 20+∑∞=1n 2n 2n )b +(a ≤⎰ππ-2(x)f π1dx.推论1:(黎曼-勒贝格定理)若f 为可积函数,则cosnx f(x )limππ-n ⎰∞→dx=sinnx f(x )lim ππ-n ⎰∞→=0.证:由2a 20+∑∞=1n 2n 2n )b +(a 收敛知,2n 2n b +a →0 (n →∞),∴a n →0, b n →0, (n →∞), ∴cosnx f(x )lim ππ-n⎰∞→dx=sinnx f(x )lim ππ-n ⎰∞→dx=0.推论2:若f 为可积函数,则x 21n sin f(x )lim πn ⎪⎭⎫ ⎝⎛+⎰∞→dx=x 21n sin f(x )lim 0π-n ⎪⎭⎫ ⎝⎛+⎰∞→dx =0. 证:∵x 21n sin ⎪⎭⎫ ⎝⎛+=cos 2x sinnx+sin 2xcosnx , ∴x 21n sin f(x )π⎪⎭⎫ ⎝⎛+⎰dx =sinnx 2x f(x )cos π0⎰⎥⎦⎤⎢⎣⎡dx+cosnx 2x f(x )sin π0⎰⎥⎦⎤⎢⎣⎡dx =sinnx (x )F ππ-1⎰dx+cosnx (x )F ππ-2⎰dx ,其中F 1(x)=⎪⎩⎪⎨⎧≤≤<≤-πx 02x cos )x (f 0x π0,,;F 2(x)=⎪⎩⎪⎨⎧≤≤<≤-πx 02x sin )x (f 0x π0,,.可知F 1与F 2在[-π,π]上可积. 由推论1可知sinnx (x )F lim ππ-1n ⎰∞→dx=cosnx (x )F lim ππ-2n ⎰∞→=0. ∴x 21n sin f(x )lim π0n ⎪⎭⎫ ⎝⎛+⎰∞→dx=0. 同理可证:x 21n sin f(x )lim 0π-n⎪⎭⎫ ⎝⎛+⎰∞→dx =0.预备定理2:若f 是以2π为周期的函数,且在[-π,π]上可积,则它的傅里叶级数部分和S n (x)可写成S n (x)=⎰⎪⎭⎫ ⎝⎛++ππ-2t 2sint21n sin t)f(x π1dt ,当t=0时,被积函数中的不定式由极限 2t 2sint21n sin lim0t ⎪⎭⎫ ⎝⎛+→=n+21确定. 证:在傅里叶级数部分和S n (x)=2a 0+sinkx )b +coskx (a n1k k k ∑=中代入傅里叶系数公式,可得:S n (x)=⎰ππ-f(u)2π1du +∑⎰⎰=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛n 1k ππ-ππ-sinkx sinkudu f(u)+coskx coskudu f(u)π1 =⎰∑⎥⎦⎤⎢⎣⎡+=ππ-n 1k )sinkusinkx +kx coskuducos (21f(u)π1du=⎰∑⎥⎦⎤⎢⎣⎡+=ππ-n 1k x)-cosk(u 21f(u)π1du. 令u=x+t ,得S n (x)=⎰∑⎪⎭⎫⎝⎛++=x -πx -π-n 1k coskt 21t)f(x π1dt ,又被积函数周期为2π,且∑=+n 1k coskt 21=2t 2sint21n sin ⎪⎭⎫ ⎝⎛+, ∴S n (x)=⎰⎪⎭⎫ ⎝⎛++ππ-2t 2sint21n sin t)f(x π1dt. (f 的傅里叶级数部分和积分表示式).收敛定理15.3证明:若周期为2π的函数f 在[-π, π]上按段光滑,则在每一点x ∈[-π, π],f 的傅里叶级数2a 0+∑∞=1n n n sinnx )b +cosnx (a 收敛于f在点x 的左右极限的算术平均值,即20)-f(x 0)f(x ++=2a 0+∑∞=1n n n sinnx )b +cosnx (a ,其中a n , b n 为傅里叶系数.证:记f 的傅里叶级数的部分和为S n (x)=⎰⎪⎭⎫ ⎝⎛++ππ-2t 2sint21n sin t)f(x π1dt.∵⎰⎪⎭⎫ ⎝⎛+ππ-2t 2sin t 21n sin π1dt=⎰∑⎪⎭⎫ ⎝⎛+=ππ-n 1k coskt 21π1dt=1;又上式左边为偶函数,∴两边同时乘以f(x+0)后得:20)f(x +=⎰⎪⎭⎫ ⎝⎛++ππ-2t 2sint21n sin 0)f(x π1dt.令φ(t)=-2t sin 20)f(x -t)f(x ++=-2t sin2tt 0)f(x -t)f(x ⋅++, t ∈(0,π].则 φ(t)lim 0t +→=-f ’(x+0)·1=-f ’(x+0).再令φ(0)=-f ’(x+0),则φ在点t=0右连续.又φ在[0,π]上至多只有有限个第一类间断点,∴φ在[0,π]上可积. 根据预备定理1的推论2,有2t 2sint21n sin t)]f(x -0)[f(x π1lim π0n ⎪⎭⎫ ⎝⎛+++⎰∞→dt=t 21n sin φ(t)π1lim π0n ⎪⎭⎫ ⎝⎛+⎰∞→dt=0, ∴⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+++⎰∞→dt 2t 2sint 21n sin t)f(x π1-20)f(x lim π0n=0,同理可证 ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎪⎭⎫ ⎝⎛++-⎰∞→dt 2t 2sint 21n sin t)f(x π1-20)f(x lim π0n =0;∴⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎪⎭⎫ ⎝⎛++++⎰∞→dt 2t 2sint 21n sin t)f(x π1-20)-f(x 0)f(x lim π0n=⎥⎦⎤⎢⎣⎡++∞→(x )S -20)-f(x 0)f(x lim n n =0. 即20)-f(x 0)f(x ++=2a 0+∑∞=1n n n sinnx )b +cosnx (a . 习题1、设f 以2π为周期且具有二阶连续的导函数,证明f 的傅里叶级数在(-∞,+∞)上一致收敛于f.证:由f 在(-∞,+∞)上光滑,知f ’在[-π, π]上可积, 且f ’的傅里叶系数为:a ’0=0;a ’n =nb n , b ’n =-na n , (n=1,2,…). ∴|a n |+|b n |=n |a |n '+n |b |n '≤)n 1a (2122n +'+)n 1b (2122n +'=)b a (212n 2n '+'+2n1. 由贝塞尔不等式知级数∑∞='+'1n 2n2n)b a (收敛,又级数∑∞=1n 2n1级数, 由正项级数的比较原则知,2|a |0+∑∞=+1n n n |)b ||a (|收敛,由定理15.1知f 的傅里叶级数在(-∞,+∞)上一致收敛于f.2、设f 为[-π,π]上的可积函数. 