直流电机的换向
- 格式:ppt
- 大小:515.50 KB
- 文档页数:5
直流电机的换向commutation of D.C.machine图片:图片:zhiliu di ɑnji de hu ɑnxi ɑng直流电机的换向(卷名:电工)commutation of D.C.machine带换向器的电枢绕组在运行中的一种特有现象。
图1所示为最简单的直流电机模型,其换向原理如下:假定电枢只有一个线圈abcd ,换向器只有两个换向片,它们分别与线圈首、尾相连接,A 与B 为静止的两个电刷。
当线圈在磁极N 、S 中逆时针转动时,处于N 极下的导体ab 产生的电动势,方向为从b 至a ,处于S 极下的导体cd 产生的电动势方向为从 d 至c 。
但当线圈转动180°后,导体ab 与导体cd 位置对调,导体中的电动势也与原来的方向相反。
所以在线圈连续旋转时,导体及整个线圈的电动势是在正最大值与负最大值之间不断交变,故为交流电动势。
但由图不难看到,电刷A 只与处在N 极下的导体引出端相连,永为正极性;电刷B 只与处在S 极下的导体引出端相连,永为负极性。
故电刷所引导出来的电动势及电流的方向始终不变,也就是说,对于外电路而言,引出的是直流电。
这就是直流电机换向的基本原理。
通常,电枢绕组由很多线圈串、并联而成,其中各线圈电流换向情况还要复杂些。
图2为一个元件(一个单元线圈)在被电刷短路时发生的换向过程。
当电枢元件随着电枢的旋转,依次从一条支路转移到另一支路时,各元件中的电流也就从一种流动方向改变为另一种流动方向。
这种利用机械方法(换向器和电刷)使元件中电流变换方向的现象称为换向。
换向过程总是与元件被电刷短路的过程相伴随的。
图2中,当元件a 开始被电刷短路时(图2a ),元件电流便进入了换向过程。
当元件a 脱离短路时(图2c),换向过程也就结束。
整个过程所耗时间称为换向周期(Tc)。
换向周期的长短与电刷的宽度及电枢的转速有关。
电刷越宽,转速越慢,换向周期越长。
换向过程中,由于电流变化,换向元件中会产生自感电动势,俗称电抗电动势。
实验一直流电机的启动、换向一、实验目的1、学习电机实验的基本要求与安全操作注意事项。
2、认识在在直流电机实验中所用的电机、仪表、变阻器等组件及使用方法。
3、熟悉他励电动机(即并励电动机按他励方式)的接线、启动、改变电机转向方法。
二、预习要点1、如何正确选择使用仪器仪表。
特别是电压表电流表的量程。
2、直流电动机启动时,为什么在电枢回路中需要串接起动变阻器?不串接会产生什么严重后果?3、直流电动机启动时,励磁回路串接的磁场变阻器应调至什么位置?为什么?若励磁回路断开造成失磁时,会产生什么严重后果?4、直流电动机改变转向的方法。
三、实验项目1、了解4-02电源控制屏中的电枢电源、励磁电源、校正过的直流电机、变阻器、直流电压表、电流表及直流电动机的使用方法。
2、直流他励电动机的启动、改变转向。
四、实验设备1、型号4-14的导轨、测速发电机及转速2、型号4-15的直流他励电动机表3、型号4-09的直流数字电压表4、型号4-10的直流数字电流表5、型号4-04的三相可调电阻器6、型号4-05的三相可调电阻器五、实验内容及操作步骤1、由实验指导人员介绍ZX-TIA481型电机与变压器综合实验装置型电机及电气技术实验装置各面板布置及使用方法,讲解电机实验的基本要求,安全操作和注意事项。
2、 用伏安法测电枢的直流图2-1测电枢绕组直流电阻接线图(1) 按图2-1接线,电阻R 用4-05上1800Ω和4-04上180Ω。
串联共1980Ω阻值并调至最大。
A 表选用4-09直流电流表,开关S 选用4-13开关模块。
(2) 经检査无误后接通电枢电源,并调至220V o 调节R 使电枢电流达到0.2A (如果电流太大,可能由于剩磁的作用使电机旋转,测量无法进行;如果此时电流太小,可能由于接触电阻产生较大的误差),迅速测取电机电枢两端电压U 和电流I 。
