中学代数研究模拟试题和答案
- 格式:doc
- 大小:184.50 KB
- 文档页数:3
初中数学代数专题复习(答案)
1. 代数基础知识
- 数的分类:自然数、整数、有理数、无理数、实数、复数
- 数及运算:加、减、乘、除、乘方、开方、分数、比例、百分数、整式、分式
- 代数式的概念及基本性质:代数式、同类项、合并同类项、系数、常数项、单项式、多项式
2. 一元一次方程式
- 方程式及解的概念:方程式、解、未知量
- 一元一次方程式的解法:加减消元法、倍数消元法、公式法
3. 一元一次不等式
- 不等式及解的概念:不等式、解、解集
- 一元一次不等式的解法:加减法、倍数法、分式法、倒数法
4. 一元二次方程式
- 一元二次方程式的概念及一般式
- 一元二次方程式的解法:配方法、公式法、完全平方公式
5. 一元二次不等式
- 一元二次不等式的概念及解法
6. 笛卡尔坐标系
- 直角坐标系的概念、性质、坐标表示
- 解直线方程:解析法、斜率公式、截距公式
- 解圆方程:标准式、一般式
7. 实数集合及数轴
- 实数的分类及性质
- 数轴的绘制及应用
8. 几何初步
- 等腰三角形、等边三角形、直角三角形、全等三角形、相似三角形的定义及判定
- 余弦定理、正弦定理、勾股定理
9. 附加题及答案
以上是初中数学代数专题的复习材料及答案,希望能帮助大家顺利完成复习,获得优异成绩。
20 —20 学年上《初等代数研究》期末试卷B答案及评分标准一、填空题(本大题共8题,每空3分,共24分)1、2780;2、43x +;3、1;4、(,10)1b =;5、4;6、12; 7、9m ≥; 8、21x -二、判断题(本大题共 5题,每小题2分,共10分)1、╳;2、√;3、╳;4、╳;5、√.三、单项选择题(选择正确答案的字母填入括号,本大题共 5题,每小题 2 分,共 10 分)1、D;2、C;3、A;4、D;5、B.四、解答题(本大题共 7 题,第1-5小题每题 6分,第6、7小题每题7分,共 44 分) 1、 解:设()()2f x g x =-,则有(0)18,(1)(2)(3)0f f f f =-=== ―――――――――――――――――2分根据多项式关于它的根的分解式,可设()(1)(2)(3)f x A x x x =---再由(0)18f =-,得618,3A A -=-= ―――――――――――――――――2分 所以 ()()23(1)(2)(3)2g x f x x x x =+=---+323183316x x x =-+- ―――――――――――――――――――2分2、 解:24224(1)2(1)a x a x y y ++-+ 22222[(1)]2(1)2(1)a x ya x y a x y =++-++- ―――――――――――2分 22222[(1)]4a x y x y =++- ――――――――――――――――――――2分 2222[(1)2][(1)2]a x y xy a x y xy =+++++- ――――――――――――2分或 2222[()][()]x y ax x y ax =++-+3、 解:因为226sin sin cos 2cos 0x x x +-=,所以有 (2s i n c o s )(3s i n 2c o sx x x x -+=――――――――――――――1分 于是 2s i nc o sx x -=或3sin 2cos 0x x +=得 12t g x =或23tgx =- ――――――――――――――――――――――2分由于2x ππ<<, 所以取23tgx =-―――――――――――――――――1分从而 2222()212322151()3tgx tg x tg x⨯-===---- ―――――――――――――――2分4、 解:不等式同解于不等式组22240104(1)x x x x ⎧-≥⎪+>⎨⎪-<+⎩ (1) (2) (3)――――――――――――――-2分 由(1)式,得24x ≤,于是22x -≤≤ 由(2)式,得1x >-由(3)式,得22230x x +->,于是12x --<或12x -+>――――――――3分所以不等式的解集为:22x <≤ ―――――――――――――――――1分5、 解:令(1)(1)(2)k u