证明:若f 的傅里叶级数在[-π,π]上一致收敛于f ,则帕塞瓦尔等式成立,即⎰ππ-2(x)f π1dx=2a 20+∑∞=1n 2n 2n )b +(a , 其中a n , b n 为傅里叶系数.证:∵f 的傅里叶级数在[-π,π]上一致收敛于f ,∴f(x)=2a 0+∑∞=1n n n sinnx )b +cosnx (a .∴⎰ππ-2(x)f π1dx=⎰∑⎥⎦⎤⎢⎣⎡+∞=ππ-1n n n 0sinnx)b +cosnx (a 2a )x (f π1dx =2a 2+⎰∑∞=ππ-1n n n sinnx ])x (f b +cosnx )x (f [a π1dx. ∵f 在[-π,π]上可积,∴f 在[-π,π]上有界. ∴∑∞=1n n n sinnx ])x (f b +cosnx )x (f [a 在[-π,π]上一致收敛.∴⎰ππ-2(x)f π1dx=2a 20+dx ]sinnx )x (f b +cosnx dx )x (f [a π1ππ-1n n ππ-n ⎰∑⎰∞=dx=2a 20+∑∞=1n 2n 2n π)b +π(a π1=2a 20+∑∞=1n 2n 2n )b +(a .3、由于帕塞瓦尔等式对于在[-π,π]上满足收敛定理条件的函数也成立. 请应用这个结果证明下列各式:(1)8π2=∑∞=1n 2)1-n 2(1;(2)6π2=∑∞=1n 2n 1;(3)90π4=∑4n 1. 证:(1)对函数f(x)= πx 0 4π0x π- 4π-⎪⎩⎪⎨⎧<≤<<,,在(-π, π)上展开傅里叶级数得: f(x)=∑∞=--1n 12n 1)xsin(2n ,其中a 0=a n =0,b n =2n )1(1n --,n=1,2,…;根据帕塞瓦尔等式有⎰ππ-2(x)f π1dx=∑∞=1n 2n b =∑∞=1n 2n 2n (-1)-1=∑∞=1k 21)-(2k 1, 又⎰ππ-2(x)f π1dx=⎰ππ-216ππ1dx=8π2,∴8π2=∑∞=1n 2)1-n 2(1.(2)对函数f(x)=x 在(-π, π)上展开傅里叶级数得:f(x)=2∑∞=+-1n 1n nsinnx)1(. 其中a 0=a n =0,b n =n)1(21n +-,n=1,2,…;根据帕塞瓦尔等式有⎰ππ-2(x)f π1dx=∑∞=1n 2n b =4∑∞=1n 2n 1,又⎰ππ-2(x)f π1dx=⎰ππ-2x π1dx=32π2, ∴32π2=4∑∞=1n 2n1,即6π2=∑∞=1n 2n 1.(3)对函数f(x)=x 2在(-π, π)上展开傅里叶级数得:f(x)=31π2+4∑∞=1n 2n n cosnx (-1). 其中a 0=32π2,a n =2n n 4(-1),b n =0,n=1,2,…; 根据帕塞瓦尔等式有⎰ππ-2(x)f π1dx=2a 20+∑∞=1n 2n a =92π4+16∑∞=1n 4n 1,又⎰ππ-2(x)f π1dx=⎰ππ-4x π1dx=32π2,∴52π4=92π4+16∑∞=1n 4n 1,即90π2=∑4n 1.4、证明:若f,g 均为[-π,π]上的可积函数,且它们的傅里叶级数在[-π,π]上分别一致收敛于f 和g ,则⎰ππ-f(x)g(x)π1dx=2αa 00+∑∞=+1n n n n n )βb αa (,其中a n , b n 为f 的傅里叶系数,αn ,βn 为g 的傅里叶系数. 证:由f 的傅里叶级数在[-π,π]上一致收敛于f ,有f(x)=2a 0+∑∞=1n n n sinnx )b +cosnx (a . ∵f,g 均在[-π,π]上可积,∴∑∞=1n n n g(x )sinnx ]b +g(x )cosnx [a 在[-π,π]上一致收敛.∴⎰ππ-f(x)g(x)π1dx=⎰ππ-0g(x)2a π1dx+∑⎰∞=1n ππ-n n g(x )sinnx ]b +g(x )cosnx [a π1dx=2αa 00+∑⎰⎰∞=⎥⎦⎤⎢⎣⎡1n ππ-ππ-n n x g(x )sinnx d π1b +x g(x )cosnx d π1a =2αa 00+∑∞=+1n n n n n )βb αa (.5、证明:若f 及其导函数f ’均在[-π,π]上可积,⎰ππ-f(x )dx=0, f(-π)=f(π),且帕塞瓦尔等式成立,则⎰'ππ-2(x )]f [dx ≥⎰ππ-2[f(x )]dx.证:设a 0,a n ,b n 为f 的傅里叶系数;a ’0,a ’n ,b ’n 为f ’的傅里叶系数. 由⎰ππ-f(x )dx=0, f(-π)=f(π),有a ’0=a 0=0; a ’n =nb n ,b ’n =-na n .根据帕塞瓦尔等式,有⎰ππ-2[f(x)]π1dx=2a 20+∑∞=1n 2n 2n )b +(a =∑∞=1n 2n 2n )b +(a , ⎰'ππ-2(x)]f [π1dx=2a 20'+∑∞=''1n 2n 2n )b +a (=∑∞=1n 2n 2n 2)b +(a n ≥∑∞=1n 2n 2n )b +(a =⎰ππ-2[f(x)]π1dx. ∴⎰'ππ-2(x )]f [dx ≥⎰ππ-2[f(x )]dx.。
傅里叶级数与傅里叶变换傅里叶级数和傅里叶变换是现代数学以及工程学领域中非常重要的概念。
它们广泛应用于信号处理、图像处理、通信系统、电子电路等方面。
本文将介绍傅里叶级数和傅里叶变换的基本概念、原理和应用。
一、傅里叶级数傅里叶级数是一种用正弦函数和余弦函数的线性组合来表示周期函数的方法。
对于任意周期为T的函数f(t),其傅里叶级数表示为:f(t) = a0 + Σ(an*cos(nωt) + bn*sin(nωt))其中,a0为零频率分量的系数,an和bn为一系列傅里叶系数,n为正整数,ω=2π/T为基本频率。
傅里叶级数展开式中的每一项都代表了函数f(t)中具有不同频率的分量。
通过计算适当的系数an和bn,我们可以将任意周期函数表示为一系列正弦和余弦函数的线性组合。
这使得我们能够分析、合成和处理不同频率的信号。
二、傅里叶变换傅里叶变换是将一个时域函数转换为频域函数的过程。
对于非周期函数f(t),它的傅里叶变换表示为:F(ω) = ∫[f(t)e^(-jωt)]dt其中,F(ω)为频域函数,ω为连续频率参数,e为自然对数的底,j为虚数单位。
傅里叶变换将时域函数转换为频域函数,可以帮助我们理解和分析信号在不同频率上的能量分布。
频域函数F(ω)表示了原始信号中不同频率的幅度和相位信息。
通过傅里叶变换,我们可以在频域对信号进行滤波、调制、解调等操作,从而实现对信号的处理和传输。
