小学数学必考经典应用题20题
- 格式:pptx
- 大小:172.75 KB
- 文档页数:21
小学数学必考100道应用题及答案(完整版)1. 学校图书馆有故事书240 本,科技书比故事书多30 本,科技书有多少本?答案:240 + 30 = 270(本)解题思路:科技书数量= 故事书数量+ 302. 果园里有苹果树180 棵,梨树比苹果树少20 棵,梨树有多少棵?答案:180 - 20 = 160(棵)解题思路:梨树数量= 苹果树数量- 203. 小明买了一支钢笔,花了8 元,又买了一个笔记本,花了5 元,一共花了多少钱?答案:8 + 5 = 13(元)解题思路:总花费= 钢笔花费+ 笔记本花费4. 养殖场有鸡200 只,鸭的数量是鸡的1.2 倍,鸭有多少只?答案:200 ×1.2 = 240(只)解题思路:鸭的数量= 鸡的数量×1.25. 一本书有150 页,小红第一天看了20%,第二天看了25%,两天一共看了多少页?答案:150 ×(20% + 25%)= 67.5(页)解题思路:先算出两天分别看的页数占总页数的比例,再乘以总页数得到两天看的页数之和6. 一个长方形的长是12 厘米,宽是长的2/3,这个长方形的面积是多少?答案:宽为12 ×2/3 = 8 厘米,面积= 12 ×8 = 96(平方厘米)解题思路:先求出宽,再用长乘以宽得到面积7. 商店运来500 千克水果,上午卖出180 千克,下午卖出220 千克,还剩多少千克?答案:500 - 180 - 220 = 100(千克)解题思路:用运来的水果重量依次减去上午和下午卖出的重量8. 工人师傅要生产480 个零件,已经生产了3 天,每天生产80 个,还剩多少个没生产?答案:480 - 80 ×3 = 240(个)解题思路:先算出已经生产的零件数量,再用总数减去已生产的数量9. 小明家离学校1500 米,他每天上学、放学一共要走多少米?答案:1500 ×2 = 3000(米)解题思路:上学和放学的路程相同,所以总路程是单程的2 倍10. 一桶油重50 千克,用去了30%,还剩多少千克?答案:50 ×(1 - 30%)= 35(千克)解题思路:剩下的油的重量= 总重量×(1 -用去的比例)11. 一个三角形的底是9 分米,高是底的2/3,这个三角形的面积是多少?答案:高为9 ×2/3 = 6 分米,面积= 9 ×6 ÷2 = 27(平方分米)解题思路:先求出高,再根据三角形面积公式计算12. 学校合唱队有男生25 人,女生人数是男生的1.2 倍,合唱队一共有多少人?答案:女生人数为25 ×1.2 = 30 人,总人数= 25 + 30 = 55(人)解题思路:先求出女生人数,再加上男生人数得到总人数13. 有一块长方形菜地,长18 米,宽12 米,这块菜地的一半种西红柿,种西红柿的面积是多少?答案:菜地面积为18 ×12 = 216 平方米,种西红柿的面积为216 ÷2 = 108 平方米解题思路:先求出菜地面积,再除以2 得到种西红柿的面积14. 一辆汽车2 小时行驶了160 千米,照这样的速度,5 小时能行驶多少千米?答案:速度为160 ÷2 = 80 千米/小时,5 小时行驶80 ×5 = 400 千米解题思路:先求出速度,再乘以时间得到行驶的路程15. 一个正方形的周长是36 厘米,它的面积是多少平方厘米?答案:边长为36 ÷4 = 9 厘米,面积为9 ×9 = 81 平方厘米解题思路:先求出边长,再计算面积16. 妈妈买了3 千克苹果,花了18 元,每千克苹果多少钱?答案:18 ÷ 3 = 6(元)解题思路:单价= 总价÷数量17. 小明做了40 道数学题,做错了5 道,他的正确率是多少?答案:(40 - 5)÷40 ×100% = 87.5%解题思路:正确率= (做对的题数÷总题数)×100%18. 一间教室长10 米,宽6 米,高3.5 米,要粉刷教室的四面墙壁和天花板,除去门窗和黑板的面积20 平方米,粉刷的面积是多少平方米?答案:(10 ×3.5 + 6 ×3.5)×2 + 10 ×6 - 20 = 132(平方米)解题思路:分别计算四面墙壁和天花板的面积,再减去门窗和黑板的面积19. 一根铁丝可以围成一个边长为8 厘米的正方形,如果用这根铁丝围成一个长方形,长是10 厘米,宽是多少厘米?答案:铁丝长度为8 × 4 = 32 厘米,宽为(32 - 10 ×2)÷2 = 6 厘米解题思路:先求出铁丝长度,再根据长方形周长公式求出宽20. 一个圆柱形水桶,底面半径是2 分米,高是5 分米,这个水桶的容积是多少升?答案:3.14 ×2 ×2 ×5 = 62.8(立方分米)= 62.8 升解题思路:圆柱容积= 底面积×高21. 一辆自行车的价格是300 元,一辆摩托车的价格是自行车的6 倍,一辆摩托车比一辆自行车贵多少元?答案:300 ×6 - 300 = 1500(元)解题思路:先求出摩托车的价格,再减去自行车的价格22. 学校举行运动会,参加跑步的有48 人,参加跳远的人数是跑步的3/4,参加跳高的人数是跳远的2/3,参加跳高的有多少人?答案:参加跳远的有48 ×3/4 = 36 人,参加跳高的有36 ×2/3 = 24 人解题思路:依次计算出跳远和跳高的人数23. 有一堆煤,用去了2/5 ,还剩下12 吨,这堆煤原来有多少吨?答案:12 ÷(1 - 2/5)= 20(吨)解题思路:剩下的煤占原来的(1 - 2/5),用剩下的煤的重量除以其占比得到原来煤的重量24. 一块长方形草地,长和宽的比是5:3,长比宽多12 米,这块草地的面积是多少平方米?答案:长比宽多5 - 3 = 2 份,1 份是12 ÷2 = 6 米,长为5 ×6 = 30 米,宽为3 ×6 = 18 米,面积为30 ×18 = 540 平方米解题思路:先求出长和宽分别占的份数,计算出1 份的长度,进而求出长和宽,最后求出面积25. 一个圆锥形沙堆,底面直径是6 米,高是2 米,这个沙堆的体积是多少立方米?答案:半径为6 ÷ 2 = 3 米,体积= 1/3 ×3.14 × 3 ×3 ×2 = 18.84 立方米解题思路:先求出半径,再根据圆锥体积公式计算26. 小红买了2 件上衣和3 条裤子,一共花了240 元,一件上衣的价格是一条裤子的2 倍,上衣和裤子的单价各是多少元?答案:设裤子单价为x 元,则上衣单价为2x 元,2 ×2x + 3x = 240,解得x = 32,上衣单价为64 元解题思路:根据价格关系设未知数,列方程求解27. 甲乙两地相距360 千米,一辆汽车从甲地开往乙地,3 小时行了全程的3/4,这辆汽车平均每小时行多少千米?答案:3 小时行驶的路程为360 ×3/4 = 270 千米,速度为270 ÷3 = 90 千米/小时解题思路:先求出3 小时行驶的路程,再除以时间得到速度28. 有一批零件,师傅单独做需要10 小时,徒弟单独做需要15 小时,师徒两人合作,需要几小时完成?答案:1 ÷(1/10 + 1/15)= 6(小时)解题思路:把工作总量看作单位“1”,师傅每小时完成1/10 ,徒弟每小时完成1/15 ,合作每小时完成(1/10 + 1/15),用1 除以合作每小时完成的量29. 一个长方体水箱,从里面量长8 分米,宽5 分米,高4 分米,水箱里的水深3 分米,水箱里的水有多少升?答案:8 ×5 × 3 = 120(立方分米)= 120 升解题思路:水的体积= 长×宽×水深30. 把20 克盐放入200 克水中,盐占盐水的百分之几?答案:20 ÷(20 + 200)×100% = 9.09%解题思路:先求出盐水的总质量,再用盐的质量除以盐水的总质量乘以100%31. 商店里有红气球180 个,黄气球比红气球少20 个,蓝气球的个数是黄气球的2 倍,蓝气球有多少个?答案:黄气球有180 - 20 = 160 个,蓝气球有160 × 2 = 320 个解题思路:先求出黄气球的个数,再求出蓝气球的个数。
小升初数学复习资料: 小学数学必考经典应用题汇总,共20题一.解答题(共20题, 共119分)1.张经理的公司今年盈利500万元, 按国家规定应缴纳20%的税款, 张经理最后应得利益是多少万元?2.甲、乙两种商品, 成本共2200元, 甲商品按20%的利润定价, 乙商品按15%的利润定价。
后来都按定价的九折打折出售, 结果仍获利131元。
甲商品的成本是多少元?3.一个圆柱形铁皮水桶(无盖), 高10dm, 底面直径是6dm, 做这个水桶大约要用多少铁皮?4.小林读一本书, 已读的页数和未读的页数之比是5∶4。
如果再读25页, 已读的页数和未读的页数之比是2∶1。
这本书共有多少页?5.哈尔滨的气温的-30℃, 北京的气温比哈尔滨高19℃, 请问北京的气温是多少度?6.一条公路全长1500m, 修路队第一天修了全长的45%, 第二天修了全长的/。
还剩下多少米没有修?7.如图是红梅服装厂2021年七月份到十二月份生产服装统计图:(1)西装和童装产量最高的分别是哪个月?最低的呢?(2)童装哪个月到哪个月增长得最快?西装呢?(3)十二月份西装产量比童装多百分之几?8.一个圆锥形沙堆, 高是6米, 底面直径4米。
把这些沙子铺在一个长为5米, 宽为2米的长方体的沙坑里, 铺的厚度是多少厘米?9.有一个圆锥形沙堆, 底面半径是10米, 高是4.8米, 把这些沙子均匀地铺在一条宽20米, 厚40厘米的通道上, 可以铺多长?10.彬彬将自己的压岁钱5000元存人银行, 他想将钱存一年, 到期后将利息捐给红十字会, 如果按照年利率4.14%计算, 彬彬可以捐出多少钱?他从银行里一共可以取回多少钱?11.甲、乙两店都经营同样的某种商品, 甲店先涨价10%后, 又降价10%;乙店先涨价15%后, 又降价15%。
此时, 哪个店的售价高些?12.在一次捐款活动中, 实验小学五年级学生共捐款560元, 比四年级多捐40%, 六年级学生比五年级少捐/。
小学数学经典一百道应用题含答案解析应用题100道01、40个梨分给3个班,分给一班20个,其余平均分给二班和三班,二班分到( )个。
【解析】分给一班后还剩下40-20=20个梨,因为其余平均分给二班和三班,所以二班分到20÷2=10个。
02、7年前,妈妈年龄是儿子的6倍,儿子今年12岁,妈妈今年( )岁。
【解析】年龄问题,7年前,儿子年龄为12-7=5岁,而妈妈年龄是儿子的6倍,所以妈妈七年前的年龄为5×6=30岁,那么妈妈今年37岁。
03、同学们进行广播操比赛,全班正好排成相等的6行。
小红排在第二行,从头数,她站在第5个位置,从后数她站在第3个位置,这个班共有( )人【解析】站队问题,要注意不要忽略本身。
从头数,她站在第5个位置,说明她前面有5-1=4个人,从后数她站在第3个位置,说明她后面有3-1=2人,所以这一行的人数为4+2+1=7人,所以这个班的人数为7×6=42人。