k k k k ∆=-++,则 ―――――――――――――――――2分1(1)(2)(3)(1)(1)(2)k k k u u u k k k k k k k k +∆=-=+++--++(1)(2)[(3)(1)]4(1)(2)k k k k k k k k =+++--=++ ―――――――――2分于是111(1)(2)4nnk k k k k k u ==++=∆∑∑111()4n u u +=-1(1)(2)(3)4n n n n =+++ ――――――――――――――――――――――2分6、解:由x =,得x -=,两边平方整理得211)x x +=+ ―――――――――――――――――――――――2分两边再平方整理,得422248230x x x ---=――――――――――――――――――――――2分令42()2248230g x x x x =---=,则0g +=因 ()()25f x g x =+,所以)25f =―――――――――――――――――――――3分7、 解:利用换底公式,有242444log log 2log log log 2x x x x === ――――――――――――――――-1分方程组可写为24433log log (4)log ()log x y x x x y y ⎧=-⎪⎨+=⎪⎩⇒2(4)x y x xx y y ⎧=-⎪⎨+=⎪⎩ (1) (2) ―――――2分 由(1)得 24xy x=- 代入(2)式,得244xx x xx-+=-解得4x =-(舍), 或43x = ―――――――――――――――――――-3分所以方程组的解为 4323x y =⎧⎨=⎩ ――――――――――――――――――――――1分五、证明题(本大题共2题,每小题6分,共12分)证明:(1)91910++== (2)919⋅= 9291(91)1011++++=+=+== 92919199+⋅=⋅=⋅+=+=9392(92)1112+++∴+=+=+== 9392929189+∴⋅=⋅=⋅+=+=―――――――――――3分 ――――――――――3分2、证明:设22x y z k a b ca ca b c===++--+,则有(2)()(2)x a b c k y a c k z a b c k =++⎧⎪=-⎨⎪=-+⎩ (1) (2) (3) ――――――――――――――――2分 解得 24x y z ak ++=4x z bk -= ―――――――――――――――――――――3分24x y z ck -+=所以1224ab c x y zx zx y z k===++--+―――――――――――――1分。
初中数学代数式经典测试题及答案解析一、选择题1.如图,大正方形与小正方形的面积之差是60,则阴影部分的面积是()A. 30B. 20C. 60D. 40【答案】A【解析】【分析】设大正方形的边长为x,小正方形的边长为y,表示出阴影部分的面积,结合大正方形与小正方形的面积之差是60即可求解.【详解】设大正方形的边长为x,小正方形的边长为y,则X? —)3 = 60,1 1= -(x-y)-x+-(x-y)-y乙1/,八:5(厂一厂)」x602=30.故选A.【点睛】此题主要考查了平方差公式的应用,读懂图形和熟练掌握平方差公式是解此题的关键.2 .下列计算正确的是()A. a2+a3=a5B. a2*a3=a6C. (a2)3=a6D. (ab)2=ab2【答案】C【解析】试题解析:A.a2与a3不是同类项,故A错误;B.原式=a',故B错误;D.原式=a2b2,故D错误;故选C.考点:幕的乘方与积的乘方;合并同类项;同底数基的乘法.3.下列各式中,计算正确的是( )A. 8a — 3b = 5abB. (^2)3 = a5C. a3 -^-a4 = a2D. a2 -a = a5【答案】D【解析】【分析】分别根据合并同类项的法则、同底数幕的乘法法则、察的乘方法则以及同底数幕除法法则解答即可.【详解】解:A、8a与劭不是同类项,故不能合并,故选项A不合题意;B、1/丫=。