三、傅里叶级数与傅里叶变换的关系傅里叶级数和傅里叶变换在数学上是相互关联的。
傅里叶级数是对周期函数进行频谱分析的方法,而傅里叶变换则适用于各种非周期信号的频谱分析。
当周期T趋于无穷大时,傅里叶级数就变成了傅里叶变换的极限形式。
傅里叶变换可以看作是傅里叶级数的一个推广,将其应用于非周期信号的频谱分析。
四、傅里叶级数与傅里叶变换的应用傅里叶级数和傅里叶变换在信号处理和通信领域有着广泛的应用。
以下是一些典型的应用场景:1. 信号滤波:通过傅里叶变换,我们可以在频域对信号进行滤波操作,以去除不需要的频率成分或者保留感兴趣的频率成分。
摘 要线性变换,尤其是傅里叶变换,是众所周知的解决线性系统问题的技术,人们常将变换作为一种数学和物理工具,把问题转到可以解决的域内.在许多科学分支的理论中,傅里叶变换都扮演着重要的角色.就像其它变换一样,它可以单纯的看作数学泛函.在现代数学中,傅里叶变换是一种非常重要的变换,且在频谱信号、波动及热传导等方面有着广泛的应用.本文首先介绍了傅里叶级数以及傅里叶变换的基本概念、性质及发展;其次介绍了傅里叶变换的不同变种以及多种傅里叶变换的定义;最后介绍了傅里叶变换在周期信号、波动这两个方面的具体的应用,在周期信号方面主要介绍的是基于快速傅里叶变换的信号去噪的应用,而在波动方面主要介绍的是海水仿真系统的研究.最后对本文所讨论的内容进行了总结.关键词:傅里叶变换,波动,频谱信号AbstractLinear transforms ,especially those named for Fourier are well know as provide techniques for solving problems in linear systems characteristically, one uses the transformation as a mathematical or physical tool to alter the problem into one that can be solved.Fourier transforms play an important part in the theory of many branches of science while they may be regarded as purely mathematical functional .In modem mathematics, the Fourier transform is a very important transformation. It has a wide range of application in Spectrum Signal Processing, fluctuations and thermal conductivity, etc. This article introduced the Fourier series and Fourier transform of the basic concepts, the nature and development; followed introduced Fourier transform of the different variants and the definition of a variety of Fourier transform. Finally introduced the specific applications in the frequency spectrum, signal fluctuations and thermal conductivity. Fourier transform in different areas, have different forms ,such as modern studies, voice communications, sonar, seismic and even biomedical engineering study of the signal to play an important role in grams. Finally, the scope of our discussion in this article are summarized.Key words: Fourier transform, volatility , the spectrum signal傅里叶变换及应用目 录第一章 前 言 (1)1.1傅里叶变换的发展 (1)1.2 研究傅里叶变换的意义 (1)第二章 傅里叶级数及变换的理论知识 (3)2.1 傅里叶积分 (3)2.2 实数与复数形式的傅里叶积分 (5)2.3 傅里叶变换式的物理意义 (8)第三章 傅里叶变换的性质及变形 (11)3.1 基本性质 (11)3.2 傅里叶变换的不同形式 (12)第四章 傅里叶变换的应用 (15)4.1波动 (15)4.2周期信号中的傅里叶变换 (19)第五章 工作总结及展望 (25)5.1 总结 (25)5.2 展望 (25)参 考 文 献 (26)致 谢 (27)第一章 前 言1.1傅里叶变换的发展傅里叶分析是分析学中的一个重要分支,在数学发展史上,早在18世纪初期,有关三角级数的论述已在D.Bernoulli,D`Alembert,L.Euler等人的工作中出现,但真正重要的一步是由法国数学家J.Fourier迈出的,他在著作《热的解析理论》(1822年)中,系统地运用了三角级数和三角积分来处理热传导问题,此后各国科学家的完善和发展,极大的扩大了傅里叶分析的应用范围,使得这一理论成为研究周期现象不可缺少的工具,特别是现代实用性很强的“小波分析”理论和方法也是从傅里叶分析的思想方法演变出来的,而Fourier变换变换作为Fourier分析中最为重要的内容正是由于其良好性质,傅里叶变换在物理学、数论、组合数学、信号处理、概率、统计、密码学、声学、光学等领域都有着广泛的应用,本文将对傅里叶变换在其中某些领域的应用加以整理和总结.(由于傅里叶在不同的文献中有“傅里叶”和“傅立叶”两种不同的称谓,为了便于阅读,本片论文统一称为“傅里叶”)1.2 研究傅里叶变换的意义从现代数学的眼光来看,傅里叶变换是一种特殊的积分变换.它能将满足一定条件的某个函数表示成正弦基函数的线性组合或者积分.在不同的研究领域,傅里叶变换具有多种不同的变体形式,如连续傅里叶变换和离散傅里叶变换.根据傅里叶变换的一些特殊性质我们可以发现[1]1. 傅里叶变换是线性算子;2. 傅里叶变换的逆变换容易求出,而且形式与正变换非常类似;3. 正弦基函数是微分运算的本征函数,从而使得线性微分方程的求解可以转化为常系数的代数方程的求解.