04、有一串彩珠,按“2红3绿4黄”的顺序依次排列。
第600颗是( )颜色。
【解析】周期循环问题,以2+3+4=9个一循环,600÷9=66 (6),余数为6,所以第600颗是黄颜色。
05、用一根绳子绕树三圈余30厘米,如果绕树四圈则差40厘米,树的周长有( )厘米,绳子长( )厘米。
【解析】绕树三圈余30厘米,绕树四圈则差40厘米,所以树的周长为30+40=70厘米,绳子长为3×70+30=240厘米。
06、一只蜗牛在10米深的井底向上爬,每小时爬上3米后要滑下2米,这只蜗牛要( )小时才能爬出井口。
【解析】每小时爬上3米后要滑下2米,相当于每小时向上爬了1米,那么7小时后,蜗牛向上爬了7米,离井口还差3米,所以只需要再1小时,蜗牛就可爬出井口,因此需要的总时间为8小时。
07、锯一根10米长的木棒,每锯一段要2分钟。
如果把这根木棒锯成相等的5段,一共要( )分钟。
【解析】把这根木棒锯成相等的5段,只需要锯4次,每次要2分钟,所以一共需要4×2=8分钟。
四年级上册数学经典应用题20道数学经典应用题20 道1、人骑自行车 1 小时约行 16 千米,特快列车 1 小时约行 160 千米。
(1)、人骑自行车 3 小时能够行多少千米?(2)、特快列车 3 小时能够行多少千米?2、每棵树苗 16 元,买 3 棵送 1 棵。
一次买 3 课,每棵廉价多少钱?3、某市郊野的丛林公园有124 公顷丛林。
1 公顷丛林,一年可滞尘约 32 吨,一天可从地下吸出约 85 吨水。
(1)、这个公园的丛林一年大概可滞尘多少吨?( 2)、这个公园的丛林一天大概可从地下吸出多少吨水?4、学校准备发练习本,发给15 个班,每班 144 本,全校还需要留40 本作为备用。
学校应准备多少本练习本?5、公园的一头大象一天要吃350 千克食品,饲养员准备了 5 吨食品,够大象吃20天吗?6、小强每日清晨跑步15 分钟,他的速度大概是120 米/分。
小强每日大概跑步多少米?7、王叔叔从县城出发去王庄乡送化肥。
去的时候用了 3 小时,返回时用了 2 小时,的速度是 40 千米 /时。
(1)、从县城到王庄乡有多远?( 2)、返回时均匀每小时行多少千米?8、一辆旅行车在平原和山区各行了 2 小时,最后抵达山顶。
已知旅行车在平原的速度是 50 千米 /时,在山区的速度是30 千米 /时。
这段行程有多长?9、刘宁走一步的均匀长度是62 厘米,他从操场这头走到那头共走了252 步。
操场大概长多少米?10、一个粮店 3 天售出大米的数目分别是 430 千克、 380 千克、 407 千克,这个粮店 30 天大概售出大米多少千克?11、足球 30 元一个,用 75 元元能够买几个这样的足球,还剩多少钱?12、有 500 吨货物,每节车厢能装60 吨货物,需要多少节车厢才能装完?13、春芽鸡场礼拜一收 160 千克鸡蛋, 18 千克装一箱。
能够装多少箱,还剩多少千克?14、刘叔叔带 700 元买化肥。
买了 16 袋化肥,剩 60 元。
74道必考经典应用题型1.丽丽和家家去书店买书,他们同时喜欢上了一本书,最后丽丽用自己的钱的5分之3,家家用自己的钱的3分之2各买了一本,丽丽剩下的钱比家家剩下的钱多5块。
两人原来各有多少钱?书多少钱?2.一辆汽车每行8千米要耗油4/5千克,平均每千克汽油可行多少千米.行1千米路程要耗油多少千克?3.一辆摩托车1/2小时行30千米,他每小时行多少千米?他行1千米要多少小时?4.阅览室看书的同学中,男同学占七分之四,从阅览室走出5位男同学后,看书的同学中,女同学占二十三分之十二,原来阅览室一共有多少名同学在看书?5.红,黄,蓝气球共有62只,其中红气球的五分之三等于黄气球的三分之二,蓝气球有24只,红气球和黄气球各有多少只?6.学校阅览室有36名学生看书,其中4/9是女学生.后又来了几名女学生,这时女学生人数占看书人数的3/5,后来了几名女生?7.水结成冰后,体积要比原来膨胀11分之1,2.16立方米的冰融化成水后,体积是多少?8.甲乙的粮食560吨,如果把甲的粮食运出2/9给乙,则甲乙的粮食正好相等.原来甲的粮食有多少吨?,乙的粮食有多少吨?9.电视机降价200元.比原来便宜了2/11.现在这种电视机的价格是多少钱?10。
一辆车从甲地到乙地,行了全程的2/5还多20千米,这时候离乙地还有70千米,甲乙两地相距多少千米?11.小明看一本书,第一天看了28页,第二天看了全书的1/5(5分之1),两天共看了全书的3/8(3分之8),这本书共有多少页?12.师徒二人同加工一批零件,加工一段时间后,师傅加工了84个.徒弟加工了63个.师傅比徒弟多加工的正好占全部任务的1/28.这批零件共有多少个?13.一桶油,吃了7/10后,又添进了15千克,这时桶中的油正好是一桶油的一半,这桶油重多少千克?14.一列火车从上海开往天津,行了全路程的3/5,剩下的路程,如果每小时行106千米,5小时可以到天津.上海到天津的铁路长多少千米?15.六年级参加数学兴趣小组的共有46,其中女生人数的4/5是男生人数的3/2倍,参加兴趣小组的男、女生各有多少人?16.张红抄一份稿件,需要5小时抄完.这份稿件已由别人抄了1/3,剩下的交给张红抄,还需几小时才能抄完?17.两列火车同时从相距600千米的两城相对开出.列火车每小时行60千米,另一列火车每小时行75千米,经过几小时两车可以相遇?18.一辆摩托车每小时行了64千米,找这样的速度,从甲到乙用了3/4小时,甲乙两地相距多少千米?19.水果店在两天内卖完一批水果,第一天卖出水果总重量的3/5,比第二天多卖了30千克,这批水果共有多少千克?20.西街小学共有学生910人,其中女生占4/7,女生有多少人?男生有多少人?21.一块长方形地,长60米,宽是长的2/5,这块地的面积是多少平方米?22.金鱼池里红金鱼与黑金鱼条数的比是7:3,黑金鱼有9条,红金鱼有多少条?23.6年级有学生132人,其中男学生与女学生人数的比是6:5,6年级男.女学生各有多少人?24.甲数和乙数的比是2:3,乙数和丙数的比是4:5.求甲数和丙数的比.25.解放路小学今年植树的棵数是去年的1.2倍.写出这个小学今年植树棵数和去年植树棵数的比.26.一个电视机厂去年彩色电视机的产量与电视机总产量的比是20分之9.去年共生产电视机250000太,其中彩色电视机有多少台?27.某工厂工人占全厂职工总数的3分之2,技术人员占全场职工总数的9分之2,其余的是干部.写出这个厂的工人,技术人员和干部人数的比.28.某班学生人数在40到50人之间,男生人数和女生人数的比是5:6.这个班的男生和女生各有多少人..29.图书馆科技书与文艺书的比是4:5,又购进300本文艺术后,科技书与文艺书的比是5:7,文艺书比原来增加了百分之几?30.100克糖水正好装满了一个玻璃杯,其中含糖10克.从杯中倒出10克糖水后,再往杯中加满水,这是被子里糖与水的比是多少?31.五、六年级只有学生175人。
小学数学经典奥数应用题100道及答案(完整版)1. 甲、乙两车同时从A、B 两地相向而行,在距A 地60 千米处第一次相遇。
各自到达对方出发地后立即返回,途中又在距A 地40 千米处相遇。
A、B 两地相距多少千米?答案:(60×3 + 40)÷2 = 110(千米)2. 一个圆形花坛的周长是60 米,沿圆周每隔4 米放一盆红花,每两盆红花之间放3 盆黄花。
花坛周围一共放了多少盆花?答案:60÷4 = 15(盆)红花,15×3 = 45(盆)黄花,共15 + 45 = 60(盆)3. 一列火车通过530 米的桥需40 秒钟,以同样的速度穿过380 米的山洞需30 秒钟。
求这列火车的速度是每秒多少米?车长多少米?答案:速度:(530 - 380)÷(40 - 30) = 15(米/秒),车长:40×15 - 530 = 70(米)4. 用绳子测井深,把绳子三折来量,井外余16 分米,把绳子四折来量,井外余4 分米。
求井深和绳长。
答案:井深:(16×3 - 4×4)÷(4 - 3) = 32(分米),绳长:(32 + 16)×3 = 144(分米)5. 有一堆棋子,把它四等分后剩下一枚,取走三份又一枚;剩下的再四等分又剩一枚,再取走三份又一枚;剩下的再四等分又剩一枚。
问:原来至少有多少枚棋子?答案:从最后的情况倒推,最后至少有5 枚棋子。
则之前有(5×4 + 1)×4 + 1 = 85(枚)6. 甲、乙、丙三人共有人民币168 元,第一次甲拿出与乙相同的钱数给乙;第二次乙拿出与丙相同的钱数给丙;第三次丙拿出与这时甲相同的钱数给甲。
这样,甲、乙、丙三人的钱数相等,原来甲比乙多多少元钱?答案:168÷3 = 56(元),倒推得出原来甲有77 元,乙有49 元,甲比乙多28 元。
⼩学四年级上册数学经典应⽤题20道(附答案)【导语】应⽤题是考试试卷中的⼀种重要题型,不管是⼩学试卷,还是中考、甚⾄⾼考试卷,所以,在学习中就避免不了做应⽤题,以下是⽆忧考⽹为⼤家精⼼整理的内容,欢迎⼤家练习。
应⽤题练习题 1、⼯⼈叔叔3⼩时做24个零件,照这样计算,他8⼩时做多少个零件? 2、王⼤爷带了花1500元钱去买化肥,买了9袋化肥,找回15元。
每袋化肥多少钱? 3、张⼤爷买15只⼩猪⽤7455元,他还想再买30只这样的⼩猪,他还要准备多少钱? 4、⼀双⽪鞋105元,⼀件⾐服的价钱是鞋⼦的2倍。
妈妈买⼀双鞋⼦和⼀件⾐服共要多少元? 5、育才⼩学要把180名少先队员平均分成6个分队,每分队分成5组活动,平均每组有多少名少先队员? 6、⼩荣家养了45只鸡,18只鸭。
如果每只鸡⼀年可以产蛋13千克,每只鸭产蛋12千克,这些鸡、鸭⼀年可以产多少千克蛋? 7、⼀⽀铅笔⽐⼀块橡⽪贵7分,⼀⽀园珠笔可买11⽀铅笔,已知⼀块橡⽪8分,⼀⽀园珠笔多少钱? 8、张君今年45岁,⼩刚今年5岁,再过3年,张君的岁数是⼩刚的多少倍? 9、⼩明有40元钱,⽐⼩强多6元,两⼈共有多少元?⼩明给⼩强多少元两⼈钱数⼀样多? 10、某⼚有男⼯42名,⼥⼯⼈数⽐男⼯的3倍少11名,这个⼯⼚共有多少名⼯⼈? 11、王叔叔在化肥⼚开车送化肥。
去时每⼩时⾏48千⽶,⽤了5⼩时,返回时因为空车只⽤了3⼩时,返回时平均每⼩时⾏多少千⽶?往返的平均速度是多少? 12、学校发练习本,发给8个班,每班200本,还要留100本发奖⽤。
学校应买多少本练习本? 13、学校⾷堂运来1吨煤,计划烧40天。
由于改进炉灶,每天节省5千克,这批煤可以烧多少天? 14、⼀个装订⼩组要装订2640本书,3⼩时装订了240本。
照这样计算,剩下的书还需要多少⼩时能装订完? 15、四年级要为图书馆修补244本图书,第⼀天修补了49本,第⼆天修补了51本,剩下的要3天修补完,平均每天要修补多少本? 16、建筑⼯地需黄沙50吨。