6,故选项B不合题意;C、a3^a4=a\故选项C不符合题意;D、a2-a = a\故选项D符合题意.故选:D.【点睛】本题主要考查了幕的运算性质以及合并同类项的法则,熟练掌握运算法则是解答本题的关键.4.下列运算正确的是( )A.2m2+m2=3m4B. (mn2) 2=mn4C. 2m*4m2=8m2D. m54-m3=m2【答案】D【解析】【分析】直接利用合并同类项法则以及积的乘方运算法则、整式的乘除运算分别计算后即可解答.【详解】选项4,2"2+万2=3团2,故此选项错误:选项8,(mM)2=m2〃4,故此选项错误;选项C,2nr4m2 = 8m3,故此选项错误;选项D,m5+m3=n?2,正确.故选D.【点睛】本题考查了合并同类项以及积的乘方运算、整式的乘除运算,正确掌握相关运算法则是解题关键.5.下列说法正确的是()AA.若A、B表示两个不同的整式,则一一定是分式BB.(1)、/ = /C.若将分式一2一中,x、y都扩大3倍,那么分式的值也扩大3倍x + yLD.若3"' = 5,3"=4则32"'-"=22【答案】C【解析】【分析】根据分式的定义、幕的乘方、同底数幕相除、分式的基本性质解答即可.【详解】AA.若A、B表示两个不同的整式,如果B中含有字母,那么称"是分式.故此选项错误.D8.(,)2 +/=/+/=/,故故此选项错误.xyC•若将分式一中,x、y都扩大3倍,那么分式的值也扩大3倍,故此选项正确. x+ yD.若3"' = 5,3〃 = 4 则3-" =(3")- + 3" = 25 + 4 = j ,故此选项错误.故选:C【点睛】本题考查的是分式的定义、累的乘方、同底数幕相除、分式的基本性质,熟练掌握各定义、性质及运算法则是关键.9.己知:(2x + l)(x-3)= 2x?+px + q,则p, q 的值分别为()A. 5, 3B. 5, -3C. -5, 3D. -5, -3【答案】D【解析】【分析】此题可以将等式左边展开和等式右边对照,根据对应项系数相等即可得到P、q的值.【详解】由于(2x + l)(x —3)=2X?-6X+X-3=2 X2-5X-3=2X2 +px + q ,则p=-5,q=-3,故答案选D.【点睛】本题考查了多项式乘多项式的法则,根据对应项系数相等求解是关键.10图为〃L〃型钢材的截面,要计算其截面面积,下列给出的算式中,错误的是(A. ab - c 2B. ac + (b — c)cC. be + (a - c)c D, ac + be — c?【答案】A 【解析】 【分析】根据图形中的字母,可以表示出“L”型钢材的截面的面积,本题得以解决. 【详解】 解:由图可得,“L”型钢材的截面的面积为:ac+ (b-c) c=ac +bc-c 2,故选项材D 正确,或“L 〃型钢材的截面的面积为:bc + (a-c) c=bc +ac-c 2,故选项C 正确,选项A 错误, 故选:A. 【点睛】本题考查整式运算的应用,解答本题的关键是理解题意,掌握基本运算法则,利用数形结 合的思想解答.8 .下列图形都是由同样大小的五角星按照一定规律所组成的,按此规律排列下去,第〃个根据前4个图形中五角星的个数得到规律,即可列式得到答案. 【详解】 观察图形可知:第1个图形中一共是4个五角星,即4 = 3xl+l, 第2个图形中一共是7个五角星,即7 = 3x2 + l, 第3个图形中一共是10个五角星,即10 = 3x3 + 1,第4个图形中一共是13个五角星,即13 = 3x4+1, …,按此规律排列下去, 第n 个图形中一共有五角星的个数为3〃 + 1, 故选:c. 【点睛】此题考查图形类规律的探究,观察图形得到五角星的个数的变化规律并运用解题是关键.9 .计算3x2-x2的结果是( )A. 2B. 2x 2C. 2xD. 4x 2图形中五角星的个数为()★ ★ ★ ★ ★★ ★★ ★ ★★ 阳I用2A. 3/? -1【答案】C 【解析】【分析】★★ ★★ ★★★* ★ ★图3B. 3〃 ★★★★★★★★机C. 3〃 + 1D. 3〃 + 2【解析】【分析】根据合并同类项的法则进行计算即可得.【详解】3x2 - x2=(3-1) x2二2x2,故选B.【点睛】本题考查合并同类项,解题的关键是熟练掌握合并同类项法则.10.下列运算中正确的是()A. 2a + 3a = 5a2B. (2a+ b)2 = 4a2 +b2C. 2a2 - 3a5 = 6a6D.(2a-Z?)(2a + 6) = 4/-Z??【答案】D【解析】【分析】根据多项式乘以多项式的法则,分别进行计算,即可求出答案.【详解】A、2a+3a=5a,故本选项错误;(2a+b)2=4a2+4ab+b2,故本选项错误;C、2a2*3a3=6a5,故本选项错误;D、(2a-b)(2a+b) =4a2-b2,故本选项正确.故选D.【点睛】本题主要考查多项式乘以多项式.注意不要漏项,漏字母,有.同类项的合并同类项.11.我国占代数学的许多创新和发展都位居世界前列,如南宋数学家杨辉(约13世纪)所著的《详解九章算术》一书中,用如图的三角形解释二项和(a+b)。