将电机分别旋转三分之一和三分之二周,同样测取U 、I 三组数据列于表2-1中。
直流电机原理以及换向工作介绍直流电机换向器的工作原理就是把电枢线圈中感应产生的交变电动势,靠换向器配合电刷的换向作用,使之从电刷端引出时变为直流电动势的原理。
电刷上不加直流电压,用原动机拖动电枢使之逆时针方向恒速转动,线圈两边就分别切割不同极性磁极下的磁力线,而在其中感应产生电动势,电动势方向按右手定则确定。
这种电磁情况表示在图上。
由于电枢连续地旋转,,因此,必须使载流导体在磁场中所受到线圈边ab和cd交替地切割N极和S极下的磁力线,虽然每个线圈边和整个线圈中的感应电动势的方向是交变的.线圈内的感应电动势是一种交变电动势,而在电刷A,B端的电动势却为直流电动势(说得确切一些,是一种方向不变的脉振电动势)。
因为,电枢在转动过程中,无论电枢转到什么位置,由于换向器配合电刷的换向作用,电刷A通过换向片所引出的电动势始终是切割N极磁力线的线圈边中的电动势,因此,电刷A始终有正极性。
同样道理,电刷B始终有负极性,所以电刷端能引出方向不变的但大小变化的脉振电动势。
如每极下的线圈数增多,可使脉振程度减小,就可获得直流电动势。
这就是直流发电机的工作原理。
同时也说明子直流发电机实质上是带有换向器的交流发电机。
从基本电磁情况来看,一台直流电机原则上既可工作为电动机运行,也可以作为发电机运行,只是约束的条件不同而已。
在直流电机的两电刷端上,加上直流电压,将电能输入电枢,机械能从电机轴上输出,拖动生产机械,将电能转换成机械能而成为电动机,如用原动机拖动直流电机的电枢,而电刷上不加直流电压,则电刷端可以引出直流电动势作为直流电源,可输出电能,电机将机械能转换成电能而成为发电机。
同一台电机,能作电动机或作发电机运行的这种原理.在电机理论中称为可逆原理。
直流电机换向方法
直流电机换向通常使用两种方法:
1. 机械换向:机械换向是通过改变直流电机电枢绕组中电流的方向,使它们与磁场的方向相反,从而改变电机的转动方向。
机械换向通常使用多个电刷和集电环来实现,当电机转子旋转一定角度时,电刷与集电环之间的电路会自动切换,从而改变电流的方向。
2. 电子换向:电子换向是使用电子电路来控制电机转子的方向。
电子换向通常使用电机驱动器来实现,将直流电源转换为变频交流电源,然后通过变频器控制交流电源的频率和相位,从而改变电机的转动方向。
电子换向通常比机械换向更可靠,效率更高,同时也可以实现更精确的速度和位置控制。
直流电机换向绕组的作用概述说明以及解释1. 引言1.1 概述直流电机是一种将直流电能转化为机械能的重要设备。
在直流电机中,换向绕组作为一个关键部件,起到了至关重要的作用。
换向绕组通过改变电流方向和大小,实现了电机中磁场的反向变化,从而使得电机能够产生稳定的旋转运动。
1.2 文章结构本文将全面介绍直流电机换向绕组的作用、概述说明以及解释。
文章结构主要分为五个部分:引言、直流电机换向绕组的作用、换向绕组的概述说明、换向绕组的解释和结论。
1.3 目的本文旨在对直流电机换向绕组进行深入探讨,详细阐述其在直流电机中的重要性和应用,并对不同类型的换向绕组进行解释。
通过对这些内容的阐述,读者能够全面了解和掌握直流电机换向绕组相关知识,并在实际应用中更好地理解和运用该技术。
以上是“1. 引言”的详细内容,希望对您有所帮助!2. 直流电机换向绕组的作用2.1 换向绕组的定义直流电机换向绕组是指在直流电动机中用于实现电流方向切换和换向过程的一种绕组结构。
它通过改变电流的通路,使得电机能够按照既定的运行规律进行正常工作。
2.2 换向绕组在直流电机中的应用换向绕组在直流电机中起到了至关重要的作用。
通过合理设计和布置换向绕组,可以实现直流电动机的正常启停、方向切换以及输出转矩控制等功能。
首先,直流电动机需要实现换相操作,也就是在不同位置上将电流方向适时地切换。
这样才能使得转子磁极始终与定子磁场保持一定的相对位置关系,从而产生旋转力。
换相过程中,通过控制换向器或者其他器件来控制换相角度和时刻,可以更好地调整电动机转子的位置与速度。