四年级数学解答应用题训练20篇(经典版)带答案解析一、四年级数学上册应用题解答题1.一辆汽车以80千米/时的速度从A地开往B地,6小时到达。
返回时因下雨,用了8小时。
这辆汽车返回时的平均速度是多少千米/时?2.如图,ABCD是一个平行四边形.(1)量一量,∠1=________°,它是一个_____角.(2)AD∥_____,AE⊥_____ .(3)CD地边上的高是_____米,BC底边上的高是_____米.(4)以F点为垂足画出平行四边形ABCD的一条高.3.有一堆黄沙,先运走18吨,剩下的用7辆车运完,每车运6吨,这堆黄沙共有多少吨?4.小明的上山速度是每分钟80米,下山的速度是每分钟120米,如果他从山顶返回到山下用了1个小时,那么他从山下到达山顶用了几分钟?5.①她们俩谁打字的速度快?② 一篇2000字的文章谁能在半个小时打完?6.如图,将一张纸折起来,∠2=140°,则∠1是多少度?7.提出问题并解答。
一盒钢笔有12支,买一盒这样的钢笔需要360元,张老师准备买15盒这样的钢笔,他一共带了6000元。
以下四组选取了已知条件中的全部信息或部分信息。
第一组:12支,360元,15盒,6000元第二组:360元,15盒,6000元第三组:12支,360元,15盒第四组:12支,15盒(1)如果要解决“张老师买回15盒钢笔后还剩多少元?”这个问题,应该选择()组信息。
这时信息够用且没有多余。
请将解答过程写下来。
(2)如果选择第四组信息,可以解决一个什么问题?写出问题并写出解答过程。
8.甲、乙两人同时从相距40千米的两地出发,相向而行。
甲每小时行6千米,乙每小时行4千米,甲带着一只狗,狗每小时跑15千米,这只狗和甲同时出发,碰到乙时掉头跑向甲,碰到甲时又掉头跑向乙,直到两人相遇时才停止。
这只狗一共跑了多少米?9.一辆汽车从甲地到乙地,前3 小时行了150千米,以后每小时速度提高了10千米,又用了2小时到达乙地.甲、乙两地相距多少千米.10.快餐店重新装修,张经理带8000元钱去市场采购.已知每张桌子128元,每个凳子24元,每台电磁炉195元。
六年级数学解答应用题训练30篇(经典版)带答案解析一、六年级数学上册应用题解答题1.甲乙两船同时从A 码头出发,沿着同一条航线匀速向相距280千米的B 码头航行,4小时后导航系统显示两船相距20千米。
已知甲船的速度是乙船的87.5%,求甲乙两船的速度。
(列方程解答)解析:甲船35千米/时,乙船40千米/时【分析】设乙船速度是x 千米/时,则甲船速度是87.5%x 千米/时,乙船速度×时间-甲船速度×时间=20千米,列出方程求出乙船速度,乙船速度×87.5%=甲船速度。
【详解】解:设乙船速度是x 千米/时,则甲船速度是87.5%x 千米/时。
4x -87.5%x×4=204x -3.5x =200.5x =20x =4040×87.5%=35(千米/时)答:甲船速度是35千米/时,乙船速度是40千米/时。
【点睛】用方程解决问题的关键是找到等量关系,整体数量×部分对应百分率=部分数量。
2.实验小学举行科技大赛,五年级上交作品15件,六年级比五年级多交15。
两个年级共交了多少件作品?解析:33件【分析】 六年级比五年级多交15,说明六年级作品占五年级作品的115⎛⎫+ ⎪⎝⎭,据此求出六年级作品数量,最后求两个年级共交了多少件作品即可。
【详解】1151515⎛⎫+⨯+ ⎪⎝⎭=15+18=33(件)答:两个年级共交了33件作品。
【点睛】本题考查分数乘法,解答本题的关键是找到六年级作品数占五年级作品数的几分之几。
3.甲车间有男工45人,女工36人;乙车间女工人数是男工人数的120%.如果把两个车间的工人合在一起,那么男工和女工的人数正好相等.乙车间共有工人多少人? 解析:99人【解析】【详解】45﹣36=9(人)120%:1=6:59÷(6﹣5)×(6+5)=9×11=99(人)答:乙车间共有工人99人.4.电车从A站经过B站到达C站,然后返回.去时在B站停车,而返回时B站不停.去时的车速是每小时48km.(1)A站到C站的距离是多少千米?(2)返回时的车速是每小时行多少千米?解析:(1)432千米(2)72千米【解析】【详解】(1)48×(4+5)=432(千米)(2)432÷6=72(千米)5.一本故事书有180页,小红第一天看了全书的.(1)如果第二天看的相当于第一天的,第二天看了多少页?(2)如果第一天与第二天看的页数比是5:4,第二天看了多少页?(3)如果第二天看了全书的,第二天比第一天多看多少页?解析:(1)25页(2)24页(3)30页【解析】【详解】(1)180××=30×=25(页)答:第二天看了25页.(2)180××=30×=24(页)答:第二天看了24页.(3)180×(﹣)=180×=30(页)答:第二比第一天多看30页.6.如下图,图(1)与图(2)外面是两个同样大的正方形,只是里面的涂色部分不一样。
小学数学必考50道经典应用题及分析小学数学是让许多孩子头疼的科目,特别是应用题。
小学阶段的数学该如何提高其实除了平时多加练习之外,还应该注意各类题型的总结,特别是数学的应用题。
1.已知一张桌子的价钱是一把椅子的10倍,又知一张桌子比一把椅子多288元,一张桌子和一把椅子各多少元解题思路:由已知条件可知,一张桌子比一把椅子多的288元,正好是一把椅子价钱的(10-1)倍,由此可求得一把椅子的价钱。
再根据椅子的价钱,就可求得一张桌子的价钱。
答题:解:一把椅子的价钱:288÷(10-1)=32(元)一张桌子的价钱:32×10=320(元)答:一张桌子320元,一把椅子32元。
2. 3箱苹果重45千克。
一箱梨比一箱苹果多5千克,3箱梨重多少千克解题思路:可先求出3箱梨比3箱苹果多的重量,再加上3箱苹果的重量,就是3箱梨的重量。
答题:解:45+5×3=45+15=60(千克)答:3箱梨重60千克。
3. 甲乙二人从两地同时相对而行,经过4小时,在距离中点4千米处相遇。
甲比乙速度快,甲每小时比乙快多少千米解题思路:根据在距离中点4千米处相遇和甲比乙速度快,可知甲比乙多走4×2千米,又知经过4小时相遇。
即可求甲比乙每小时快多少千米。
答题:解:4×2÷4=8÷4=2(千米)答:甲每小时比乙快2千米。
4. 李军和张强付同样多的钱买了同一种铅笔,李军要了13支,张强要了7支,李军又给张强0.6元钱。
每支铅笔多少钱解题思路:根据两人付同样多的钱买同一种铅笔和李军要了13支,张强要了7支,可知每人应该得(13+7)÷2支,而李军要了13支比应得的多了3支,因此又给张强0.6元钱,即可求每支铅笔的价钱。
答题:解:0.6÷[13-(13+7)÷2]=0.6÷[13—20÷2]=0.6÷3=0.2(元) 答:每支铅笔0.2元。
人教版小学数学经典应用题集锦(含解析及答案)应用题(共40小题)1.修路队修一条2850米的公路,前3天,每天修150米,剩下的需要12天完成,平均每天修路多少米?2.一工厂买来大米608千克,已经吃了4天,每天吃了52千克,剩下的吃了8天才吃完,剩下的平均每天吃多少千克?3.张强家养的猪,7天吃饲料105千克.照这样计算,五月份他家的猪一共要吃饲料多少千克?4.10千克油菜籽共榨出菜籽油3.2千克.照这样计算,一袋油菜籽重50千克,可以榨出菜籽油多少千克?要榨出菜籽油1.6吨,需要油菜籽多少吨?5.王师傅加工一批零件,原计划每小时做45个,18小时完成,而实际只用了15小时就完成了,问:王师傅实际每小时比计划多做几个零件?6.王明做口算题,每分钟做18道,6分钟做完.如果每分钟做27道,那么几分钟可以做完?7.学校添置大小黑板共用去300元,大黑板每块22.5元,比2块小黑板的价钱还贵2.5元,大黑板买了8块,小黑板买了多少块?8.5辆汽车3次可以运货120吨,照这样计算,减少2辆车,8次可以运货多少吨?9.从山顶到山底的路长72千米,一辆汽车上山,需要4小时到达山顶,下山沿原路返回,只用2小时到达山脚,求这辆汽车往返的平均速度.10.小胖和小巧每天坚持到学校进行晨跑,在环形跑道上,两人从同一地点出发,沿着相反方向跑步,小明每秒跑2米,小王每秒跑3米,经过1分钟20秒两人相遇,学校跑道多少米?11.电视机厂要生产一批电视机,实际每天生产475台,比计划每天多生产95台,计划每天生产电视机多少台?(列方程解答)12.希望小学图书室新进了一批儿童国学经典图书,其中《弟子规》和《千字文》一共85本,《弟子规》的本数是《千字文》的2.4倍.《弟子规》和《千字文》各有多少本?(用方程解答)13.甲乙两地相距280千米,两车分别从两地相对开出,经过3.5小时相遇.已知客车每小时行42千米,货车每小时行多少千米?(列方程解)14.甲、乙两车从相距320千米的两地同时出发,相向而行,经过4小时两车相遇.甲每小时行30千米,乙车每小时行多少千米?(列方程解答)15.王大伯种的茄子和番茄一共有0.75公顷,茄子的种植面积比番茄的3倍少0.01公顷,茄子和番茄的种植面积各是多少公顷?16.某建筑公司有红,灰两种颜色的砖,红砖量是灰砖量的2倍,计划修建住宅若干座,若每座住宅使用红砖80米3,灰砖30米3,那么,红砖缺40米3,灰砖剩40米3,问:计划修建住宅多少座?17.在比例尺是1:35000000的地图上,量得烟台到济南的距离是1.5厘米.甲乙两辆客车分别从烟台、济南两地同时相对开出,3小时后相遇,已知甲车每小时行85千米,乙车每小时行多少千米?18.有一张比例尺为1:500的地图上,一块多边形在该地图上的区域的周长是72cm,面积是320cm2,求这个区域的实际周长和面积.19.学校把制作72面彩旗的任务按照六年级一班3个小组的人数分配,一组8人,二组7人,三9人.三个小组各要制作多少面彩旗?20.有两块试验田,一块长40m,宽30m;另一块长50m,宽16m.把660kg化肥按面积进行分配,每块试验田各施化肥多少千克?21.160千克小麦能磨出136千克面粉.照这样计算,要磨出680千克面粉,需要多少千克小麦?(用比例知识解答)22.王明身高1.8m.上午9时他在操场上的影长为1.2m.同时同地,测得一根跳杆高比它的影长长3m.这根跳杆的高和影长分别是多少?23.做一种铁皮烟囱,长1.5米,宽0.8米,高0.4米,做这样10个烟囱要用铁皮多少平方米?24.淘气家要粉刷一间长4米,高3米,宽3米的房子,除去门和窗的面积6平方米,要粉刷的面积是多少平方米?如果每平方米用涂料3千克,房子内要用水泥多少千克?25.一个圆柱形储油桶,底面半径是5dm,高1m,装满油之后,若每升油重0.7千克,这桶油重多少千克?26.