0772 20192
单项选择题
1、有理数集可以与自然数集建立一一对应的关系,这说明有理数集具有()
1.稠密性
2.可数性
3.完备性
2、高中代数课程的基本主线是()
1.方程
2.不等式
3.函数
4.数列
3、下列哪一个数,用尺规是可以做出的()
1.根号2
2.圆周率
3.欧拉数e
4、对有理数运算中的“负负得正”,可以用()给予解释
1.复数坐标表达式的乘法运算
2.复数向量表达式的乘法运算
3.复数三角函数表达式的乘法运算
5、幂数列属于()
1. E. 等比数列
2.高阶等差数列
3.等差数列
6、下列说法,哪一个是正确的()
1.函数的“变量说”定义比较抽象
2.函数的“关系说”定义比较形式
3.函数的“对应说”定义比较直观
7、用复数的棣莫弗公式,可以推导
1.三角函数的n倍角公式
2.一元二次方程的求根公式
3.点到直线的距离公式
8、
不定方程求解的算理依据是:
1. B. 孙子定理
2.辗转相除法
3.单因子构件法
4.拉格朗日插值法
9、
下列说法,哪一个是错误的:
1.戴德金分割中对有理数集的分割满足“不空”、“不漏”、“不乱”三个条件;
2.戴德金分割和有理数区间套定义是等价的;
3.戴德金分割的下集存在最大数时,上集存在最小数。
10、。
习题1.求适合{}1,2{1,2,3,4,5}A ⊆⊆的一切集合A ,以及他们基数的和。
解::{1,2}{1,2,3}{1,2,4}{1,2,5}{1,2,3,4}{1,2,3,5}{1,2,4,5}{1,2,3,4,5}A 它们的基数和为:2333444528+++++++=。
习题2.用自然数序数理论证明:(1)347+=,(2)3412⋅=证: (1)3433(33)(32)((32))((31))(((31)))(((4)))((5))(6)7''''''+=+=+=+=+''''''''''''=+=+====(2)313⋅=Q又3231313336'⋅=⋅=⋅+=+= 3332323639'⋅=⋅=⋅+=+=34333339312'∴⋅=⋅=⋅+=+=习题3.对任何自然数a ,证明:(1)2a a a ⋅=+,(2)2()a a a a ⋅=++证:有定3中的(1),1a a ⋅=,由(2),211a a a a a a '⋅=⋅=⋅+=+;同理,322()a a a a a a a '⋅=⋅=⋅+=++。
证毕 习题4.设,m n N ∈,求证: (1)()m n m n ''''+=+ (2)()m n m n m ''⋅=⋅+ (3)()m n m m n n '''''⋅=+⋅+ 证:(1)Q m n n m ''+=+(交换律)∴()()m n n m n m ''''''+=+=+(性质(2))又n m m n ''''+=+(交换律)∴()m n m n ''''+=+;(2)()()m n m n m m n m '''⋅=⋅+=⋅+;(3)()()()()()m n m n m m n m m n m n m m n n m m n n '''''''''''⋅=⋅+=+⋅=+⋅+''''=+⋅+=+⋅+ 证毕习题5.证明()a b c a c b c -⋅=⋅-⋅ 证:设,a b x x N -=∈,则a x b =+原式变为证x c a c b c ⋅=⋅-⋅,即a c x c b c ⋅=⋅+⋅ 由乘法对加法的分配律()a c x b c x c b c ⋅=+⋅=⋅+⋅∴原式x c a c b c ⋅=⋅-⋅成立,即()a b c a c b c -⋅=⋅-⋅成立。