在线性时不变的物理系统内,频率是个不变的性质,从而系统对于复杂激励的响应可以通过组合其对不同频率正弦信号的响应来获取;4.著名的卷积定理指出:傅里叶变换可以化复杂的卷积运算为简单的乘积运算,从而提供了计算卷积的一种简单手段;5.离散形式的傅里叶变换可以利用数字计算机快速的算出(其算法称为快速傅里叶变换算法(FFT)).1在后面的整理中我们可以发现,这些特性的应用为信号周期和波动的研究提供了坚实的基础.2第二章 傅里叶级数及变换的理论知识2.1 傅里叶级数本节简明扼要地复习傅里叶级数的基本内容. 2.1.1 周期函数的傅里叶展开定义2.1.1 傅里叶级数 傅里叶级数展开式 傅里叶系数[4]若函数以为周期,即为)(x f l 2)()2(x f l x f =+的光滑或分段光滑函数,且定义域为[ ,则可取三角函数族]l l ,−,......sin ,.....,2sin ,sin ,.....,cos ,,......,2cos ,cos ,1lx k l x l xlx k l x l xππππππ (2-1)作为基本函数族将展开为傅里叶级数(即下式右端级数))(x f sin cos ()(10l xk b l x k a a x f k k k ππ++=∑∞= (2-2) 式(2-2)称为周期函数的傅里叶级数展开式(简称傅氏级数展开),其中的展开系数称为傅里叶系数(简称傅氏系数).)(x f 函数族(2-1)是正交的.即为:其中任意两个函数的乘积在一个周期上的积分等于零,即⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧=====∫∫∫∫∫−−−−−l llllll l lldx l x n l x k dx lx n l x k dx l x n l x k dx l x k dx lx k 0sin .cos .10sin .sin .10cos .cos .10sin .10cos .1ππππππππ 利用三角函数族的正交性,可以求得(2.1.3)的展开系数为⎪⎪⎩⎪⎪⎨⎧==∫∫−−l l k l l kk dx l x k x f l b dx l x k x f l a )sin()(1)cos()(1ππδ (2-3) 3其中⎩⎨⎧≠==)0( 1)0( 2k k k δ关于傅里叶级数的收敛性问题,有如下定理: 定理 2.1.1狄利克雷(Dirichlet )若函数满足条件:)(x f (1)处处连续,或在每个周期内只有有限个第一类间断点;(2)在每个周期内只有有限个极值点,则级数(2-3)收敛,且在收敛点有:∑∞=++=10)sin cos ()(k k k l xk b l x k a a x f ππ在间断点有:∑∞=++=−++10)sin cos ()]0()0([21k k k l xk b l x k a a x f x f ππ2.1.2 奇函数及偶函数的傅里叶展开 定义 2.1.2 傅里叶正弦级数 傅里叶余弦级数[2]若周期函数是奇函数,则由傅里叶系数的计算公式(2-3)可见,所有 均等于零,展开式(2-2)成为)(x f k a a ,0∑∞==1sin )(k k l xk b x f π (2-4) 这叫作傅里叶正弦级数.容易检验(2-4)中的正弦级数在l x x ==,0处为零.由于对称性,其展开系数为∫=lk dx lx k x f l b 0)sin()(2π若周期函数是偶函数,则由傅里叶系数计算公式可见,所有均等于零,展开式(2-2)成为)(x f k b ∑∞=+=10cos)(k k lxk a a x f π (2-5) 这称为傅里叶余弦级数.同样由于对称性,其展开系数为∫=lk k dx l x k x f l a 0)cos()(2πδ (2-6)由于余弦级数的导数是正弦级数,所以余弦级数的导数在l x x ==,0处为零.而对于定义在有限区间上的非周期函数的傅里叶级数展开,需要采用类似于高等数学中的延拓法,使其延拓为周期函数.)(x g 42.1.3复数形式的傅里叶级数 定义2.1.3 复数形式的傅里叶级数[8]取一系列复指数函数 ,....,...,,,1,,,..., (22)x k ilx ilxilxilx ilx k i eeeeeeππππππ−−− (2-7)作为基本函数族,可以将周期函数展开为复数形式的傅里叶级数)(xf 利用复指数函数族的正交性,可以求出复数形式的傅里叶系数∫∫−−−==lll x k i l l l xk i k dx e x f l dx e x f l C **])[(21])[(21ππ (2-9)式中“*”代表复数的共轭.上式(2- 9)的物理意义为一个周期为2L 的函数 可以分解为频率为)(x f l n π,复振幅为 的复简谐波的叠加.n c ln π称为谱点,所有谱点的集合称为谱.对于周期函数而言,谱是离散的.尽管是实函数,但其傅里叶系数却可能是复数,且满足:)(x f )(x f *kk C C =−或k k C C =− (2-10) 2.2 实数与复数形式的傅里叶积分上一节我们讨论了周期函数的傅里叶级数展开,下面讨论非周期函数的级数展开. 2.2.1 实数形式的傅里叶积分[6]定义 2.2.1 实数形式的傅里叶变换式 傅里叶积分 傅里叶积分表示式设非周期函数为一个周期函数当周期)(x f )(x g ∞→l 2时的极限情形.这样,的傅里叶级数展开式)(x g ∑∞=++=10)sin cos()(k k k l x k b lxk a a x g ππ (2-11)在时的极限形式就是所要寻找的非周期函数的傅里叶展开.面我们研究这一极限过程:设不连续的参量∞→l )(x f lk l k k k k k πωωωπω=−=Δ==−1,...),2,1,0(故(2-11)为(2-12)∑∞=++=10)sin cos ()(k k k k k x b x a a x g ωω傅里叶系数为5⎪⎪⎩⎪⎪⎨⎧==∫∫−−l l k k l l k k k xdx x f l b xdx x f l a ωωδsin )(1cos )(1 (2-13) 代入到 (2-12),然后取∞→l 的极限.对于系数,有限,则0a ∫−ll dx x f )(lim ∫−∞→∞→==l l l l x f l a 0)(21limlim 0而余弦部分为当0,→=Δ∞→ll kπω,不连续参变量k ω变为连续参量,以符号ω代替.对的求和变为对连续参量k ω的积分,上式变为ωωωπxd xdx x f cos ]cos )(1[0∫∫∞∞−∞ 同理可得正弦部分ωωωπxd xdx x f sin ]sin )(1[∫∫∞∞−∞若令⎪⎪⎩⎪⎪⎨⎧==∫∫∞∞−∞∞−xdxx f B xdx x f A ωπωωπωsin )(1)(cos )(1)( (2-14) 式(2-14)称为的(实数形式)傅里叶变换式.