数字音频文件格式与接口标准
- 格式:ppt
- 大小:195.50 KB
- 文档页数:13
第一次作业:1:、声音可分为两种:纯音和复合音,平常人们说话的声音属于哪一种?语音的频率范围是多少?音频通常包括哪几种声音信号?其频率范围是多少?2、请说明音频信号数字化的三个步骤?3、如何理解“量化是信号数字化过程中重要的一步,而这一过程又是引入噪声的主要根源”这句话的含义?通过哪些途径可以减小量化误差?4对双极性信号若采用均匀量化,则量化信噪比SNR与量化比特数之间的关系为:SNR=6.02xN+1.76dB,试分析此式对实际量化与编码的指导意义?5:、A/D、D/A转换器的技术指标有哪些?答:1:人们说话的声音为复合音,语言的频率范围为300HZ-3000HZ。
音频暴多语音、音乐、效果声等声音信号,频率范围为20HZ-20KHZ。
2:1取样:对连续信号按一定的时间间隔取样。
奈奎斯特取样定理认为,只要取样频率大于等于信号中所包含的最高频率的两倍,则可以根据其取样完全恢复出原始信号,这相当于当信号是最高频率时,每一周期至少要采取两个点。
但这只是理论上的定理,在实际操作中,人们用混叠波形,从而使取得的信号更接近原始信号。
2量化:取样的离散音频要转化为计算机能够表示的数据范围,这个过程称为量化。
量化的等级取决于量化精度,也就是用多少位二进制数来表示一个音频数据。
一般有8位,12位或16位。
量化精度越高,声音的保真度越高。
以8位的举例稍微说明一下其中的原理。
若一台计算机能够接收八位二进制数据,则相当于能够接受256个十进制的数,即有256个电平数,用这些数来代表模拟信号的电平,可以有256种,但是实际上采样后的某一时刻信号的电平不一定和256个电平某一个相等,此时只能用最接近的数字代码表示取样信号电平。
3编码:对音频信号取样并量化成二进制,但实际上就是对音频信号进行编码,但用不同的取样频率和不同的量化位数记录声音,在单位时间中,所需存贮空间是不一样的。
波形声音的主要参数包括:取样频率.量化位数.声道数.压缩编码方案和数码率等,未压缩前,波形声音的码率计算公式为:波形声音的码率=取样频率*量化位数*声道数/8。
数字音频知识AES/EBU:实时立体声数字音频信号格式。
在相应设备之间进行传送。
这种格式是AudioEngineeringSociety/EuropeanBroadcastUnion(录音师协会/欧洲广播系统联盟)的缩写。
这种数字格式亦由这两个组织联合制定的。
AES/EBU是由平衡XLR口输出,其他方面同S/PDIF格式相似。
automatedmixing:自动混音。
将各轨的音量、立体声声像位置、或各轨的其它参数如均衡(EQ)值等同乐曲信息放置在一起。
播放时这些信息将控制各轨完成自动混音过程。
一些录音程序可通过屏幕上一些可编辑的多段音量/声像包络来实现自动混音。
另外一种方法是用鼠标拖动显示屏上的推子或旋钮并进行录音,播放时音量/声像会随着推子或旋钮的变化而变化。
另外音量和声像的变化也可以通过将其所对应的控制器信息录入音序器中来实现自动混音。
backup:备份。
虽然硬盘存储被认为是非常可靠的存储方式,但是存于硬盘上的数据很可能会在不经意间毁于一旦。
在以PC为基础的录音系统中,将文件从一个硬盘备份到另一个硬盘就象用WINDOWS 的drag-copy(拖动复制)一样简单。
另外一些录音机可将数据备份到DAT的两个立体声轨上。
需要时,可将所备份的声音数据从DAT 带上恢复回来。
crossfade:淡入/淡出技术。
特别用在前期制作中的一种技术。
这种技术可使一个声音片段平缓地过渡到另一个声音片段。
有些录音机需要两轨来完成这一过程,一轨将声音进行淡出处理,同时另一轨将声音进行淡入处理。