在一只底面半径是10cm,高是20cm的圆柱形容器中,水深8cm,要在容器中放入长和宽都是8cm,高是15cm的一块铁块,把铁块竖放在水中,使底面与容器底面接触,这时水深是多少厘米?27.一个圆锥形小麦堆,底面半径是3米,高1.2米,每立方米小麦约重800千克,这堆小麦约重多少千克?28.某建筑工地且个圆锥形沙堆,底面周长是12.56米,高是1.5米,每立方米沙重1.45吨,这堆沙约重多少吨?(得数保留整吨)29.一个玩具厂做一个布娃娃原来需要4.8元的材料.后来改进了制作方法,每个比原来节约了0.3元的材料.原来准备做150个布娃娃的材料,现在最多可以做多少个?30.李奶奶要靠一面墙建造一个半圆形的养鸡场,这个半圆形的篱笆长15.7米,围起来的养鸡场的半径是多少米?31.甲乙两人共有30本文艺书,乙丙两人共有50本文艺书,甲、丙两人共有40本文艺书,甲乙丙三人各有文艺书多少本?32.三只小猴称体重,每两个一起称一次,三次称得的结果分别是24千克、27千克和29千克.请你算一算,三只小猴各重多少千克?33.妈妈买了2千克奶糖和3千克巧克力,共付款132元.已知3千克奶糖的价钱等于1千克巧克力的价钱,每千克奶糖和巧克力各多少元?34.李老师买了3个足球和4个篮球,共用去440元.如果买6个足球和2个篮球,需用580元.足球和篮球的单价各多少元?35.王阿姨把散装的白糖包装成每袋1千克的袋装糖,中途接了个电话,有一袋糖忘了称重量,结果包了20袋后,她称了一下总重量,发现不足20千克,请你设计一种方法,帮她以最快的速度找出这袋糖.36.小超市有香皂18块、牙膏21盒.举行促销活动.准备把’2块香皂和3盒牙膏’做成一个礼盒进行销售.超市能做成几个礼盒?37.妈妈买了25枝康乃馨,一星期后有5枝枯萎了,两星期后还有5枝存活,康乃馨一星期的存活率是多少?两星期呢?38.妈妈有1万元,有两种理财方式:一种是买3年期国债,年利率 3.8%;另一种是买银行1年期理财产品,年收益率4%,每年到期后连本带息继续购买下一年的理财产品.3年后,两种理财方式收益相差多少?39.果园里要栽48棵桃树和36棵杏树,两种果树分别栽成若干排,要使每排棵数相同,每排最多栽多少棵?桃树、杏树各栽多少排?40.小明4天去一次图书馆借书,小冬6天去一次图书馆借书.4月12日他们同时去图书馆借书,再过多少天他们又同时去图书馆借书?是几月几日?人教版小学数学经典应用题集锦(含解析及答案)【分析】首先根据工作量=工作效率×工作时间,用前3天每天修的公路的长度乘以3,求出前3天一共修了多少米;然后用这条公路的长度减去已经修的长度,求出还剩下多少米没有修;最后用剩下的公路的长度除以5,求出平均每天修多少米即可.【解答】解:(2850﹣150×3)÷12=2400÷12=200(米)答:平均每天修路200米.【点评】此题主要考查了工程问题的应用,对此类问题要注意把握住基本关系,即:工作量=工作效率×工作时间,工作效率=工作量÷工作时间,工作时间=工作量÷工作效率,解答此题的关键是求出剩下的公路有多长.【分析】根据’每天吃的大米重量×天数=吃的大米总数’计算出已经吃了多少千克大米,进而用’大米总重﹣吃了的大米重量’求出剩下的大米重量,继而用’剩下的大米重量÷还需吃的天数’解答即可.【解答】解:(608﹣52×4)÷8=400÷8=50(千克);答:剩下的平均每天吃50千克.【点评】解答此题的关键是:先根据每天吃的大米重量、天数和吃的大米总数三个量之间的关系,计算出已经吃了大米的重量,进而求出剩下的大米重量,继而根据剩下的大米重量和还需吃的天数及平均每天吃的重量的关系进行解答即可.【分析】根据’7天吃饲料105千克’,求出1天吃多少千克;再乘以5月份的31天,即为5月份一共要吃多少千克.【解答】解:105÷7×31=15×31=465(千克)答:五月份他家的猪一共要吃饲料465千克.【点评】解答本题的关键是求出1天吃多少千克.【分析】先求出每千克油菜籽可榨油多少千克,再乘50,就是50千克油菜籽可以压榨菜籽油多少千克.据此解答;1.6吨=1600千克,用除法求出1600千克里面有多少个3.2千克,可知有多少个10千克,用乘法可求出需要油菜籽的重量,据此解答.【解答】解:3.2÷10×50=0.32×50=16(千克),1.6吨=1600千克,1600÷3.2×10=500×10=5000(千克),5000千克=5吨,答:一袋油菜籽重50千克,可以榨出菜籽油16千克;要榨出菜籽油1.6吨,需要油菜籽5吨.【点评】本题考查了简单的归一应用题,关键是求出每千克油菜籽可榨油多少千克.【分析】原计划每小时做45个,18小时完成,先用原计划的每小时做的个数乘18小时,求出这批零件的总数,再除以15小时,即可求出实际每小时做的个数,再减去计划每小时做的个数即可求解.【解答】解:45×18÷15=810÷15=54(个)54﹣45=9(个)答:王师傅实际每小时比计划多做9个零件.【点评】解决本题先根据工作量=工作效率×工作时间,求出这批零件的总数,再根据工作效率=工作量÷工作时间,求出实际的工作效率,进而求解.【分析】每分钟做18道,6分钟做完,那么题目的总数就是6个18道,用18乘6即可求出题目总数,再除以27道,即可求出需要几分钟做完.【解答】解:18×6÷27=108÷27=4(分钟)答:4分钟可以做完.【点评】解决本题先根据工作量=工作效率×工作时间求出不变的题目总数,再根据工作时间=工作量÷工作效率求解.【分析】大黑板每块22.5元,大黑板买了8块,那么大黑板就用去了8个22.5元,用22.5乘8求出需要的钱数,进而求出小黑板用去了多少钱;大黑板比2块小黑板的价钱还贵2.5元,用大黑板的价格减去2.5元,求出2块小黑板的钱数,再除以2即可求出每块小黑板多少钱,然后用小黑板的总钱数除以每块小黑板的钱数,即可求出小黑板买了多少块.【解答】解:300﹣22.5×8=300﹣180=120(元)(22.5﹣2.5)÷2=20÷2=10(元)120÷10=12(块)答:小黑板买了12块.【点评】解决本题先根据单价×数量=总价,求出大黑板一共花了多少钱,进而求出小黑板的总价,再根据2块小黑板的价钱还贵 2.5元,求出小黑板的单价,然后根据数量=总价÷单价求解.【分析】用5辆汽车3次可以运货的吨数除以3得出5辆汽车1次可以运货的吨数,再除以5得出1辆汽车1次可以运货的吨数,再乘以车的辆数,再乘运的次数即可得解.【解答】解:120÷3÷5×(5﹣2)×8=40÷5×3×8=8×3×8=192(吨),答:减少2辆车,8次可以运货192吨.【点评】此题先求出1辆汽车1次可以运货的吨数,是解决此题的关键.【分析】根据路程÷时间=速度,用两地之间的距离的2倍除以这辆汽车往返用的时间,求出这辆汽车往返的平均速度是多少即可.【解答】解:72×2÷(4+2)=144÷6=24(千米/小时)答:这辆汽车往返的平均速度是24千米/小时.【点评】此题主要考查了行程问题中速度、时间和路程的关系:速度×时间=路程,路程÷时间=速度,路程÷速度=时间,要熟练掌握.【分析】首先根据题意,用小明每秒跑的路程加上小王每秒跑的路程,求出两人的速度之和是多少;然后用它乘两人相遇用的时间,求出学校跑道多少米即可.【解答】解:1分20秒=80秒(2+3)×80=5×80=400(米)答:学校跑道400米.【分析】根据题意可得等量关系式:计划每天生产电视机的台数+95=实际每天生产电视机的台数,设计划每天生产电视机x台;然后据此列方程解答即可.【解答】解:设计划每天生产电视机x台,x+95=475x+95﹣95=475﹣95x=380答:计划每天生产电视机多少台.【点评】此题考查列方程解应用题,关键是根据题意找出基本数量关系,设未知数为x,由此列方程解决问题.【分析】根据题干,设《千字文》有x本,则《弟子规》的本数是2.4x本,则根据等量关系:《弟子规》的本数+《千字文》的本数=85本,据此列出方程即可解答问题.【解答】解:设《千字文》有x本,则《弟子规》的本数是2.4x本,根据题意可得:x+2.4x=853.4x=85x=2525×2.4=60(本)答:《弟子规》有60本,《千字文》有25本.【点评】解答此题关键是正确设出未知数,再利用基本数量关系:《弟子规》的本数+《千字文》的本数=85本,由此列方程解决问题.【分析】首先根据题意,设货车每小时行x千米,然后根据:两车的速度之和×两车相遇用的时间=两地之间的距离,列出方程,求出货车每小时行多少千米即可.【解答】解:设货车每小时行x千米,则(x+42)×3.5=280(x+42)×3.5÷3.5=280÷3.5x+42=80x+42﹣42=80﹣42x=38答:货车每小时行38千米.【点评】此题主要考查了一元一次方程的应用,弄清题意,找出合适的等量关系,进而列出方程是解答此类问题的关键.【分析】设乙车每小时行x千米,根据等量关系:乙车的速度×时间+甲车的速度×时间=总路程,列方程解答即可.【解答】解:设乙车每小时行x千米,4x+4×30=3204x+120=3204x=200x=50答:乙车每小时行50千米.【点评】本题考查了相遇问题,关键是根找出等量关系式:乙车的速度×时间+甲车的速度×时间=总路程,由此列方程. 【分析】设番茄的种植面积是x公顷,则茄子的种植面积是3x﹣0.01公顷,根据等量关系:茄子的种植面积+番茄的种植面积=0.75公顷,列方程解答即可.【解答】解:设番茄的种植面积是x公顷,则茄子的种植面积是3x﹣0.01公顷,3x﹣0.01+x=0.754x=0.76x=0.19,0.75﹣0.19=0.56(公顷),答:番茄的种植面积是0.19公顷,茄子的种植面积是0.56公顷.【点评】本题考查了含有两个未知数的应用题,这类题用方程解答比较容易,关键是找准数量间的相等关系,设一个未知数为x,另一个未知数用含x的式子来表示,进而列并解方程即可.【分析】设计划修建住宅x座,则红砖量为80x﹣40立方米,灰砖30x+40立方米,根据等量关系:红砖量=灰砖量×2,列方程解答即可.【解答】解:设计划修建住宅x座,则红砖量为80x﹣40立方米,灰砖30x+40立方米,80x﹣40=2(30x+40)80x﹣40=60x+120020x=1240x=62答:计划修建住宅62座.【点评】本题考查了列方程解应用题,关键是根据等量关系:红砖量=灰砖量×2,列方程.【分析】首先根据线段比例尺和图上距离求出甲乙两地之间的实际距离,再根据路程÷相遇时间=速度和,求出客货车的速度,用速度和减去客车的速度即可.【解答】解:1.5÷=52500000(厘米)52500000厘米=525千米525÷3﹣85=175﹣85=90(千米)答:乙车每小时行90千米.【点评】此题解答关键是根据比例尺和图上距离求出实际距离,然后根据路程、速度、时间三者之间的关系进行解答. 