故(2-12)在时的极限形式变为(注意到))(x f ∞→l )()(x f x g →∫∫∞∞+=0sin )(cos )()(ωωωωωωxd B xd A x f (2-15)上式(2-15)右边的积分称为(实数形式)傅里叶积分.(2-15)式称为非周期函数的(实数形式)傅里叶积分表示式.事实上,上式(2-15)还可以进一步改写为)(x f )](/)(arctan[)(),()()()](cos[)()(]sin )(cos )([)(220ωωωϕωωωϕωωωωωωωA B B A x f d x x C x f d x B x A x f =+=−=+=∫∫∫∞∞∞(2-16)上式(2-16)的物理意义为:称为的振幅谱,ωc )(x f ωϕ称为的相位谱.可以对应于物理现象中波动(或振动).我们把上述推导归纳为下述严格定理: )(x f 1.傅里叶积分定理[7]定理2.1.1 傅里叶积分定理 :若函数在区间上满足条件)(x f ),(∞−∞(1)在任一有限区间上满足狄利克雷条件;)(x f (2)在上绝对可积,则可表为傅里叶积分形式(2-15),且在 )(x f ),(∞−∞)(x f )(x f 6的不连续点处傅里叶积分值= 2]0[]0([−++x f x f .2.奇函数的傅里叶积分定义 2.1.2 实数形式的傅里叶正弦积分 傅里叶正弦变换若为奇函数,我们可推得奇函数的傅里叶积分为傅里叶正弦变换:)(x f )(x f ∫∞=0sin )()(ωωωxd B x f (2-17)式(2-1)满足条件其中0)0(=f )(ωB 是的傅里叶正弦变换:)(x f ∫∞=0sin )()(ωωωxd x f B (2-18)3. 偶函数的傅里叶积分定义 2.1.3 实数形式的傅里叶余弦积分 傅里叶余弦变换[8]若为偶函数,的傅里叶积分为傅里叶余弦积分:)(x f )(x f ∫∞=0cos )(2)(ωωωπxd A x f (2-19)式(2-3)满足条件.其中0)0(=′f )(ωB 是的傅里叶余弦变换:)(x f ∫∞=0cos )(2)(ωωπωxd x f A (2-20)上述公式可以写成另一种对称的形式⎪⎪⎩⎪⎪⎨⎧==∫∫∞∞00sin )(2)(sin )(2)(xdx x f B xd B x f ωπωωωωπ (2-21)⎪⎪⎩⎪⎪⎨⎧==∫∫∞∞00cos )(2)(cos )(2)(xdxx f A xd A x f ωπωωωωπ (2-22) 4 复数形式的傅里叶积分定义2.1.4 复数形式的傅里叶积分下面我们讨论复数形式的傅氏积分与变换,而且很多情形下,复数形式(也称为指数形式)的傅氏积分变换使用起来更加方便.利用欧拉公式则有 )(21sin ),(21cos x i x i x i x i e e ix e e x ωωωωωω−−−=+=7代入式(2-15)得到ωωωωωωωωd e iB A d e iB A x f x i x i −∞∞++−=∫∫)]()([21)]()([21)(00将右端的第二个积分中的ω换为ω−,则上述积分能合并为∫∞∞−=ωωωd e F x f x i )()( (2-23)其中⎩⎨⎧<+≥−=0)( ,2/)]()([0)( ,2/)]()([)(ωωωωωωωiB A iB A F将(2-14)代入上式可以证明无论对于0≥ω,还是0<ω均可以合并为∫∞∞−=dx e x f F x i *])[(21)(ωπω (2-24)证明:(1) 0≥ω时∫∫∞∞−∞∞−=−=dx e x f dx x i x x f F x i *])[(21)]sin())[cos((21)(ωπωωπω (2) 0<ω时 ∫∫∞∞−∞∞−=+=dx e x f dx x i x x f F x i *])[(21)]sin())[cos((21)(ωπωωπω ∫∫∞∞−∞∞−−==dx e x f dx e x f x i x i *])[(21)(21ωωππ 证毕.(2-23)是的复数形式的傅里叶积分表示式,(2-24)则是的复数形式的傅里叶变换式.述变换可以写成另一种对称的傅氏变换(对)形式)(x f )(x f ⎪⎪⎩⎪⎪⎨⎧==∫∫∞∞−−∞∞−ωπωωωπωωd e x f F d e F x f x i x i )(21)()(21)( (2-25) 2.3 傅里叶变换式的物理意义傅里叶变换和频谱[2,8]有密切的联系.频谱这个术语来自于光学.通过对频谱的分析,可以了解周期函数和非周期函数的一些基本性质.若已知是以T 为周期的周期函数,且满足狄利克雷条件,则可展成傅里叶级数)(x f )sin cos ()(10x b x a a x f n n n n n ωω++=∑∞= (2-26)其中Tn n n πωω2==,我们将x b x a n n n n ωωsin cos +称为的第次谐波,)(x f n n ω称为第n 次谐波的频率.由于)cos(sin cos 22n n n n n n x b a x b x a ϕωωω−+=+其中abarctan =ϕ称为初相,22b a +称为第次谐波的振幅,记为,即n n A 0022 1,2,...)(n a A b a A n ==+= (2-27)若将傅里叶级数表示为复数形式,即(2-28)∑∞−∞==n xi nn e C x f ω)(其中22212||||n n n n n b a A C C +===−恰好是次谐波的振幅的一半.我们称为复振幅.显然n 次谐波的振幅与复振幅有下列关系:n n c n n C A 2= ,...)2,1,0(=n (2-29)当取这些数值时,相应有不同的频率和不同的振幅,所以式(2-14)描述了各次谐波的振幅随频率变化的分布情况.频谱图通常是指频率和振幅的关系图.称为函数的振幅频谱(简称频谱).若用横坐标表示频率.....3,2,1,0=n n A )(x f n ω,纵坐标表示振幅,把点n A .....3,2,1,0),,(=n A n n ω用图形表示出来,这样的图形就是频谱图.由于,所以频谱的图形是不连续的,称之为离散频谱......3,2,1,0=n n A 2.3.1 傅里叶变换的定义[7]由上一节对实数和复数形式的傅里叶积分的讨论,最后我们以简洁的复数形式(即指数形式)作为傅里叶变换的定义. 定义2.3.1 傅里叶变换若满足傅氏积分定理条件,称表达式)(x f (2-30)∫∞∞−−=dx e x f F x i ωω)()( 为的傅里叶变换式,记作.