有些则只需要一轨来完成一个声音片段淡出的同时另一个声音片段淡入的过程。
这时控制程序将产生一个新的文件,包含了两个声音片段的混合过渡情况。
很多控制程序还允许用户选择选择第一个声音片段淡出及第二个声音片段淡入的曲线类型。
当选择的曲线为等幂指数曲线时,可保证整体音量在淡入/淡出的过程中没有明显的变化,即声音过渡在听觉上比较自然一些。
DSP:数字信号处理,即一个对音频信号进行处理并使音频信号产生变化的过程。
常见的数字音频格式常见的声音格式有哪些1.WAV格式,是微软公司开发的一种声音文件格式,也叫波形声音文件,是最早的数字音频格式,被Window平台及其程序广泛支持。
WAV格式支持许多压缩算法,支持多种音频位数、采样频率和声道,采用44.1kHz的采样频率,16位量化位数,跟CD一样,对存储空间需求太大不便于交流和传播。
2.MIDI是MuicalIntrumentDigitalInterface的缩写,又称作乐器数字接口,是数字音乐/电子合成乐器的统一国际标准。
它定义了计算机音乐程序、数字合成器及电子设备交换音乐信号的方式,规定了不同厂家的电子乐器与计算机连接的电缆和硬件及设备间数据传输的协议,可以模拟多种乐器的声音。
MIDI文件就是MIDI格式的文件,在MIDI文件中存储的是一些指令。
把这些指令发送给声卡,由声卡按照指令将声音合成出来。
midi是乐器数字接口的意思,向合成器发送音乐指令,便可以生成音乐信号。
我们知道,声音有四大特性,音高,音长,音强,音色。
向midi合成器发送用何种乐器演奏(音色),音高,持续时间(音长),音量大小等指令,电子乐器便可以发出所要求的。
3.大家都很熟悉CD这种音乐格式了,扩展名CDA,其取样频率为44.1kHz,16位量化位数,跟WAV一样,但CD存储采用了音轨的形式,又叫“红皮书”格式,记录的是波形流,是一种近似无损的格式。
4.MP3全称是MPEG-1AudioLayer3,它在1992年合并至MPEG规范中。
MP3能够以高音质、低采样率对数字音频文件进行压缩。
换句话说,音频文件(主要是大型文件,比如WAV文件)能够在音质丢失很小的情况下(人耳根本无法察觉这种音质损失)把文件压缩到更小的程度。
5.MP3Pro是由瑞典Coding科技公司开发的,其中包含了两大技术:一是来自于Coding科技公司所特有的解码技术,二是由MP3的专利持有者法国汤姆森多媒体公司和德国Fraunhofer集成电路协会共同研究的一项译码技术。
PCM接口协议标准一、概述PCM(Pulse Code Modulation,脉冲编码调制)接口协议标准是一种数字通信协议,用于将模拟信号转换为数字信号,以便在数字通信系统中传输。
PCM 协议是数字通信系统的基础,广泛应用于音频、视频和其他模拟信号的数字化传输和处理。
二、特点PCM接口协议标准的特点主要包括:1.采样定理:PCM协议遵循采样定理,即采样频率至少应为模拟信号最高频率的两倍,以避免信号失真。
2.量化:PCM协议通过将每个采样值量化成一定位数的数字值来将模拟信号转换为数字信号。
常见的量化位数有8位、16位、24位等。
3.编码:量化后的数字值通过编码方式转换为二进制代码,以便在数字通信系统中传输。
4.传输:PCM协议采用串行传输方式,通过时分复用技术将多个通道的数字信号合并到一个传输通道中。
5.同步:PCM协议采用同步传输方式,通过同步信号确保接收端正确解调解码数字信号。
6.误码检测与纠正:PCM协议可采用添加冗余信息等方式实现误码检测与纠正,提高数字信号传输的可靠性。
三、工作原理PCM接口协议标准的工作原理可以分为以下步骤:1.采样:以一定的采样频率对模拟信号进行采样,获取每个时间点的模拟信号值。
2.量化:将每个采样值量化为一定位数的数字值。
量化过程通常采用将连续的模拟量转换为离散的数字量的方法。