其次,在不同负载条件下,需要通过调整交变磁链大小来改变输出扭矩。
这就需要针对不同工况设计合适的换相角度和时刻,并利用换向绕组来实现这一调节过程。
通过换向绕组的布置,可以在换相时改变电机的励磁方式,从而调整输出扭矩大小。
2.3 换向绕组对电机性能的影响换向绕组设计合理与否对直流电机性能有着直接的影响。
直流电机的正反转直流电机的正反转是指电机转子正向或反向旋转的运动方式。
正转是指电机转子顺时针旋转,而反转是指电机转子逆时针旋转。
直流电机的正反转控制通常使用电机驱动器或控制器来实现。
以下是相关参考内容,介绍了直流电机的正反转原理和控制方法:1. 直流电机工作原理:直流电机是通过直流电源供电,产生磁场并将电能转化为机械能的设备。
直流电机由固定的磁极和旋转的电枢组成。
当通电时,电枢产生电流,电枢上的电流与磁场相互作用,产生力矩使电机转动。
2. 直流电机的正转:为使直流电机正转,电枢上的电流方向与磁场方向要相互作用。
当电枢上的电流与磁场方向一致时,电流在电枢中产生的力矩将把电机转动到正方向。
3. 直流电机的反转:为使直流电机反转,电枢上的电流方向与磁场方向要反向作用。
当电枢上的电流与磁场方向相反时,电流在电枢中产生的力矩将把电机转动到反方向。
4. 直流电机正反转控制方法:直流电机的正反转控制可以通过改变电枢上的电流方向来实现。
常见的直流电机正反转控制方法有以下几种:a. 交流换向器控制:交流换向器通过改变电枢上的电压极性和大小,可以改变电流方向和大小。
通过控制交流换向器的工作方式,可以实现直流电机的正反转。
交流换向器通常由继电器、电阻和电容器组成。
b. 双向电流控制:双向电流控制是通过改变电枢电流的方向来实现直流电机正反转。
可以使用H桥电路或双向电流控制芯片来控制电流方向。
c. 变频器控制:变频器是一种能够改变电源电压频率的设备,通过控制变频器输出的电压频率和大小,可以实现直流电机的正反转控制。
d. 微控制器控制:使用微控制器可以编写程序控制直流电机的正反转。
根据不同的需求和控制算法,可以通过微控制器输出相应的控制信号,控制电机正反转。
以上是直流电机的正反转相关参考内容。
通过改变电枢上的电流方向和大小,使用交流换向器、双向电流控制、变频器或微控制器等方法,可以实现直流电机的正反转控制。
直流电动机的换向原理直流电动机是一种常见的电动机,它的运转需要依赖于电源的电压,通过磁场改变方向来改变电动机的转向,从而实现动力的转换。
在直流电动机中,换向是影响电机正常运转的重要因素之一。
直流电动机的换向原理主要是指电刷与换向环的作用。
电刷是连接电源和直流电动机的引线,而换向环是连接不同转子线圈的组件。
当直流电源施加电压时,电机中的电荷开始流动,使得电机的转子开始旋转。
同时,前一时刻所施加的电压将通过电刷和换向环将其转移到与当前转子线圈连接的电源极性相反的电源,从而使得转子能够继续旋转。
当直流电机旋转时,转子上的导线也会变化,这会引起磁场的变化,当电机的电荷流向线圈时,磁场的极性也会改变,因此换向是很重要的。
直流电动机中的换向环可以用来改变线圈的极性,并确保电动机运转时转子能够按照正确的方向旋转。
当电机的电荷流向线圈时,磁场的极性会随之发生改变。
因此,直流电动机必须在电刷和换向环的帮助下进行换向。
这时,通过换向环来连接不同的导线,从而使得电机能够正常运转。
当磁场的方向改变时,转子的极性也会随之变化,从而保持电机的平衡运转。
直流电动机换向的原理是非常关键的,因为它决定了电机的运动方向。
在实际应用中,电机的电刷和换向环需要始终维持在一个良好的工作状态,以保证电动机的正常运转。
此外,在进行操作和检修时,也需要特别注意换向环和电刷的维护保养,以保证电机的长期稳定运行。
总之,直流电动机的换向原理是一种关键性的工作原理,它是依托于电刷和换向环来实现电机方向变化的。
只有将电刷和换向环的工作状态维持在良好的状态,才能保证电动机的正常运转,同时也可以更好地满足各种应用需求。