我们称函数)(x f )]([)(1ωF F x f −=)(ωF 为的傅里叶变换,简称傅氏变换(或称为像函数). )(x f 定义2.3.2 傅里叶逆变换 如果∫∞∞−=dxe F xf x i ωωπ)(21)( (2-31)则上式为的傅里叶逆变换式,记为,我们称为)(x f )]([)(1ωF F x f −=)(x f )(ωF (或称为像原函数或原函数)的傅里叶逆变换,简称傅氏逆变换.由(2-30)和(2-31)知傅里叶变换和傅里叶逆变换是互逆变换,即有)()]([)]]([[)]([111x f x f F F x f F F F F ===−−−ω (2-32)或者简写为)()]([1x f x f F F =− 2.3.2多维傅氏变换在多维(n 维)情况下,完全可以类似地定义函数的傅氏变换如下:),,,(21n x x x f L )],...,,([),...,,(2121n n x x x f F F =ωωωn x x x i n dx dx dx e x x x f n n ...),...,,(....21)...(212211∫∫+∞∞−∞∞−+++−=ωωω它的逆变换公式为:()n x x x i n n n d d d e F x x x f n n ωωωωωωπωωω...),...,,(. (21)),...,,(21)...(21212211∫∫+∞∞−∞∞−+++−=2.3.3傅里叶变换的三种定义式在实际应用中,傅里叶变换常常采用如下三种形式,由于它们采用不同的定义式,往往给出不同的结果,为了便于相互转换,特给出如下关系式: 1.第一种定义式∫∞∞−−=dx e x f F xi ωπω)(21)(1,,)(21)(1∫∞∞−=ωωπωd e F x f x i 2.第二种定义式∫∞∞−−=dx e x f F xi ωω)()(2,∫∞∞−=ωωπωd e F x f x i )(21)(2 3.第三种定义式∫∞∞−−=dx e x f F x i πωω23)()(,∫∞∞−=ωωπωd e F x f x i 23)()(三者之间的关系为)2(21)(21321πωπωπF F F ==三种定义可统一用下述变换对形式描述:⎩⎨⎧==−)]([)()]([)(1ωωF F x f x f F F 特别说明:不同书籍可能采用了不同的傅氏变换对定义,所以在傅氏变换的运算和推导中可能会相差一个常数倍数,比如ππ21,21.本文采用的傅氏变换(对)是大量书籍中常采用的统一定义,均使用的是第二种定义式.第三章 傅里叶变换的重要特性傅里叶变换能将满足一定条件的某个函数表示成三角函数(正弦和/或余弦函数)的积分的线性组合.在不同的研究领域,傅里叶变换具有多种不同的变体形式,如连续傅里叶变换和离散傅里叶变换.3.1 基本性质[1,8]1.线性性质两函数之和的傅里叶变换等于各自变换之和.数学描述是:若函数和的傅里叶变换和都存在,)(x f )(x g )(f F )(g F α和β为任意常系数,][][][g F f F g f F βαβα+=+. 2.平移性质若函数存在傅里叶变换,则对任意)(x f 实数0ω,函数也存在傅里叶变换,且F x i e x f 0)(ω=])([0x i e x f F ω)(o ωω−. 3.微分关系若函数当)(x f ∞→x 时的极限为0,而其导函数的傅里叶变换存在,则有 ,即导函数的傅里叶变换等于原函数的傅里叶变换乘以因子)(x f )]([)](['x f F i x f F ω=ωi .更一般地,若,且存在,则,即k阶0)(....)()()1('=±∞==±∞=±∞−k f f f )]([)(x f F k ][)()]([)(f F i x f F k k ω=导数的傅里叶变换等于原函数的傅里叶变换乘以因子.k i )(ω4.卷积特性若函数及都在上)(x f )(x g ),(+∞−∞绝对可积,则卷积函数∫+∞∞−−=ξξξd g x f g f )()(*的傅里叶变换存在,且][].[]*[g F f F g f F =.卷积性质的逆形式为)]([*)]([)]()([111ωωωωG F F F G F F −−−=即两个函数乘积的傅里叶逆变换等于它们各自的傅里叶逆变换的卷积. 5.Parseval 定理若函数)(x f 可积且平方可积,其中)(ωF 是的傅里叶变换.(查正确性) )(x f 则∫∫+∞∞−+∞∞−=ωωπd F dx x f 22)(21)( 3.2傅里叶变换的不同变种1.连续傅里叶变换[8]一般情况下,若“傅里叶变换”一词的前面未加任何限定语,则指的是“连续傅里叶变换”.“连续傅里叶变换”将平方可积的函数表示成复指数函数的积分或级数形式.)(t f ∫∞∞−−==dt e t f t f F F t i ωπω)(21)]([)(这是将频率域的函数)(ωF 表示为时间域的函数的积分形式. 连续傅里叶变换的逆变换(inverse Fourier transform )为)(t f ∫∞∞−−==ωωπωωd e F F F t f t i )(21)]([)(1即将时间域的函数表示为频率域的函数)(t f )(ωF 的积分.一般可称函数为)(t f 原函数,而称函数)(ωF 为傅里叶变换的像函数,原函数和像函数构成一个傅里叶变换对(transform pair ).除此之外,还有其它型式的变换对,以下两种型式亦常被使用.在通讯或是讯号处理方面,常以πω2=f 来代换,而形成新的变换对 : ∫∞∞−−==dt e t x t x F f X fti π2)()]([)( ∫∞∞−−==df e f X f X F t x ft i π21)()]([)( 或者是因系数重分配而得到新的变换对:∫∞∞−−==dt e t f t f F F t i ωω)()]([)(∫∞∞−−==ωωπωωd eF F F t f ti )(21)]([)(12.离散傅里叶变换定义3.2.1[1]给定一组数据序列{}1.....2,1,0,−==N n y y n ,离散傅里叶变换为序列:10,][10/2−≤≤==∑−=−N n e y y F y N n N kn i n n k π离散傅里叶逆变换为:10,1][1/2−≤≤==∑−=N k ey Ny F y N k Nkn i k k n π定理3.1 对于离散傅里叶变换,以下性质成立.1.移位或平移.若且n s y ∈1+=k k y z ,那么,这里 j j j y F z F ][][ω=n i e /2πω=2.卷积.若且,那么下面的序列n s y ∈n s z ∈∑−=−=10]*[n j j k j k z y z y也在中.序列称为和的卷积.n s z y *y z 3.若是一实数序列,那么n s y ∈k k n k k n y y n k y F y F ))=≤≤=−− 0 , ][][或. 3.快速傅里叶变换快速傅氏变换(FFT),是离散傅氏变换的快速算法,它是根据离散傅氏变换的奇、偶、虚、实等特性,对离散傅立叶变换的算法进行改进获得的。