【分析】利用相似多边形对应边之比、周长之比等于相似比,而面积之比等于相似比的平方计算.【解答】解:设实际周长是xcm,则:72:x=1:500解得:x=3600036000厘米=360米面积之比等于相似比的平方,设实际面积是y平方厘米,则:320:y=(1:500)2320:y=y=320×250000解得:y=8000000080000000平方厘米=8000平方米答:这个区域的实际周长是360米,实际面积是8000平方米.【点评】本题考查了比例线段,相似多边形的性质,相似多边形对应边之比、周长之比等于相似比,而面积之比等于相似比的平方.【分析】首先求得三个小组的总份数,再求得三个小组各占总数的几分之几,最后求得三个小组各应制作的数量,列式解答即可.【解答】解:8+7+9=24一组:72×=24(面)二组:72×=21(面)三组:72×=27(面)答:一组要制作24面,二组要制作21面,三组要制作27面.【点评】此题主要考查按比例分配应用题的特点:已知两个数的比(三个数的比),两个数的和(三个数的和),求这两个数(三个数),用按比例分配解答.【分析】先根据面积=长×宽,分别计算出两块试验田的面积为1200m2、800m2,则两块试验田分别占总面积的、,再用化肥的总千克数乘以各自占的比率即可得每块试验田各施化肥多少千克.【解答】解:40×30=1200(m2),50×16=800(m2),660×=660×=396(千克),=264(千克),答:每块试验田施化肥396千克、264千克.【点评】本题考查了按比例分配应用题,还用到长方形的面积计算,关键是得出两块试验田分别占总面积的.【分析】根据面粉的质量:小麦的质量=每千克小麦磨面的重量(一定);所以面粉的重量和小麦的重量成正比例;设磨680千克面粉需要x千克小麦,由题意列出比例解答即可.【解答】解:需要x千克小麦.136:160=680:x136x=160×680136x=108800x=800答:需要800千克小麦.【点评】解答此题应先对两个量成正、反比例进行判断,然后根据两个量的关系列出比例式,进行解答即可.【分析】同一时间,同一地点测得物体与影子的比值相等,也就是王明身高与影子的比等于跳杆的高与影子的比,设这根跳杆的高为x米,组成比例,解比例即可.【解答】解:设这根跳杆的高为x米,1.8:1.2=x:(x+3)1.2x=1.8x+5.40.6x=5.4x=99﹣3=6(米)答:这根跳杆高9米,影长是6米.【点评】此题考查用比例的知识解应用题,设出未知数,组成比例然后解比例.【分析】由题意可知:烟囱没有底面只有侧面,根据长方体的表面积公式,先求出做一个这样的铁皮烟囱需要铁皮的面积,然后再乘10即可.【解答】解:(1.5×0.8+1.5×0.4)×2×10=(1.2+0.6)×2×10=1.8×2×10=3.6×10=36(平方米),答:做这样的10个烟囱需要铁皮36平方米.【点评】这是一道长方体表面积的实际应用,在计算时要分清需要计算几个长方形面的面积,缺少的是哪几个面的面积,明确:烟囱没有底面只有侧面,从而列式解答即可.【分析】首先搞清这道题是求长方体的表面积,其次这个长方体的表面由五个长方形组成,缺少下面,最后计算这五个面的面积和减去门窗面积就是粉刷的面积,然后用粉刷的面积乘每平方米用涂料的质量即可.【解答】解:4×3+4×3×2+3×3×2﹣6=12+24+18+6=54﹣6=48(平方米);48×3=144(千克);答:要粉刷的面积是48平方米,房子内需要涂料144千克. 【点评】这是一道长方体表面积的实际应用,在计算时要分清需要计算几个长方形面的面积,缺少的是哪一个面的面积,从而列式解答即可.【分析】首先根据圆柱的体积(体积)公式:V=sh,把数据代入公式求出油桶内油的体积,然后用油的体积乘每升油的质量即可.【解答】解:1升=1立方分米,1米=10分米,3.14×52×10=3.14×25×10=78.5×10=785(立方分米),785×0.7=549.5(千克),答:这桶油重549.5千克.【点评】此题主要考查圆柱的容积(体积)公式在实际生活中的应用,关键是熟记公式.【分析】放入铁块前后的水的体积不变,根据水深8厘米,可以先求得水的体积,那么放入铁块后,容器的底面积变小了,也就是圆柱的底面积减去长方体的底面积,由此可以求得此时水的深度.【解答】解:3.14×102×8÷(3.14×102﹣8×8)=3.14×100×8÷(314﹣64)=2512÷250=10.048(厘米),答:这时水深10.048厘米.【点评】此题主要考查圆柱体积公式的灵活运用,关键是熟记公式,重点是求出把铁块竖放在水中圆柱容器的底面积.【分析】首先根据圆锥的体积公式:V=sh,求出小麦的体积,然后用小麦的体积乘每立方米小麦的质量即可.【解答】解:3.14×32×1.2×800=3.14×9×1.2×800=11.304×800=9043.2(千克),答:这堆小麦约重9043.2千克.【点评】此题主要考查圆锥的体积公式在实际生活中的应用,关键是熟记公式.【分析】首先根据圆锥的体积公式:v=πr2h,求出沙堆的体积,然后用沙堆的体积除以每立方米沙的质量即可.据此解答.×3.14×(12.56÷3.14÷2)2×1.5×1.45×3.14×22×1.5×1.45=50.083(吨)≈50(吨)答:这堆沙约重50吨.【点评】此题主要考查的是圆锥体积公式的灵活应用.【分析】我们用原来做一个布娃娃需要的材料的价钱4.8元乘以原来做的个数150,就是总共的价钱,再除以现在每个布娃娃只需要的材料钱数4.8﹣0.3=4.5元,就是现在可以做的个数.【解答】解:150×4.8÷(4.8﹣0.3)=720÷4.5=160(个)答:现在最多可以做160个.【点评】本题主要考查了学生对总价=单价×数量,数量=总价÷单价数量关系的掌握.【分析】已知这个半圆形的篱笆长15.7米,也就是圆周长的一半是15.7米,由此可以求出圆的周长,根据圆的周长公式:C=2πr,那么r=C÷2π,把数据代入公式解答即可.【解答】解:15.7×2÷3.14÷2=31.4÷3.14÷2=10÷2=5(米),答:围起来的养鸡场的半径是5米.【点评】此题主要考查圆的周长公式在实际生活中的应用,关键是熟记公式.【分析】由题意可知:甲乙的本数+乙丙的本数+甲丙的本数=甲乙丙三人本数的2倍,再除以2即可求出三人本数的和,本数和减去甲乙的本数,即可求出丙的本数,同理可以求出甲和乙的本数.【解答】解:(30+50+40)÷2=120÷2=60(本)丙的本数:60﹣30=30(本)甲的本数:60﹣50=10(本)乙的本数:60﹣40=20(本)答:甲有文艺书10本,乙有文艺书20本,丙有文艺书30本.【点评】解决本题关键是明确:20本、50本、40本的和就是甲乙丙三人本数的2倍,从而得出三人的本数和,进而分别求出三人的本数.【分析】每两个一起称一次,三次称得的结果分别是24千克、27千克和29千克,把这三个重量相加,就是把所有小猴的体重重复计算了一次,再除以2,即可求出三只小猴的体重和,然后分别减去两两的体重,即可求出另一种小猴的体重.【解答】解:(24+27+29)÷2=80÷2=40(千克)40﹣24=16(千克)40﹣27=13(千克)40﹣29=11(千克)答:三只小猴的体重分别是16千克,13千克,11千克. 【点评】解决本题关键是理解把三次称重的体重相加是三只小猴体重的2倍,从而得解.【分析】’已知3千克奶糖的价钱等于1千克巧克力的价钱’.则3千克巧克力就相当于3×3=9千克奶糖,’妈妈买了2千克奶糖和3千克巧克力,共付款132元’,转化成了’妈妈买了2千克奶糖和9千克奶糖一共用去132元’.据此可求出奶糖的单价,进而求出巧克力的单价.【解答】解:132÷(2+3×3)=132÷(2+9)=132÷11=12(元)12×3=36(元)答:每千克奶糖12元,每千克巧克力36元.【点评】本题的关键是把巧克力替换成奶糖,再根据除法的意义列式求出奶糖的单价,进而求出巧克力的单价.【分析】根据’买了3个足球和4个篮球,共用去440元’,得出3个足球的钱数+4个篮球的钱数=440,即3×2个足球的钱数+4×2个篮球的钱数=440×2,再根据’买了同样的足球和4个篮球,共用去580元,’得出6个足球的钱数+2个篮球的钱数=580,两式左右分别相减,由此求出1个篮球的钱数,进而求出1个足球的钱数.【解答】解:篮球的单价:(440×2﹣580)÷(4×2﹣2)=(880﹣580)÷6=300÷6=50(元)足球的单价:(440﹣50×4)÷3=(440﹣200)÷3=240÷3=80(元)答:足球的单价80元,篮球的单价50元.【点评】关键是根据题意得出数量关系式,再把两个数量关系式中的一个量化为相同的量,利用代换的方法求出答案.【分析】先把20袋糖分成(7,7,6),把两个7袋一组的放在天平上称,可找出有次品的一组,再把7分成(3,3,1),可找出有次品的一组,再把3分成(1,1,1),可找出次品,如次品在6袋一组里,则把6分成(2,2,2),把两个2袋一组的放在天平上称,可找出次品一组,再把2成(1,1),可找出次品.据此解答.【解答】解:先把20袋糖分成(7,7,6),把两个7袋一组的放在天平上称,可找出有次品的一组,再把7分成(3,3,1),可找出有次品的一组,再把3分成(1,1,1),可找出次品,需3次;如次品在6个一组里,则把6分成(2,2,2),把两个2个一组的放在天平上称,可找出次品一组,再把2成(1,1),可找出次品,需3次;所以用天平称,至少称3次能保证找出次品球.【点评】本题主要考查了学生根据天平平衡的原理解答问题的能力.【分析】先用18除以2,求出香皂每2块一组可以分成几组,同理求出牙膏可以分成几组,比较分成的组数,较小的就是可以做成礼盒的个数.【解答】解:18÷2=9(组)21÷3=7(组)7答:超市能做成7个礼盒.【点评】解决本题根据除法的包含意义分别求出可以做的组数,再比较,选择较小的组数.【分析】存活率是指存活的棵数占总棵数的百分比,计算方法是:存活的棵数÷总棵数×100%=存活率,代入数据求解即可.×100%=80%×100%=20%答:康乃馨一星期的存活率是80%,两星期存活率是20%.【点评】此题属于百分率问题,都是用一部分数量(或全部数量)除以全部数量乘百分之百.【分析】要想知道哪种理财方式收益更大,要根据到期利息的多少.分别求出两种理财方式所得到的利息,根据关系式:利息=本金×利率×时间然后比较,解决问题.【解答】解:①三年期:10000×3.8%×3=380×3=1140(元)②先买一年期,把本金和利息取出来合在一起,再存入一年,10000×4%×1=400(元)(10000+400)×4%×1=10400×4%×1=416(元)(10000+400+416)×4%×1。