常见的量化位数有8位、16位、24位等。
3.编码:将量化后的数字值转换为二进制代码。
这一过程中,每个量化值都被赋予一个唯一的二进制代码,以便在数字通信系统中传输。
4.传输:通过串行传输方式将二进制代码传输到接收端。
这一过程中,可采用时分复用技术将多个通道的数字信号合并到一个传输通道中。
5.同步:在接收端,通过同步信号确保正确解调解码数字信号。
同步信号通常采用特定的代码或标记,以便接收端识别并调整解码器的状态。
6.解码:在接收端,将二进制代码解码为量化后的数字值。
这一过程与编码过程相反,将二进制代码还原为原始的量化值。
常见音频格式、一些有关音乐、CD的几个概念常见音频格式、一些有关音乐、CD的几个概念2011年09月08日重要提醒:系统检测到您的帐号可能存在被盗风险,请尽快查看风险提示,并立即修改密码。
| 关闭网易博客安全提醒:系统检测到您当前密码的安全性较低,为了您的账号安全,建议您适时修改密码立即修改 | 关闭常见音频格式、一些有关音乐、CD的几个概念2011-09-08 20:48:54| 分类:音乐Help| 标签:|字号大中小订阅一、音乐格式:1、WAV格式 WAV格式是微软公司开发的一种声音文件格式,也叫波形声音文件,是最早的数字音频格式,WAV格式支持许多压缩算法,支持多种音频位数、采样频率和声道,采用44.1kHz的采样频率,16位量化位数,因此WAV的音质与CD相差无几,但WAV格式对存储空间需求太大不便于交流和传播。
WAV来源于对声音模拟波形的采样。
用不同的采样频率对声音的模拟波形进行采样可以得到一系列离散的采样点,以不同的量化位数(8位或16位)把这些采样点的值转换成二进制数,然后存入磁盘,这就产生了声音的WAV文件,即波形文件。
补充:无损格式,缺点:体积十分大!2、MP3格式MP3的全称是Moving Picture Experts Group Audio Layer III。
简单的说,MP3就是一种音频压缩技术,由于这种压缩方式的全称叫MPEG Audio Layer3,所以人们把它简称为MP3。
MP3是利用 MPEG Audio Layer 3 的技术,将音乐以1:10 甚至 1:12 的压缩率,压缩成容量较小的file,换句话说,能够在音质丢失很小的情况下把文件压缩到更小的程度。
而且还非常好的保持了原来的音质。
正是因为MP3体积小,音质高的特点使得MP3格式几乎成为网上音乐的代名词。
每分钟音乐的MP3格式只有1MB左右大小,这样每首歌的大小只有3-4兆字节。
使用MP3播放器对MP3文件进行实时的解压缩(解码),这样,高品质的MP3音乐就播放出来了。
音视频信号输出格式及插口来源: ChinaUnix博客日期:10:45(共有条评论)音视频信号输出格式及插口音视频信号输出格式及插口一、视频输入/输出信号格式1、RF输入/输出:——电视插头插口是射频输出的意思,是将信号以电视信号传输,主要是供给一些老式不带其他输入的电视机使用。
不过现在的DVD中基本已经取消了这种输出接口。
2、Composite复合视频端子——AV黄色Video端子:这种端子的外形和用于传输模拟和数字同轴信号的RCA端子一样,其名称的来源是因为复合视频端子通过单线同时传输色度(各种色彩)和亮度(黑色与白色)信号,通常外观标注为黄色。
从使用上来讲,只要是RCA插头、用同轴方式传输信号的线材都可以用来传输复合视频信号,不过特别设计的75Ω阻抗的线材能还原更优秀的图像,特别是在长距离传输时区别更明显。
这是因为特别设计的线材更能够减少阻抗不匹配和信号反射对于图像的影响,减少重影。
将亮度信号和色度信号复合在一条信号线上传输。