数学分析15.3傅里叶级数收敛定理的证明.doc傅里叶级数收敛定理是数学分析中的重要定理之一,它可以用于研究周期函数的展开。
下面给出傅里叶级数收敛定理的证明。
设f(x)是一个周期为2π的函数,它在一个周期内可积,即∫[0,2π]|f(x)|dx < ∞。
我们要证明f(x)的傅里叶级数收敛于f(x)。
设f(x)的傅里叶级数为:f(x) = a0 + ∑[n=1,∞] (an cos(nx) + bn sin(nx))其中a0, an, bn分别为f(x)的傅里叶系数。
我们要证明f(x)的傅里叶级数收敛于f(x),即要证明对于任意的x,有f(x) = lim[N→∞] (a0 + ∑[n=1,N] (an cos(nx) + bn sin(nx)))为了证明这个结论,我们需要用到以下两个引理:引理1:若f(x)是一个周期为2π的函数,它在一个周期内可积,则对于任意的实数x和整数N,有∫[0,2π] f(x)sin(Nx)dx = bn其中bn为f(x)的傅里叶系数。
引理2:若f(x)是一个周期为2π的函数,它在一个周期内可积,则对于任意的实数x和整数N,有∫[0,2π] f(x)cos(Nx)dx = a0 + ∑[n=1,N] an其中a0, an为f(x)的傅里叶系数。
现在我们来证明傅里叶级数收敛定理。
首先,我们使用引理1和引理2,将f(x)的傅里叶级数展开,并对其进行部分和的计算:∫[0,2π] f(x)sin(Nx)dx = bn = ∫[0,2π] f(x)sin(Nx)dx = ∫[0,2π] (a0 + ∑[n=1,N] an)sin(Nx)dx根据正弦函数的正交性质,我们知道∫[0,2π] sin(Nx)sin(Mx)dx = 0,其中N≠M。
因此,上式中的交叉项∫[0,2π] ansin(Nx)sin(Mx)dx = 0。
所以,我们可以得到:∫[0,2π] f(x)sin(Nx)dx = ∫[0,2π] (a0 + ∑[n=1,N] an)sin(Nx)dx = ∫[0,2π] a0sin(Nx)dx + ∑[n=1,N] ∫[0,2π] ansin(Nx)dx同理,我们可以得到:∫[0,2π] f(x)cos(Nx)dx = a0 + ∑[n=1,N] an现在,我们来证明f(x) = lim[N→∞] (a0 + ∑[n=1,N] (an cos(nx) + bn sin(nx)))。
第九章 傅里叶级数和傅里叶变换在自然界中广泛地存在各种各样的周期性运动(即相隔一定时间间隔往复循返的过程)。
例如,日月星球的运动,海洋潮汐的运动,电磁波与声波的运动,工厂里机器部件的往复运动,时钟摆的摆动以及人体心脏的跳动等等,都是周期性运动。
为了描述周期性的运动过程,数学上是借助某类函数来描述的。
当然这类函数也要体现出周期性。
这类函数称为周期函数。
在前面几章中,为了研究函数的性质,常常采用分析表示法,将这些函数在某区域展开成幂级数的形式,如泰勒级数或罗朗级数。
但是,这种幂级数形式的展开式是体现不出周期性来的,那么,对于周期性函数应采取怎样的分析表示法呢?这就是本章要讨论的内容。
9.1 周期函数和傅里叶级数9.1.1 周期函数 凡满足以下关系式:)()(x f T x f =+ (T 为常数) (9.1.1) 的函数,都称为周期函数。
周期的定义(1) 满足式(9.1.1)的T 值中的最小正数,即为该函数的周期; (2) 一个常数以任何正数为周期。
9.1.2 基本三角函数系按某一规律确定的函数序列称为函数系。
如下形式的函数系:1,x l πcos,x l πsin,x l π2cos ,x l π2sin ,…,x l k πcos ,x lk πsin ,… (9.1.2)称为基本三角函数系。
所有这些函数具有各自的周期,例如x l k πcos 和x lk πsin 的周期为kl2,但它们的共有周期为l 2(即所有周期的最小公倍数)。
通常这个周期命名为函数系的周期。
所以式(9.1.2)的三角函数系的周期为l 2。
如果我们将基本三角函数系中的函数,任意取n 个组合,则我们可以得到一个较复杂的函数。
例如图9.1(a )是两个函数的组合x lx l x f ππ2sin 21sin )(-=;图9.1(b )是三个函数的组合x lx l x l x f πππ3sin 312sin 21sin )(+-=。
1、傅里叶变换和傅里叶级数的收敛问题由于傅里叶级数是一个无穷级数,因而存在收敛问题。
这包含两方面的意思:是否任何周期信号都可以表示为傅里叶级数;如果一个信号能够表示为傅里叶级数,是否对任何t 值级数都收敛于原来的信号。
关于傅里叶级数的收敛,有两组稍有不同的条件。
第一组条件:如果周期信号()t x 在一个周期内平方可积,即()∞<⎰dt T t x 2则其傅里叶级数表达式一定存在。
第二组条件,与第一组条件稍有不同,就是狄里赫利条件,它包括以下三点:(1)在任何周期内,x 必须绝对可积,即()∞<⎰dt t x T 0(2)在任何周期内,()t x 只有有限个极值点,且在极值点处的级值为有限值。
(3)在任何有限区间内,()t x 只有有限个间断点,且在这些不连续点处,()t x 为有限值。
傅里叶变换的收敛问题也有两组类似的条件:第一组条件:如果()t x 平方可积,即()∞<⎰∞∞-dt t x 2则()t x 的傅里叶变换存在。
满足上式可以保证()ΩX 为有限值。
第二组条件也称为狄里赫利条件,这就是:(1)()t x 绝对可积,即()∞<⎰∞∞-dt t x (2)在任何有限区间内,()t x 只有有限个极值点,且在这些极值点处的极值是有限值。
(3)在任何有限区间内,()t x 只能有有限个间断点,而且这些间断点都必须是有限值。
吉布斯现象:当简单地把信号频谱截断时,相当于给信号频谱加上了一个矩形窗口函数,正是由于矩形窗口函数的时域特性导致了在间断点处的吉布斯现象的产生。
2、周期序列的傅里叶级数展开和傅里叶变换之间的问题假定()t x 是一个长度为N 的有限长序列,将()t x 以N 为周期延拓而成的周期序列为()n x ~,则有()()∑∞-∞=-=r rN n x n x ~ 或表示为()()()N n x n x =~。
于是()n x ~与()n x 的关系表示为:()()()N n x n x =~()()()n R n x n x N ~= 将()n x ~表示为离散时间傅里叶级数有:()()kn N N n W k X N n x --=⋅=∑10~~1 ()()kn N N n W n x k X ⋅=∑-=10~~其中()k X ~是傅里叶级数的系数,这样做的目的是使其表达形式与离散时间傅里叶变换的形式相类似。