(专题精选)初中数学代数式经典测试题及答案解析一、选择题1.下列运算正确的是( )A .2352x x x +=B .()-=g 23524x x xC .()222x y x y +=-D .3223x y x y xy ÷=【答案】B【解析】【分析】A 不是同类项,不能合并,B 、D 运用单项式之间的乘法和除法计算即可,C 运用了完全平方公式.【详解】A 、应为x 2+x 3=(1+x )x 2;B 、(-2x )2•x 3=4x 5,正确;C 、应为(x+y )2= x 2+2xy+y 2;D 、应为x 3y 2÷x 2y 3=xy -1.故选:B .【点睛】本题考查合并同类项,同底数幂的乘法,完全平方公式,单项式除单项式,熟练掌握运算法则和性质是解题的关键.2.一种微生物的直径约为0.0000027米,用科学计数法表示为( )A .62.710-⨯B .72.710-⨯C .62.710-⨯D .72.710⨯【答案】A【解析】【分析】绝对值小于1的正数科学记数法所使用的是负指数幂,指数由原数左边起第一个不为0的数字前面的0的个数所决定.【详解】解:0.0000027的左边第一个不为0的数字2的前面有6个0,所以指数为-6,由科学记数法的定义得到答案为62.710-⨯.故选A.【点睛】本题考查了绝对值小于1的正数科学记数法表示,一般形式为10n a -⨯.3.计算 2017201817(5)()736-⨯ 的结果是( )36367【答案】A【解析】【分析】根据积的乘方的逆用进行化简运算即可.【详解】2017201817(5)()736-⨯ 20172018367()()736=-⨯ 20173677()73636=-⨯⨯ 20177(1)36=-⨯ 736=- 故答案为:A .【点睛】本题考查了积的乘方的逆用问题,掌握积的乘方的逆用是解题的关键.4.若352x y a b +与2425y x a b -是同类项.则( )A .1,2x y =⎧⎨=⎩B .2,1x y =⎧⎨=-⎩C .0,2x y =⎧⎨=⎩D .3,1x y =⎧⎨=⎩ 【答案】B【解析】【分析】根据同类项的定义列出关于m 和n 的二元一次方程组,再解方程组求出它们的值.【详解】 由同类项的定义,得:32425x y x y =-⎧⎨=+⎩,解得21x y =⎧⎨=-⎩:. 故选B .【点睛】同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,是易混点,因此成了中考的常考点.解题时注意运用二元一次方程组求字母的值.5.(x 2﹣mx +6)(3x ﹣2)的积中不含x 的二次项,则m 的值是( )332【答案】C【解析】 试题解析:(x 2﹣mx+6)(3x ﹣2)=3x 3﹣(2+3m )x 2+(2m+18)x ﹣12,∵(x 2﹣mx+6)(3x ﹣2)的积中不含x 的二次项,∴2+3m=0,解得,m=23-, 故选C .6.下列运算正确的是( )A .a 5﹣a 3=a 2B .6x 3y 2÷(﹣3x )2=2xy 2C .2212a 2a -= D .(﹣2a )3=﹣8a 3 【答案】D【解析】【分析】直接利用单项式除以单项式以及积的乘方运算法则、负指数幂的性质分别化简得出答案.【详解】A 、a 5﹣a 3,无法计算,故此选项错误;B 、6x 3y 2÷(﹣3x )2=6x 3y 2÷9x 2=23xy 2,故此选项错误; C 、2a ﹣2=22a ,故此选项错误; D 、(﹣2a )3=﹣8a 3,正确.故选D .【点睛】 此题主要考查了单项式除以单项式以及积的乘方运算、负指数幂的性质,正确掌握相关运算法则是解题关键.7.下列运算正确的是( )A .2235a a a +=B .22224a b a b +=+()C .236a a a ⋅=D .2336()ab a b -=- 【答案】D【解析】【分析】根据合并同类项法则、完全平方公式、同底数幂乘法法则、积的乘方法则逐一进行计算即可得.【详解】A. 235a a a +=,故A 选项错误;B. 222244a b a ab b +=++(),故B 选项错误;C. 235a a a ⋅=,故C 选项错误;D. 2336()ab a b -=-,正确,故选D.【点睛】本题考查了整式的运算,涉及了合并同类项、完全平方公式、积的乘方等运算,熟练掌握各运算的运算法则是解题的关键.8.