这种传输的好处是不需要调制就可以接受信号,但是由于亮度和色度在一条信号线上传输,所以画面并不是特别出色,水平解像度一般在300线左右,色彩也会有些干扰。
图中黄色端子线为Video视频端子线。
3、S端子输入/输出:——01年以后的电视带S端子输入,投影仪也带S端子最早是为了S-VHS录像机而开发的。
S端子和复合端子不同的是将亮度和色度信号分开传输,降低了他们之间的干扰,因此可以或者大约450线的清晰度和更好的色纯度。
现在的DVD机上也都标配了S 端子!S端子采用的是独有的四针插头(正式名称是mini-DIN连接头)。
在使用时一定要搞清楚插入的方向和位置,如果使蛮力瞎插,会弄弯针头,造成插头损坏。
4、Component色差视频端子——分量输入/输出:分量端子也叫色差端子,一般利用3根信号线分别传送亮色和两路色差信号。
S端子更高。
分量端子与前面的端子有一个很大的不同就是可以接受逐行扫描信号,而前面几种只可以接受隔行扫描信号。
AES/EBU是一种通过基于单根绞合线对来传输数字音频数据的串行位传输协议,其全称是Audio Engineering Society/European Broadcast Union(音频工程师协会欧洲广播联盟),其中AES是指AES3-1992标准:《双通道线性表示的数字音频数据串行传输格式》,EBU是指EBU 发表的数字音频接口标准EBU3250,两者内容在实质上是相同的,统称为AES/EBU数字音频接口。
AES/EBU标准传输数据时低阻抗,信号强度大,波形振幅在3-10V之间,传送速率为6Mbps,抗干扰能力很强,减小了通道间的极性偏移、不平衡、噪音、高频衰减和增益漂移等问题造成的影响,适合较远距离的传输。
整栋大楼内全部以AES/EBU格式电缆进行音频信号的长距离数字化传输,最远的单根信号线传输距离超过400米AES/EBU与网络系统相比的优势1、传输距离更远。
基于局域网的音频传输系统单根网线最长100米,接入路由器后,两点之间最长也就200米的传输距离,超过这个距离就必须使用光纤系统。
而AES/EBU格式在没有中继的情况下,根据AES协会在1995年出台并在2001年更新的AES-3id -1995补充文件规定,最长可以传输超过1000米的距离。
2、传输延时可以忽略。
而AES/EBU格式没有可计的延时,在实际应用中完全可以忽略。
3、系统构成简单可靠4、系统总体造价更低,更为经济AES/EBU信号可采用平衡传输方式(一般应用XLR接头)、也可采用非平衡传输方式(一般应用BNC接头)。
这两种输入/输出接口的阻抗有所不同,但两种传输方式所传输的数据帧结构是一致的,都是遵循AES/EBU帧结构标准的。
在AES/EBU数据帧中包含了时钟信息、音频数据信息、非音频数据三种数据类型。
时钟信息在AES/EUB的信号中,采用“双相位”编码方式,把信号的时钟信息内嵌进了AES/EBU信号流中。
在“双相位”编码方式中,把每一个逻辑“1”和逻辑“0”位所占用的时间称为一个“时间槽”,在逻辑“0”位时,只在“时间槽”的开始与结束处信号进行高、低电平的跳变;在逻辑“1”位时,不仅在“时间槽”的开始和结束处信号进行高、低电平的跳变,同时还要在“时间槽”的中央处再进行一次高、低电平的跳变。
I2S接口规范I2S(Inter-IC Sound Bus)是飞利浦公司为数字音频设备之间的音频数据传输而制定的一种总线标准。
在飞利浦公司的I2S标准中,既规定了硬件接口规范,也规定了数字音频数据的格式。
I2S有3个主要信号:1、串行时钟SCLK,也叫位时钟,即对应数字音频的每一位数据,SCLK有1个脉冲。
SCLK的频率=2×采样频率×采样位数2、帧时钟LRCK,用于切换左右声道的数据。
LRCK为“1”表示正在传输的是左声道的数据,为“0”则表示正在传输的是右声道的数据。
LRCK的频率等于采样频率。