如果将()k X ~的主值周期记为()k X ,10-≤≤N k ,由于以上两式中的求和范围均取为区间0~N-1,在次区间内()n x ~=()n x ,因此可以得到:()()kn N N n W n x k X ∑-==10~, 10-≤≤N k()()kn N N n Wk X N n x --=∑=10~1, 10-≤≤N n表明时域N 点有限长序列()n x 可以变换成频域N 点有限长序列()k X 。
显然,DFT 与DFS 之间存在以下关系:()()()N k X k X =~()()()k R k X k X N ~=3、频率分辨率的问题若信号最高频率为h f ,按抽样定理,抽样频率应满足h s f f 2>也就是抽样间隔为T 满足hs f f T 211<= 一般取()h s f f 0.3~5.2=如果不满足h s f f 2>的要求,就会产生频率响应的周期延拓分量相互重叠的现象,也就是产生频率响应的混叠失真。
对于DFT 来说,频率函数也要抽样,变成离散的序列,其抽样间隔为0F ,这就是我们能得到得的频率分辨力,有它可引出时间函数的周期,也就是所取的记录长度0T 为01F T = 从以上T 和0T 两个公式来看,信号的最高频率分量h f 与频率分辨力0F 之间有着矛盾关系,要想h f 增加,则时域抽样间隔T 就一定减小⎪⎪⎭⎫ ⎝⎛<=h s f f T 211,而s f (抽样频率)就增加,由于抽样点数满足N TT F f s ==00 则此时s f 增加,若是N 固定的情况下,必然要0F 增加,即分辨率下降。
反之,要提高频率分辨力(减少0F ),就要增加0T ,当N 给定时,必然导致T 的增加(s f 减小)。
要不产生混叠失真,则必然会减小高频容量(信号的最高频率分量)h f 。
要想兼顾高频容量h f 与频率分辨力0F ,即一个性能提高而另一个性能不变(或也得以提高)的惟一办法就是增加记录长度的点数N ,即要满足02F f F f N h s >= 这个公式是未采用任何特殊数据处理(例如加窗处理)的情况下,为实现基本DFT 算法所必须满足的最低条件。
如果加窗处理,相当于时域相乘,则频域卷积,必然加宽频谱分量,频率分辨力就可能变坏,为了保证频率分辨力不变,则须增加记录长度,也就是增加数据长度0T 。
4、MATLAB 的图示说明:有效观察时间与补零后的DFT 之间的关系,以及与DTFT 之间的关系对8点正弦离散序列求8点、32点和64点DFT ,观察频域变化(分别用绿、黄、红色表示)。
结果:矩形窗序列后补零的时、频域示意图从图中可以看出:序列后补零可以降低栅栏效应;信号频谱的形状只取决于时域信号,与补零个数无关。
补零并不能提高频谱分辨率,因为频谱分辨率只与时域数据的有效长度有关。
DTFT 与DFT (或DFS )的关系:DFT 时域序列为周期序列,周期为N ;频域序列也是周期序列,周期也是N 点。
当N 不断增大时,频域包络不变,但谱线变密;显然,∞→N 时,时域序列变为非周期序列,频域为连续的频谱,即变化为DTFT 。
5、教材《信号与线性系统》,阎鸿森、王新凤、田惠生编,西安交通大学出版社 《数字信号处理教程》,程佩青编,清华大学出版社(后附连续信号傅里叶变换的DFT 近似计算)傅里叶变换的DFT 近似计算连续时间非周期信号()t x 的傅里叶变换对为()()⎰∞∞-Ω-=Ωdt e t x j X t j (1) ()()⎰∞∞-ΩΩΩ=d e j X t x t j π21 (2)用DFT 方法计算这一对变换的方法如下:(1)将()t x 在t 轴上等间隔(宽度为T )分段,每一段用一个矩形脉冲代替,脉冲的幅度为其起始点的抽样值()()()n x nT x t x nT t ===,然后把所有矩形脉冲的面积相加。
由于nT t →T dt → ()()nT T n dt -+=1∑⎰∞-∞=∞∞-→n T dt 则得频谱密度()()dt e t x j X t j Ω-+∞∞-⎰=Ω的近似值为()()T e nT x j X nT j ∑∞∞-Ω-⋅⋅≈Ω (3)(2)将序列()()nT x n x = 截断成从0=t 开始长度为0t 的有限长序列,包含有N 个抽样(即时域取N 个样点),则上式成为()()nT j N n e nT x T j X Ω--=⋅≈Ω∑10 (4) 由于时域抽样,抽样频率为T f s 1=,则频域产生以s f 为周期的周期延拓,如果频域是限带信号,则可能不产生混叠,成为连续周期频谱序列,频域周期为f s 1=(即时域的抽样频率)。
(3)为了数值计算,再频域上也要离散化(抽样)即在频域的一个周期(s f )中也分成N 段,即取N 个样点0NF f s =,每个样点间的间隔为0F 。
频域抽样,那么频域的积分式(2)式就变成求和式,而时域就得到原已截断的离散时间序列的周期延拓序列,其时域周期为001F T =。
这时0Ω=Ωk()0001Ω=Ω-Ω+=Ωk k d∑⎰-=∞∞-Ω→Ω100N k d各参量的关系为 NT F N F T ===0001又002F π=Ω则NT T f F f T s s s s πππππ222221000000=⋅=⋅=ΩΩ⋅=Ω⋅Ω=⋅Ω=Ω这样,经过上面三个步骤后,时域、频域都是离散周期的序列,推导如下:第1,2两步:时域抽样、截断()()T e nT x j X nT j N n ⋅⋅≈ΩΩ--=∑1(5) ()()⎰ΩΩΩ⋅Ω≈sd e j X nT x nTj 021π(6)第3步:频域抽样,得到()()()()[]n x DFT T e n x T e nT x T jk X N n nk N j N n nT jk ⋅=⋅=⋅≈Ω∑∑-=--=Ω-121000π()()()∑∑-=-=Ω⋅Ω=⋅ΩΩ≈1200100002N k nkN j N k nT jk e jk X F e jk X nT x ππ()∑-=⋅Ω⋅⋅=12001N k nkN j e jk X N N F π()∑-=⋅Ω⋅=10201N k nkN j s e jk X N f π()[]0Ω⋅=jk X IDFT f s()()()[]n x DFT T j X jk X k ⋅≈Ω=ΩΩ=Ω00 (7)()()()[]01Ω⋅≈==jk X IDFT Tt x n x nT t (8)这就是从离散傅里叶变换法求连续非周期信号的傅里叶变换的抽样值的方法。
由()0Ωjk X 及()n x 的上两个近似式求连续的()Ωj X 及()t x 的方法,则可分别用频域抽样定理的插值公式和时域抽样定理的插值公式求得。