50道小学数学经典应用题(含答案) 50道小学数学经典应用题(含答案)1. 某班级有40名学生,其中男生和女生的比例为3:5,男生有多少名?解答: 设男生人数为3x,女生人数为5x。
由题意可得3x+5x=40,解方程得x=4。
所以男生人数为3x=3*4=12。
2. 一个长方形的长是8厘米,宽是5厘米,它的周长是多少?解答: 周长=2(长+宽)=2(8+5)=26厘米。
3. 阿明有30块糖果,他分给4个朋友,每个朋友可以分到多少块糖果?解答: 30块糖果分给4个朋友,每个朋友可以分到的糖果数为30÷4=7块,余下2块。
4. 小明从家里到学校的路程是3千米,他每天骑车去学校,一个月有30天,一个月小明总共骑了多少千米?解答: 小明一个月骑车的距离=3千米/天×30天=90千米。
5. 若一个数字的各位数字之和是9,并且个位数字比十位数字小,十位数字比百位数字小,这个数字是多少?解答: 由题意可推断这个数字是三位数,个位数字为1或2,十位数字为2或3,百位数字为3或4。
满足条件的数为321或432。
6. 某商店原价卖出一件商品是800元,现在打7折出售,打折后的价格是多少?解答: 打7折相当于原价的70%,打折后的价格=800元×70%=560元。
7. 一块木板长80厘米,现要按照每段5厘米的长度来锯成若干段,最终会有多少段?解答: 段数=总长÷每段长度=80厘米÷5厘米=16段。
8. 小华买了一本故事书,原价是45元,现在打6折出售,小华实际支付了多少钱?解答: 打6折相当于原价的60%,小华实际支付的金额=45元×60%=27元。
9. 甲、乙、丙三个数相加等于120,已知甲是乙的2倍,乙是丙的3倍,那么甲、乙、丙分别是多少?解答: 设乙的数为x,则甲=2x,丙=x/9。
根据题意,可以列方程2x+x+3x/9=120,解方程得x=27。
所以甲=2x=54,乙=x=27,丙=x/9=3。
小学数学经典应用题100例附答案(完整版)1. 工程队修一条长1600 米的公路,已经修好了全长的3/4,还剩多少米没修?答案:全长的3/4 为1600×3/4 = 1200 米,还剩1600 - 1200 = 400 米。
2. 一桶油,第一次用去2/5 ,第二次用去10 千克,还剩下一半,这桶油原来有多少千克?答案:设这桶油原来有x 千克,x - 2/5 x - 10 = 1/2 x ,解得x = 100 千克。
3. 有一个圆形花坛,直径是10 米,在它的周围修一条1 米宽的小路,小路的面积是多少平方米?答案:外圆直径为10 + 2 = 12 米,外圆半径为6 米,内圆半径为5 米。
小路面积= 3.14×(6²- 5²) = 34.54 平方米。
4. 客车和货车同时从A、B 两地相对开出,客车每小时行60 千米,货车每小时行全程的1/10 ,相遇时客车和货车所行路程的比是5∶4,A、B 两地相距多少千米?答案:相遇时时间相同,路程比等于速度比,货车速度为60×4/5 = 48 千米/小时。
货车速度是全程的1/10 ,所以全程为48×10 = 480 千米。
5. 小明看一本故事书,第一天看了全书的1/9 ,第二天看了24 页,两天看的页数与剩下页数的比是1∶4,这本书共有多少页?答案:两天看了全书的1/(1 + 4) = 1/5 ,第二天看了全书的1/5 - 1/9 = 4/45 ,全书共有24÷4/45 = 270 页。
6. 甲、乙两堆煤共重35 吨,如果各用掉1/5 ,甲堆还剩12 吨,乙堆还剩多少吨?答案:甲堆原来有12÷(1 - 1/5) = 15 吨,乙堆原来有35 - 15 = 20 吨,乙堆还剩20×(1 - 1/5) = 16 吨。
7. 一个圆锥形沙堆,底面周长是18.84 米,高2 米。
每立方米沙重1.8 吨,这堆沙重多少吨?答案:底面半径= 18.84÷3.14÷2 = 3 米,体积= 1/3×3.14×3²×2 = 18.84 立方米,沙重18.84×1.8 = 33.912 吨。
小学数学应用题经典100道1. 甲、乙、丙三人在A、B两块地植树,A地要植900棵,B地要植1250棵.已知甲、乙、丙每天分别能植树24,30,32棵,甲在A地植树,丙在B地植树,乙先在A地植树,然后转到B地植树.两块地同时开始同时结束,乙应在开始后第几天从A地转到B地?2. 有三块草地,面积分别是5,15,24亩.草地上的草一样厚,而且长得一样快.第一块草地可供10头牛吃30天,第二块草地可供28头牛吃45天,问第三块地可供多少头牛吃80天?3. 某工程,由甲、乙两队承包,2.4天可以完成,需支付1800元;由乙、丙两队承包,3+3/4天可以完成,需支付1500元;由甲、丙两队承包,2+6/7天可以完成,需支付1600元.在保证一星期内完成的前提下,选择哪个队单独承包费用最少?4. 一个圆柱形容器内放有一个长方形铁块.现打开水龙头往容器中灌水.3分钟时水面恰好没过长方体的顶面.再过18分钟水已灌满容器.已知容器的高为50厘米,长方体的高为20厘米,求长方体的底面面积和容器底面面积之比.5. 甲、乙两位老板分别以同样的价格购进一种时装,乙购进的套数比甲多1/5,然后甲、乙分别按获得80%和50%的利润定价出售.两人都全部售完后,甲仍比乙多获得一部分利润,这部分利润又恰好够他再购进这种时装10套,甲原来购进这种时装多少套?6. 有甲、乙两根水管,分别同时给A,B两个大小相同的水池注水,在相同的时间里甲、乙两管注水量之比是7:5.经过2+1/3小时,A,B两池中注入的水之和恰好是一池.这时,甲管注水速度提高25%,乙管的注水速度不变,那么,当甲管注满A池时,乙管再经过多少小时注满B池?7. 小明早上从家步行去学校,走完一半路程时,爸爸发现小明的数学书丢在家里,随即骑车去给小明送书,追上时,小明还有3/10的路程未走完,小明随即上了爸爸的车,由爸爸送往学校,这样小明比独自步行提早5分钟到校.小明从家到学校全部步行需要多少时间?8. 甲、乙两车都从A地出发经过B地驶往C地,A,B两地的距离等于B,C两地的距离.乙车的速度是甲车速度的80%.已知乙车比甲车早出发11分钟,但在B地停留了7分钟,甲车则不停地驶往C地.最后乙车比甲车迟4分钟到C地.那么乙车出发后几分钟时,甲车就超过乙车.9. 甲、乙两辆清洁车执行东、西城间的公路清扫任务.甲车单独清扫需要10小时,乙车单独清扫需要15小时,两车同时从东、西城相向开出,相遇时甲车比乙车多清扫12千米,问东、西两城相距多少千米?10. 今有重量为3吨的集装箱4个,重量为2.5吨的集装箱5个,重量为1.5吨的集装箱14个,重量为1吨的集装箱7个.那么最少需要用多少辆载重量为4.5吨的汽车可以一次全部运走集装箱?小学数学应用题综合训练(02)11. 师徒二人共同加工170个零件,师傅加工零件个数的1/3比徒弟加工零件个数的1/4还多10个,那么徒弟一共加工了几个零件?12. 一辆大轿车与一辆小轿车都从甲地驶往乙地.大轿车的速度是小轿车速度的80%.已知大轿车比小轿车早出发17分钟,但在两地中点停了5分钟,才继续驶往乙地;而小轿车出发后中途没有停,直接驶往乙地,最后小轿车比大轿车早4分钟到达乙地.又知大轿车是上午10时从甲地出发的.那么小轿车是在上午什么时候追上大轿车的.13. 一部书稿,甲单独打字要14小时完成,,乙单独打字要20小时完成.如果甲先打1小时,然后由乙接替甲打1小时,再由甲接替乙打1小时.......两人如此交替工作.那么打完这部书稿时,甲乙两人共用多少小时?14. 黄气球2元3个,花气球3元2个,学校共买了32个气球,其中花气球比黄气球少4个,学校买哪种气球用的钱多?15. 一只帆船的速度是60米/分,船在水流速度为20米/分的河中,从上游的一个港口到下游的某一地,再返回到原地,共用3小时30分,这条船从上游港口到下游某地共走了多少米?16. 甲粮仓装43吨面粉,乙粮仓装37吨面粉,如果把乙粮仓的面粉装入甲粮仓,那么甲粮仓装满后,乙粮仓里剩下的面粉占乙粮仓容量的1/2;如果把甲粮仓的面粉装入乙粮仓,那么乙粮仓装满后,甲粮仓里剩下的面粉占甲粮仓容量的1/3,每个粮仓各可以装面粉多少吨?17. 甲数除以乙数,乙数除以丙数,商相等,余数都是2,甲、乙两数之和是478.那么甲、乙丙三数之和是几?18. 一辆车从甲地开往乙地.如果把车速减少10%,那么要比原定时间迟1小时到达,如果以原速行驶180千米,再把车速提高20%,那么可比原定时间早1小时到达.甲、乙两地之间的距离是多少千米?19. 某校参加军训队列表演比赛,组织一个方阵队伍.如果每班60人,这个方阵至少要有4个班的同学参加,如果每班70人,这个方阵至少要有3个班的同学参加.那么组成这个方阵的人数应为几人?20. 甲、乙、丙三台车床加工方形和圆形的两种零件,已知甲车床每加工3个零件中有2个是圆形的;乙车床每加工4个零件中有3个是圆形的;丙车床每加工5个零件中有4个是圆形的.这天三台车床共加工了58个圆形零件,而加工的方形零件个数的比为4:3:3,那么这天三台车床共加工零件几个?小学数学应用题综合训练(03)21. 圈金属线长30米,截取长度为A的金属线3根,长度为B的金属线5根,剩下的金属线如果再截取2根长度为B的金属线还差0.4米,如果再截取2根长度为A的金属线则还差2米,长度为A的等于几米?22. 某公司要往工地运送甲、乙两种建筑材料.甲种建筑材料每件重700千克,共有120件,乙种建筑材料每件重900千克,共有80件,已知一辆汽车每次最多能运载4吨,那么5辆相同的汽车同时运送,至少要几次?23. 从王力家到学校的路程比到体育馆的路程长1/4,一天王力在体育馆看完球赛后用17分钟的时间走到家,稍稍休息后,他又用了25分钟走到学校,其速度比从体育馆回来时每分钟慢15米,王力家到学校的距离是多少米?24. 师徒两人合作完成一项工程,由于配合得好,师傅的工作效率比单独做时要提高1/10,徒弟的工作效率比单独做时提高1/5.两人合作6天,完成全部工程的2/5,接着徒弟又单独做6天,这时这项工程还有13/30未完成,如果这项工程由师傅一人做,几天完成?25. 六年级五个班的同学共植树100棵.已知每个班植树的棵数都不相同,且按数量从多到少的排名恰好是一、二、三、四、五班.又知一班植的棵数是二、三班植的棵数之和,二班植的棵数是四、五班植的棵数之和,那么三班最多植树多少棵?26. 甲每小时跑13千米,乙每小时跑11千米,乙比甲多跑了20分钟,结果乙比甲多跑了2千米.乙总共跑了多少千米?27. 有高度相等的A,B两个圆柱形容器,内口半径分别为6厘米和8厘米.容器A中装满水,容器B是空的,把容器A中的水全部倒入容器B中,测得容器B中的水深比容器高的7/8还低2厘米.