3、串行数据SDATA,就是用二进制补码表示的音频数据。
有时为了使系统间能够更好地同步,还需要另外传输一个信号MCLK,称为主时钟,也叫系统时钟(Sys Clock),是采样频率的256倍或384倍。
一个典型的I2S信号见图3。
3(图3 I2S信号)图I2S格式的信号无论有多少位有效数据,数据的最高位总是出现在LRCK变化(也就是一帧开始)后的第2个SCLK脉冲处。
这就使得接收端与发送端的有效位数可以不同。
如果接收端能处理的有效位数少于发送端,可以放弃数据帧中多余的低位数据;如果接收端能处理的有效位数多于发送端,可以自行补足剩余的位。
这种同步机制使得数字音频设备的互连更加方便,而且不会造成数据错位。
随着技术的发展,在统一的 I2S接口下,出现了多种不同的数据格式。
根据SDATA数据相对于LRCK和SCLK的位置不同,分为左对齐(较少使用)、I2S格式(即飞利浦规定的格式)和右对齐(也叫日本格式、普通格式)。
这些不同的格式见图4和图5。
(图4 几种非I2S格式)图4(图5 几种I2S格式)图5为了保证数字音频信号的正确传输,发送端和接收端应该采用相同的数据格式和长度。
当然,对I2S格式来说数据长度可以不同。
有了这些背景知识,让我们用示波器来观察一下CT7160的输出波形。
图6中的波形是采用Creative原厂的EEPROM ini文件,选择Dolby Prologic方式时的I2S接口输出。
I²S和PCMI²S总线规范I²S(Inter-IC Sound Bus)是飞利浦公司为数字音频设备之间的音频数据传输而制定的一种总线标准。
在飞利浦公司的I2S标准中,既规定了硬件接口规范,也规定了数字音频数据的格式。
I2S有3个主要信号:1、串行时钟SCLK,也叫位时钟BCLK,即对应数字音频的每一位数据,SCLK 有1个脉冲。
SCLK的频率=2×采样频率×采样位数。
2、帧时钟LRCK,用于切换左右声道的数据。
LRCK为“0”表示正在传输的是左声道的数据,为“1”则表示正在传输的是右声道的数据。
LRCK的频率等于采样频率。
3、串行数据SDATA,就是用二进制补码表示的音频数据。
有时为了使系统间能够更好地同步,还需要另外传输一个信号MCLK,称为主时钟,也叫系统时钟(Sys Clock),是采样频率的256倍或384倍。
I²S格式的信号无论有多少位有效数据,数据的最高位总是出现在LRCK变化(也就是一帧开始)后的第2个SCLK脉冲处,见下面I²S格式图。
这就使得接收端与发送端的有效位数可以不同。
如果接收端能处理的有效位数少于发送端,可以放弃数据帧中多余的低位数据;如果接收端能处理的有效位数多于发送端,可以自行补足剩余的位。
这种同步机制使得数字音频设备的互连更加方便,而且不会造成数据错位。
随着技术的发展,在统一的I²S接口下,出现了多种不同的数据格式。
根据SDATA数据相对于LRCK和SCLK的位置不同,分为左对齐(较少使用)、I²S 格式(即飞利浦规定的格式)和右对齐(也叫日本格式、普通格式)。
非I²S格式如图:I²S格式如图:对非I²S格式而言,为了保证数字音频信号的正确传输,发送端和接收端应该采用相同的数据格式和长度。
对I²S格式来说数据长度可以不同。
而且帧时钟LRCK 高低电平对应左右声道的意义也不同?注意I²S总线和I²S格式的区别,I²S总线是一种总线标准,I²S格式是飞利浦制定的数据格式。
常见音频文件格式简介1.--MIDI(.MID)MIDI是乐器数字接口的英文缩写,是数字音乐/电子合成乐器国际标准。
MIDI文件有几个变通的格式,其中CMF文件是随声卡一起使用的音乐文件,于MIDI文件非常相似,只是文件头略有差别;另一种MIDI文件是WINDOWS使用的RIFF文件的一种子格式,称为RMID,扩展名为.RMI。