如果长方形的长为2(421)a a -+,宽为(21)a +,那么这个长方形的面积为( ) A .228421a a a -++B .328421a a a +--C .381a -D .381a +【答案】D【解析】【分析】利用长方形的面积等于长乘宽,然后再根据多项式乘多项式的法则计算即可.【详解】解:根据题意,得:S 长方形=(4a 2−2a +1)(2a +1)= 322814422-++-+a a a a a =8a 3+1,故选:D .【点睛】本题考查了多项式乘多项式,熟练掌握其运算方法:()()++=+++a b p q ap aq bp bq 是解题的关键.9.下列各计算中,正确的是( )A .2323a a a +=B .326a a a ⋅=C .824a a a ÷=D .326()a a =【答案】D【解析】【分析】本题主要考查的就是同底数幂的计算法则【详解】解:A 、不是同类项,无法进行合并计算;B 、同底数幂乘法,底数不变,指数相加,原式=5a ;C 、同底数幂的除法,底数不变,指数相减,原式=6a ;D 、幂的乘方法则,底数不变,指数相乘,原式=6a .【点睛】本题主要考查的就是同底数幂的计算法则.在运用同底数幂的计算的时候首先必须将各幂的底数化成相同,然后再利用公式来进行计算得出答案.同底数幂相乘,底数不变,指数相加;同底数幂相除,底数不变,指数相减;幂的乘方法则,底数不变,指数相乘.在进行逆运算的时候很多同学容易用错,例如:m n m n a a a +=+等等.10.多项式2a 2b ﹣ab 2﹣ab 的项数及次数分别是( )A .2,3B .2,2C .3,3D .3,2【答案】C【解析】【分析】多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数,根据这个定义即可判定.【详解】2a 2b ﹣ab 2﹣ab 是三次三项式,故次数是3,项数是3.故选:C.【点睛】此题考查的是多项式的定义,多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数.11.若x 2+2(m+1)x+25是一个完全平方式,那么m 的值( )A .4 或-6B .4C .6 或4D .-6【答案】A【解析】【详解】解:∵x 2+2(m+1)x+25是一个完全平方式,∴△=b 2-4ac=0,即:[2(m+1)]2-4×25=0整理得,m 2+2m-24=0,解得m 1=4,m 2=-6,所以m 的值为4或-6.故选A.12.若3,2x y xy +==, 则()()5235x xy y +--的值为( ) A .12B .11C .10D .9 【答案】B【解析】【分析】项将多项式去括号化简,再将3,2x y xy +==代入计算.【详解】()()5235x xy y +--=235()xy x y -++,∵3,2x y xy +==,∴原式=2-6+15=11,故选:B.【点睛】此题考查整式的化简求值,正确去括号、合并同类项是解题的关键.13.下列算式能用平方差公式计算的是( )A .(2)(2)a b b a +-B .11(1)(1)22x x +-- C .(3)(3)x y x y --+D .()()m n m n ---+ 【答案】D【解析】【分析】利用平方差公式的结构特征判断即可.【详解】(-m-n )(-m+n )=(-m )2-n 2=m 2-n 2,故选D .【点睛】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.14.按如图所示的运算程序,能使输出y 的值为1的是( )A .a =3,b =2B .a =﹣3,b =﹣1C .a =1,b =3D .a =4,b =2【答案】A【解析】【分析】 根据题意,每个选项进行计算,即可判断.【详解】解:A 、当a =3,b =2时,y =12a -=132-=1,符合题意; B 、当a =﹣3,b =﹣1时,y =b 2﹣3=1﹣3=﹣2,不符合题意;C 、当a =1,b =3时,y =b 2﹣3=9﹣3=6,不符合题意;D 、当a =4,b =2时,y =12a -=142-=12,不符合题意. 故选:A .【点睛】 本题考查有理数的混合运算,代数式求值等知识,解题的关键是理解题意,属于中考常考题型.15.