容器的高度是多少厘米?28. 有104吨的货物,用载重为9吨的汽车运送.已知汽车每次往返需要1小时,实际上汽车每次多装了1吨,那么可提前几小时完成.29. 师、徒二人第一天共加工零件225个,第二天采用了新工艺,师傅加工的零件比第一天增加了24%,徒弟增加了45%,两人共加工零件300个,第二天师傅加工了多少个零件?徒弟加工了几个零件?30. 奋斗小学组织六年级同学到百花山进行野营拉练,行程每天增加2千米.去时用了4天,回来时用了3天,问学校距离百花山多少千米?小学数学应用题综合训练(04)31. 某地收取电费的标准是:每月用电量不超过50度,每度收5角;如果超出50度,超出部分按每度8角收费.每月甲用户比乙用户多交3元3角电费,这个月甲、乙各用了多少度电?32. 王师傅计划用2小时加工一批零件,当还剩160个零件时,机器出现故障,效率比原来降低1/5,结果比原计划推迟20分钟完成任务,这批零件有多少个?33. 妈妈给了红红一些钱去买贺年卡,有甲、乙、丙三种贺年卡,甲种卡每张1.20元.用这些钱买甲种卡要比买乙种卡多8张,买乙种卡要比买丙种卡多买6张.妈妈给了红红多少钱?乙种卡每张多少钱?34. 一位老人有五个儿子和三间房子,临终前立下遗嘱,将三间房子分给三个儿子各一间.作为补偿,分到房子的三个儿子每人拿出1200元,平分给没分到房子的两个儿子.大家都说这样的分配公平合理,那么每间房子的价值是多少元?35. 小明和小燕的画册都不足20本,如果小明给小燕A本,则小明的画册就是小燕的2倍;如果小燕给小明A本,则小明的画册就是小燕的3倍.原来小明和小燕各有多少本画册?36. 有红、黄、白三种球共160个.如果取出红球的1/3,黄球的1/4,白球的1/5,则还剩120个;如果取出红球的1/5,黄球的1/4,白球的1/3,则剩116个,问(1)原有黄球几个?(2)原有红球、白球各几个?37. 爸爸、哥哥、妹妹三人现在的年龄和是64岁,当爸爸的年龄是哥哥年龄的3倍时,妹妹是9岁.当哥哥的年龄是妹妹年龄的2倍时,爸爸是34岁.现在三人的年龄各是多少岁?38. B在A,C两地之间.甲从B地到A地去送信,出发10分钟后,乙从B地出发去送另一封信.乙出发后10分钟,丙发现甲乙刚好把两封信拿颠倒了,于是他从B地出发骑车去追赶甲和乙,以便把信调过来.已知甲、乙的速度相等,丙的速度是甲、乙速度的3倍,丙从出发到把信调过来后返回B地至少要用多少时间?39. 甲、乙两个车间共有94个工人,每天共加工1998竹椅.由于设备和技术的不同,甲车间平均每个工人每天只能生产15把竹椅,而乙车间平均每个工人每天可以生产43把竹椅.甲车间每天竹椅产量比乙车间多几把?40. 甲放学回家需走10分钟,乙放学回家需走14分钟.已知乙回家的路程比甲回家的路程多1/6,甲每分钟比乙多走12米,那么乙回家的路程是几米?小学数学应用题综合训练(05)41. 某商品每件成本72元,原来按定价出售,每天可售出100件,每件利润为成本的25%,后来按定价的90%出售,每天销售量提高到原来的2.5倍,照这样计算,每天的利润比原来增加几元?42. 甲、乙两列火车的速度比是5:4.乙车先发,从B站开往A站,当走到离B站72千米的地方时,甲车从A站发车往B站,两列火车相遇的地方离A,B两站距离的比是3:4,那么A,B两站之间的距离为多少千米?43. 大、小猴子共35只,它们一起去采摘水蜜桃.猴王不在的时候,一只大猴子一小时可采摘15千克,一只小猴子一小时可采摘11千克.猴王在场监督的时候,每只猴子不论大小每小时都可以采摘12千克.一天,采摘了8小时,其中只有第一小时和最后一小时有猴王在场监督,结果共采摘4400千克水蜜桃.在这个猴群中,共有小猴子几只?44. 某次数学竞赛设一、二等奖.已知(1)甲、乙两校获奖的人数比为6:5.(2)甲、乙来年感校获二等奖的人数总和占两校获奖人数总和的60%.(3)甲、乙两校获二等奖的人数之比为5:6.问甲校获二等奖的人数占该校获奖总人数的百分数是几?45. 已知小明与小强步行的速度比是2:3,小强与小刚步行的速度比是4:5.已知小刚10分钟比小明多走420米,那么小明在20分钟里比小强少走几米?46. 加工一批零件,原计划每天加工15个,若干天可以完成.当完成加工任务的3/5时,采用新技术,效率提高20%.结果,完成任务的时间提前10天,这批零件共有几个?47. 甲、乙二人在400米的圆形跑道上进行10000米比赛.两人从起点同时同向出发,开始时甲的速度为8米/秒,乙的速度为6米/秒,当甲每次追上乙以后,甲的速度每秒减少2米,乙的速度每秒减少0.5米.这样下去,直到甲发现乙第一次从后面追上自己开始,两人都把自己的速度每秒增加0.5米,直到终点.那么领先者到达终点时,另一人距离终点多少米?48. 小明从家去学校,如果他每小时比原来多走1.5千米,他走这段路只需原来时间的4/5;如果他每小时比原来少走1.5千米,那么他走这段路的时间就比原来时间多几分几之?49. 甲、乙、丙、丁现在的年龄和是64岁.甲21岁时,乙17岁;甲18岁时,丙的年龄是丁的3倍.丁现在的年龄是几岁?50. 加工一批零件,原计划每天加工30个.当加工完1/3时,由于改进了技术,工作效率提高了10%,结果提前了4天完成任务.问这批零件共有几个?51. 自动扶梯以均匀的速度向上行驶,一男孩与一女孩同时从自动扶梯向上走,男孩的速度是女孩的2倍,已知男孩走了27级到达扶梯的顶部,而女孩走了18级到达顶部.问扶梯露在外面的部分有多少级?52. 两堆苹果一样重,第一堆卖出2/3,第二堆卖出50千克,如果第一堆剩下的苹果比第二堆剩下的苹果少,那么两堆剩下的苹果至少有多少千克?53. 甲、乙两车同时从A地出发,不停的往返行驶于A、B两地之间.已知甲车的速度比乙车快,并且两车出发后第一次和第二次相遇都杂途中C地,甲车的速度是乙车的几倍?54. 一只小船从甲地到乙地往返一次共用2小时,回来时顺水,比去时的速度每小时多行8千米,因此第二小时比第一小时多行6千米.求甲、乙两地的距离.55. 甲、乙两车分别从A、B两地出发,并在A,B两地间不断往返行驶.已知甲车的速度是15千米/小时,甲、乙两车第三次相遇地点与第四次相遇地点相差100千米.求A、B两地的距离.56. 某人沿着向上移动的自动扶梯从顶部朝底下用了7分30秒,而他沿着自动扶梯从底朝上走到顶部只用了1分30秒.如果此人不走,那么乘着扶梯从底到顶要多少时间?如果停电,那么此人沿扶梯从底走到顶要多少时间?57. 甲、乙两个圆柱体容器,底面积比为5:3,甲容器水深20厘米,乙容器水深10厘米.再往两个容器中注入同样多的水,使得两个容器中的水深相等.这时水深多少厘米?58. A、B两地相距207千米,甲、乙两车8:00同时从A地出发到B地,速度分别为60千米/小时,54千米/小时,丙车8:30从B地出发到A地,速度为48千米/小时.丙车与甲、乙两车距离相等时是几点几分?59. 一个长方形的周长是130厘米,如果它的宽增加1/5,长减少1/8,就得到一个相同周长的新长方形.求原长方形的面积.60. 有一长方形,它的长与宽的比是5:2,对角线长29厘米,求这个长方形的面积.小学数学应用题综合训练(07)61. 有一个果园,去年结果的果树比不结果的果树的2倍还多60棵,今年又有160棵果树结了果,这时结果的果树正好是不结果的果树的5倍.果园里共有多少棵果树?62. 小明步行从甲地出发到乙地,李刚骑摩托车同时从乙地出发到甲地.48分钟后两人相遇,李刚到达甲地后马上返回乙地,在第一次相遇后16分钟追上小明.如果李刚不停地往返于甲、乙两地,那么当小明到达乙地时,李刚共追上小明几次?63. 同样走100米,小明要走180步,父亲要走120步.父子同时同方向从同一地点出发,如果每走一步所用的时间相同,那么父亲走出450米后往回走,还要走多少步才能遇到小明?64. 一艘轮船在两个港口间航行,水速为6千米/小时,顺水航行需要4小时,逆水航行需要7小时,求两个港口之间的距离.65. 有甲、乙、丙三辆汽车,各以一定的速度从A地开往B地,乙比丙晚出发10分钟,出发后40分钟追上丙;甲比乙又晚出发10分钟,出发后60分钟追上丙,问甲出发后几分钟追上乙?66. 甲、乙合作完成一项工作,由于配合的好,甲的工作效率比单独做时提高1/10,乙的工作效率比单独做时提高1/5,甲、乙合作6小时完成了这项工作,如果甲单独做需要11小时,那么乙单独做需要几小时?67. A、B、C、D、E五名学生站成一横排,他们的手中共拿着20面小旗.现知道,站在C右边的学生共拿着11面小旗,站在B左边的学生共拿着10面小旗,站在D左边的学生共拿着8面小旗,站在E左边的学生共拿着16面小旗.五名学生从左至右依次是谁?各拿几面小旗?68. 小明在360米长的环行的跑道上跑了一圈,已知他前一半时间每秒跑5米,后一半时间每秒跑4米,问他后一半路程用了多少时间?69. 小英和小明为了测量飞驶而过的火车的长度和速度,他们拿了两块秒表,小英用一块表记下火车从他面前通过所花的时间是15秒,小明用另一块表记下了从车头过第一根电线杆到车尾过第二根电线杆所花的时间是18秒,已知两根电线杆之间的距离是60米,求火车的全长和速度.70. 小明从家到学校时,前一半路程步行,后一半路程乘车;他从学校到家时,前1/3时间乘车,后2/3时间步行.结果去学校的时间比回家的时间多20分钟,已知小明从家到学校的路程是多少千米?小学数学应用题综合训练(08)71. 数学练习共举行了20次,共出试题374道,每次出的题数是16,21,24问出16,21,24题的分别有多少次?72. 一个整数除以2余1,用所得的商除以5余4,再用所得的商除以6余1.用这个整数除以60,余数是多少?73. 少先队员在校园里栽的苹果树苗是梨树苗的2倍.如果每人栽3棵梨树苗,则余2棵;如果每人栽7棵苹果树苗,则少6棵.问共有多少名少先队员?苹果和梨树苗共有多少棵?74. 某人开汽车从A城到B城要行200千米,开始时他以56千米/小时的速度行驶,但途中因汽车故障停车修理用去半小时,为了按时到达,他必须把速度增加14千米/小时,跑完以后的路程,他修车的地方距离A 城多少千米?75. 甲、乙两人分别从A、B两地同时出发,相向而行,乙的速度是甲的2/3,两人相遇后继续前进,甲到达B地,乙到达A地立即返回,已知两人第二次相遇的地点距离第一次相遇的地点是3000米,求A、B 两地的距离.76. 一条船往返于甲、乙两港之间,已知船在静水中的速度为9千米/小时,平时逆行与顺行所用时间的比为2:1.一天因下雨,水流速度为原来的2倍,这条船往返共用10小时,问甲、乙两港相距多少千米?77. 