2.--WA VE(.W A V)由MICROSOFT公司开发的一种W A V声音文件格式,是如今电脑上最为常见的声音文件,他符合RIFF文件规范,用于保存WINDOWS平台的音频信息资源,被WINDOWS平台机器应用程序所广泛支持,W A VE格式支持MSADPCM、CCIPTALAW、CCIPT-LAW和其他压缩算法,支持多种音频位数,采样频率和声道,但其缺点是文件体积较大,所以不适合长时间纪录。
3.--MP1/.MP2/.MP3MPEG频文件根据压缩质量和编码复杂程度的不同可分为三层(MPEG AUDIO LAYER 1/2/3分别与MP1,MP2和MP3这三种声音文件相对应MPEG音频编码具有很高的压缩率,MP1和MP2 的压缩率分别为4:1和6:1--8:1,而MP3的压缩率则高达10:1--12:1。
目前INTERNET上的音乐格式以MP3最为常见。
MP3是一种有损压缩,但是它的最大优势是一极小的声音失真换来了较高的压缩比。
4.--.MP4MP3问世不久,就凭这较高的压缩比12:1和较好的音质创造了一个全新的音乐领域,然而MP3的开放性却最终不可避免的导致了版权之争,在这样的背景之下,文件更小,音质更佳,同时还能有效保护版权的MP4就应运而生了。
MP3和MP4之间其实并没有必然的联系,首先MP3是一种音频压缩的国际技术标准,而MP4确实一个商标的名称,其次,他采用的音频压缩技术也迥然不同,MP4采用的是美国电话电报公司所研发的,以“知觉编码”为关键技术的a2b音乐压缩技术可将压缩比成功的提高到15:1,最大可达到20;1而不影响音乐的实际听感,同时mp4在加密和授权方面也做了特别设计,它有如下特点:(1)每首mp4乐曲就是一个扩展名为.exe的可执行文件。
常用电脑声音格式详解1.多媒体中的音频处理技术多媒体涉及到多方面的音频处理技术,如:音频采集、语音编码/解码、文一-语转换、音乐合成、语音识别与理解、音频数据传输、音频一-视频同步、音频效果与编辑等。
其中数字音频是个关键的概念,它指的是一个用来表示声音强弱的数据序列,它是由模拟声音经抽样(即每隔一个时间间隔在模拟声音波形上取一个幅度值)量化和编码(即把声音数据写成计算机的数据格式)后得到的。
计算机数字cd、数字磁带(dat)中存储的都是数字声音。
模拟一-数字转换器把模拟声音变成数字声音;数字一-模拟转换器可以恢复出模拟来的声音。
一般来讲,实现计算机语音输出有两种方法:一是录音/重放,二是文一-语转换。
第二种方法是基于声音合成技术的一种声音产生技术,它可用于语音合成和音乐合成。
而第一种方法是最简单的音乐合成方法,曾相继产生了应用调频(fm)音乐合成技术和波形表(wavetable)音乐合成技术。
2.乐器数字接口midi的概念现在我们用的最多的音频名词之一midi(musical instrument digital interface)是作为“乐器数字接口”的缩写出现的,并用它来泛指数字音乐的国际标准。
由于它定义了计算机音乐程序、合成器及其他电子设备交换信息和电子信号的方式,所以可以解决不同电子乐器之间不兼容的问题。
另外,标准的多媒体pc平台能够通过内部合成器或连接到计算机midi端口的外部合成器播放midi文件,利用midi文件演奏音乐,所需的存储量最少。
至于midi文件,是指存放midi信息的标准文件格式。
midi文件中包含音符、定时和多达16个通道的演奏定义。
文件包括每个通道的演奏音符信息:键通道号、音长、音量和力度(击键时,键达到最低位置的速度)。
由于mddi文件是一系列指令,而不是波形,它需要的磁盘空间非常少;并且现装载midi文件比波形文件容易的多。
这样,在设计多媒体节目时,我们可以指定什么时候播放音乐,将有很大的灵活性。