已知112x y +=,则23xy x y xy +-的值为( ) A .12 B .2 C .12- D .2-【答案】D【解析】【分析】先将已知条件变形为2x y xy +=,再将其整体代入所求式子求值即可得解.【详解】 解:∵112x y+= ∴2x y xy+= ∴2x y xy += ∴2222323xy xy xy x y xy xy xy xy===-+---. 故选:D【点睛】本题考查了分式的化简求值,此题涉及到的是整体代入法,能将已知式子整理变形为2x y xy +=的形式是解题的关键.16.计算1.252 017×2?01945⎛⎫ ⎪⎝⎭的值是( ) A .45 B .1625 C .1 D .-1【答案】B【解析】【分析】根据同底数幂的乘法底数不变指数相加,可得积的乘方,根据积的乘方等于乘方的积,可得答案.【详解】原式=1.252017×(45)2017×(45)2=(1.25×45)2012×(45)2=16 25.故选B.【点睛】本题考查了积的乘方,利用同底数幂的乘法底数不变指数相加得出积的乘方是解题关键.17.若55+55+55+55+55=25n,则n的值为()A.10 B.6 C.5 D.3【答案】D【解析】【分析】直接利用提取公因式法以及幂的乘方运算法则将原式变形进而得出答案.【详解】解:∵55+55+55+55+55=25n,∴55×5=52n,则56=52n,解得:n=3.故选D.【点睛】此题主要考查了幂的乘方运算,正确将原式变形是解题关键.18.若x+y=,x﹣y=3﹣的值为()A.B.1 C.6 D.3﹣【答案】B【解析】【分析】根据二次根式的性质解答.【详解】解:∵x+y=,x﹣y=3﹣,==1.故选:B.【点睛】本题考查了二次根式的混合运算,以及平方差公式的运用,解题的关键是熟练掌握平方差公式进行解题.19.若(x +4)(x ﹣1)=x 2+px +q ,则( ) A .p =﹣3,q =﹣4 B .p =5,q =4C .p =﹣5,q =4D .p =3,q =﹣4【答案】D【解析】【分析】根据整式的运算法则即可求出答案.【详解】解:∵(x +4)(x ﹣1)=x 2+3x ﹣4∴p =3,q =﹣4故选:D .【点睛】考查整式的运算,解题的关键是熟练运用整式的运算法则.20.下列计算正确的是( )A .a•a 2=a 2B .(a 2)2=a 4C .3a+2a =5a 2D .(a 2b )3=a 2•b 3 【答案】B【解析】本题考查幂的运算.点拨:根据幂的运算法则.解答:2123a a a a +⋅==()22224a a a ⨯==325a a a +=()3263a b a b =故选B .。
代数综合训练题一.选择题(本大题共8个小题,每个4分,共32分)1、肥皂泡的泡壁厚度大约是0.00000071米,数字0.00000071用科学记数法表示为( )A .77.110⨯B .60.7110-⨯C .77.110-⨯D .87110-⨯2.下列运算正确的是( )A . a 2+a =2a 3B .a 2·a 3=a 6C .(-2a 3)2=4a 6D .a 6÷a 2=a 3 3、把8a 3﹣8a 2+2a 进行因式分解,结果正确的是( )A .2a (4a 2﹣4a+1)B .8a 2(a ﹣1)C .2a (2a ﹣1)2D .2a (2a+1)2 4、实数a ,b 在数轴上对应点的位置如图所示,化简|a|+的结果是( )A .﹣2a+bB .2a ﹣bC .﹣bD .b5、若关于x 的一元二次方程2210x x kb -++=有两个不相等的实数根,则一次函数y kx b =+的图象可能是( )6、若关于x 的方程+=3的解为正数,则m 的取值范围是( )A .m <B .m <且m ≠C .m >﹣D .m >﹣且m ≠﹣7、若不等式组11m x x ⎩-⎧⎨<>恰有两个整数解,则m 的取值范围是( ) A .-1≤m<0 B .-1<m≤0 C.-1≤m≤0 D.-1<m <0 8、抛物线y=x 2+bx+3的对称轴为直线x=1.若关于x 的一元二次方程x 2+bx+3-t=0(t 为实数)在-1<x <4的范围内有实数根,则t 的取值范围是( )A .2≤t <11B .t ≥2C .6<t <11D .2≤t <6二、填空题:(本大题共4个小题,每小题4分,共16分.)9、如图,将函数y=12(x-2)2+1的图象沿y 轴向上平移得到一条新函数的图象,其中点A C DC B A O O O O x yx y x y y x(1,m),B(4,n)平移后的对应点分别为点A'、B'.若曲线段AB扫过的面积为9(图中的阴影部分),则新图象的函数表达式是。