某学校入学考试,确定了录取分数线,报考的学生中,只有1/3被录取,录取者平均分比录取分数线高6分,没有被录取的同学其平均分比录取分数线低15分,所有考生的平均分是80分,问录取分数线是多少分?78. 一群学生搬砖,如果有12人每人各搬7块,其余的每人搬5块,那么最后余下148块;如果有30人每人各搬8块,其余的每人搬7块,那么最后余下20块.问学生共有多少人?砖有多少块?79. 甲、乙两车分别从A、B两地同时相向而行,已知甲车速度与乙车速度之比为4:3,C地在A、B之间,甲、乙两车到达C地的时间分别是上午8点和下午3点,问甲、乙两车相遇是什么时间?80. 一次棋赛,记分方法是,胜者得2分,负者得0分,和棋两人各得1分,每位选手都与其他选手各对局一次,现知道选手中男生是女生的10倍,但其总得分只为女生得分的4.5倍,问共有几名女生参赛?女生共得几分?小学数学应用题综合训练(09)81. 有若干个自然数,它们的算术平均数是10,如果从这些数中去掉最大的一个,则余下的算术平均数为9;如果去掉最小的一个,则余下的算术平均数为11,这些数最多有多少个?这些数中最大的数最大值是几?82. 某班有少先队员35人,这个班有男生23人,这个班女生少先队员比男生非少先队员多几人?83. 小东计划到周口店参观猿人遗址.如果他坐汽车以40千米/小时的速度行驶,那么比骑车去早到3小时,如果他以8千米/小时的速度步行去,那么比骑车晚到5小时,小东的出发点到周口店有多少千米?84. 甲、乙两船在相距90千米的河上航行,如果相向而行,3小时相遇,如果同向而行则15小时甲船追上乙船.求在静水中甲、乙两船的速度.85. 二年级两个班共有学生90人,其中少先队员有71人,一班少先队员占本班人数的75%,二班少先队员占本班人数的5/6.一班少先队员人数比二班少先队员人数多几人?86. 一个容器中已注满水,有大、中、小三个球.第一次把小球沉入水中,第二次把小球取出,把中球沉入水中,第三次把中球取出,把小球和大球一起沉入水中,现知道每次从容器中溢出水量的情况是:第一次是第二次的1/2,第三次是第二次的1.5倍.求三个球的体积之比.87. 某人翻越一座山用了2小时,返回用了2.5小时,他上山的速度是3000米/小时,下山的速度是4500米/小时.问翻越这座山要走多少米?88. 钢筋原材料每根长7.3米,每套钢筋架子用长2.4米、2.1米和1.5米的钢筋各一段.现需要绑好钢筋架子100套,至少要用去原材料多少根?89. 有一块铜锌合金,其中铜和锌的比2:3.现知道再加入6克锌,熔化后共得新合金36克,新合金中铜和锌的比是多少?90. 小明通常总是步行上学,有一天他想锻炼身体,前1/3路程快跑,速度是步行速度的4倍,后一段的路程慢跑,速度是步行速度的2倍.这样小明比平时早35分到校,小明步行上学需要多少分钟?小学数学应用题综合训练(10)91. 甲、乙、丙三人,甲的年龄比乙的年龄的2倍还大3岁,乙的年龄比丙的年龄的2倍小2岁,三个人的年龄之和是109岁,分别求出甲、乙、丙的年龄.92. 快车以60千米/小时的速度从甲站向乙站开出,1.5小时后,慢车以40千米/小时的速度从乙站行甲站开出,.两车相遇时,相遇点离两站的中点70千米.甲、乙两站相距多少千米?93. 甲、乙两车先后离开学校以相同的速度开往博物馆,已知8:32分甲车与学校的距离是乙车与学校距离的3倍,8:39分甲车与学校的距离是乙车与学校距离的2倍,求甲车离开学校的时间.94. 有一个工作小组,当每个工人在各自的工作岗位上工作时,7小时可生产一批零件,如果交换工人甲、乙的岗位,其他人不变,那么可提前1小时,完成这批零件,如果交换工人丙、丁的岗位,其他人不变,也可提前1小时,问如果同时交换甲与乙、丙与丁的岗位,其他人不变,那么完成这批零件需多长的时间.95. 用10块长7厘米、宽5厘米、高3厘米的长方体积木,拼成一个长方体,这个长方体的表面积最小是多少?96. 公圆只售两种门票:个人票每张5元,10人一张的团体票每张30元,购买10张以上的团体票的可优惠10%.(1)甲单位45人逛公园,按以上规定买票,最少应付多少钱?(2)乙单位208人逛公园,按以上的规定买票,最少应付多少钱?97. 甲、乙、丙三人,参加一次考试,共得260分,已知甲得分的1/3,乙得分的1/4与丙得分的一半减去22分都相等,那么丙得分多少?98. 一项工程,甲、、乙两人合作4天后,再由乙单独做5天完成,已知甲比乙每天多完成这项工程的1/30.甲、乙单独做这项工程各需要几天?99. 有长短两支蜡烛,(相同时间中燃烧长度相同),它们的长度之和为56厘米,将它们同时点燃一段时间后,长蜡烛同短蜡烛点燃前一样长,这时短蜡烛的长度又恰好是长蜡烛的2/3.点燃前长蜡烛有多长?100. 一批苹果平均分装在20个筐中,如果每筐多装1/9,可省下几只筐?。
六年级应用题练习.一个果园的面积是52公顷,其中5种苹果树,剩下的种橘子树。
两种果树的种植面积各是多少公顷? 2 .一堆货物共有120t ,第一天运走它的41,第二天运走的比第一天运走的多52。
第二天运走货物多少吨?3 .一根绳子长4米,第一次用去了它的41,第二次用去了41m ,还剩多少米? 4 .妈妈买回一包瓜子重450g ,第一天吃了53,第二天又吃了余下的31,还剩下多少克?5 .已知18.091085=⨯=⨯=⨯c b a ,请将a ,b ,c 三个数从小到大排序。
6 .丁丁从一楼跑到五楼用了57分钟,照这样的速度,他从五楼跑到八楼需要多少分钟?7 .一栋楼房有30层,高85m ,乐乐家住在25楼,他家的地板离地面有多高? 8 .学校图书室买回120本故事书,买回的科普书比故事书多41,比作文书少41。
买回作文书多少本?9. 一件商品,先提价101,又降价101,现价是198元。
这件商品的原价是多少元?10 .一块周长是560m 的长方形菜地,宽是长的43。
这块菜地的长和宽各是多少米?11 .李叔叔一家开车去湿地公园游玩,出发154要到达小时?12 .的速度快4113 .页数比是1页?14 .少页?15 .一堆煤,第一周烧了全部的51,第二周烧了全部的41,第一周比第二周少烧了23吨,这堆煤原有多少吨? 16 .小明看一本故事书,已经看了的页数比全书的52多5页,这时还剩55页没看,这本书共有多少页?17 .一堆煤,第一次用去了51,第二次用去了余下的41,还剩36吨,这堆煤原有41,25开,剩下的零件由徒弟单独完成,还要几天才能完成?22 .甲、乙两人分别在环形跑道的直径两端上。
甲跑完一圈要4分钟,乙跑完一圈要6分钟。
(1)两人同时出发,相向而行,多少分钟后相遇?(2)两人同时出发,同向而行,多少分钟后甲追上乙?23 .一批零件,甲单独做8小时完成,甲做了2小时后。
乙来参加,甲、乙又合作了4小时才完成任务。
小学四年级上册数学经典应用题20道(附答案)小学四年级上册数学经典应用题20道(附答案)1. 圆面积计算已知一个圆的半径为5cm,求其面积是多少?解答:圆的面积公式为πr²,其中π取3.14。
将半径r=5cm代入公式得到面积S=3.14×5×5=78.5cm²。
2. 长方形面积比较一个长方形的长和宽分别为7cm和15cm,另一个长方形的长和宽分别为10cm和12cm,哪个长方形的面积更大?解答:面积公式为长×宽。
第一个长方形的面积为7×15=105cm²,第二个长方形的面积为10×12=120cm²。
因此,第二个长方形的面积较大。
3. 直角三角形边长计算一个直角三角形的一条直角边长为3cm,另一条直角边长比第一条边长多2cm,求斜边长是多少?解答:根据勾股定理,斜边长的平方等于两直角边长平方的和。
第一条直角边长为3cm,第二条直角边长为3+2=5cm。
斜边长的平方等于3²+5²=9+25=34,斜边长≈5.83cm。
4. 三位数相加将一个三位数百位、十位、个位上的数字分别记为A、B、C,若ABC+ACB=990,请问A、B、C各是多少?解答:百位上的数字和个位上的数字相同,则有A=B。
根据题意,可得AAB+ABA=990。
因此,2A+2B=9,即A+B=4。
由于A和B是1至9的整数且相等,只能是A=B=2。
所以,A=2,B=2,C=0。
5. 邮票面额小明有8张1元邮票,5张2元邮票,3张5元邮票,他想选取其中几张邮票来组成10元的面额,一共有多少种不同的选择?解答:这是一个组合问题。
根据组合数的计算公式,8张1元邮票中选取0至8张,5张2元邮票中选取0至5张,3张5元邮票中选取0至3张,使得它们的总和为10。
根据计算可得,一共有42种不同的选择。
6. 袋子里的苹果在果园里,小明采摘了12个苹果,放在三个袋子里,每个袋子里至少有一个苹果,求不同的分配方式有多少种?解答:这是一个分配问题。
小升初数学复习资料: 小学数学必考经典应用题汇总,共20题一.解答题(共20题, 共118分)1.-1与0之间还有负数吗? -/与0之间呢? -/和0之间呢?如果有, 请你举出例子来。
2.小红在书店买了两本打八折出售的书, 共花了42元, 小红买这两本书便宜了多少钱?3.修路队把一条6米宽的道路改造成了8米宽, 这条道路拓宽了百分之几?4.出租车司机小王某天下午营运是在东西走向的人民大道上进行的, 如果规定向东为正, 向西为负, 这天下午他的行程(单位:千米)如下:+5 -2 +8 -10 -3 -4 +7 +2 -9 +6小王最后是否能回到出发点?5.下图是根据乐乐今天的早餐制作的统计图。
(1)乐乐今天的早餐是按怎样的比搭配的?如果乐乐今天早餐吃了50克鸡蛋, 则他早餐一共吃了多少克食物?(2)乐乐的妈妈按同样的比大约吃了420克早餐, 算算妈妈今天的早餐中各种食物大约分别吃了多少?6.笑笑看一本180页的故事书, 第一周看了全书的40%, 第二周看了全书的25%。
两周共看了多少页?7.电视机厂九月份生产电视机580台, 比原计划增产80台, 增产了百分之几?8.小明的体重去年下降了2千克, 记作-2, 今年他的体重从50千克变为45千克, 那么体重的变化应该记作?9.右图是丁丁家4月份支出统计图, 已知丁丁家4月份的教育支出是300元。
(1)这个月总支出多少元?(2)伙食支出比水电通讯支出多多少元?10.一个圆柱形玻璃容器的底面直径是10厘米, 把一块铁块从这个容器的水中取出后, 水面下降2厘米, 这块铁块的体积是多少?11.解答题。
(1)一台冰箱, 打八折比打九折少花320元, 这台冰箱原价多少元?(2)一种洗衣机加价二成五后售价为980元, 这种商品的进价是多少元?12.请你在表格中用正、负数记录学校图书馆某一天借阅图书的情况。
13.一个圆柱形钢材, 截去10厘米长的一段后, 表面积减少了314平方厘米, 体积减少了多少立方厘米?14.张叔叔想买一台空调, 去了下面的三个商场, 发现这台空调的原价都是7200元, 但是优惠方式不同。