试题(2)的参考答案一、填空题(27分)1、7阶群的子群共有 2 个。
2、“圆规直尺作图的三大难题”是三等分任意角问题 、 化圆为方问题 、 倍立方问题 。
3、把置换ρ=(1365)(3457)(7215)表示为不相交的轮换的乘积是 (17234)(56) 。
4、如果域E 的乘法群恰好包含f (x ) = x 124-1的所有根,则E 的特征是 5 。
5、剩余类加法群Z 8的生成元有 4 个,它们是 [1], [3], [5], [7] 。
6、除环的理想有 2 个。
7、实数32在有理域上的极小多项式是 x 3-2 。
8、20042005≡ 1 (mod 5).9、复数域C 作为实数域R 的扩域,指数[C : R ]= 2 .二、选择题 10、(D) 11、(B) 12、(C) 13、(A) 14、(B).三、计算题15、解: 如果域E 的乘法子群E*=E\{0}有一个13阶子群H, 且[E*:H]=2, 则|E*|=2|H|=26,进而,|E|=27=33,域E 的特征是3。
………………………10分16、解:32+在有理数域Q 上的极小多项式为f (x ) = x 4-10x 2+1。
………2分因为, (1) 32+∉Q (2) . 假设32+∈Q (2),则3∈Q (2),设3= a+b 2,a , b ∈Q ,且a ≠ 0 ≠ b ,两边平方得3 - a 2-2b 2 = 2 ab 2, 等式左边是有理数,而右边是无理数,矛盾。
………………………2分(2) 2∈Q (32+) . 因为 2=21[(32+-(3-2)]=21[32+-(32+)-1]. ………2分(3) [Q (32+):Q ] = 4. 由(1)和(2)知, Q (2)是Q (32+)的真子域,显然,32+在Q (2)上的极小多项式为x 2-22x -1,进而, [Q (32+):Q (2)]=2,所以,[Q (32+):Q ]= [Q (32+):Q (2)][Q (2):Q]=4. ………2分 (3)说明,32+在Q 上的极小多项式的次数是4。
2016北京市各区初三数学二模 代数综合题汇总西城27.在平面直角坐标系xOy 中,抛物线1C :2144y ax ax =--的顶点在x 轴上,直线l :25y x =-+与x 轴交于点A .(1)求抛物线1C :2144y ax ax =--的表达式及其顶点坐标;(2)点B 是线段OA 上的一个动点,且点B 的坐标为(t ,0).过点B 作直线BD ⊥x 轴交直线l 于点D ,交抛物线2C :2344y ax ax t =--+于点E .设点D 的纵坐标为m ,点E 的纵坐标为n ,求证:m n ≥; (3)在(2)的条件下,若抛物线2C :2344y ax ax t =--+与线段BD 有公共点,结合函数的图象,求t 的取值范围.西城27.(1)解:∵抛物线1C :2144y ax ax =--, ∴它的对称轴为直线422ax a-=-=. ∵抛物线1C 的顶点在x 轴上,∴它的顶点为(2,0).……………………………………………………1分 ∴当2x =时,440y a =--=.∴1a =-.∴抛物线1C 的表达式为2144y x x =-+-.………………………………2分(2)证明:∵点B 的坐标为(t ,0),且直线BD ⊥x 轴交直线l :25y x =-+于点D ,∴点D 的坐标为(t ,5t -+).……………………………………………3分∵直线BD 交抛物线2C :2344y x x t =-+-+于点E ,∴点E 的坐标为(t ,254t t -+-).……………………………………4分∵m n -=(5)t -+2(54)t t --+-269t t =-+2(3)0t =-≥,∴m n ≥.……………………………………………………………………5分(3)解:∵抛物线2C :2344y x x t =-+-+与线段BD 有公共点,∴点E 应在线段BD 上.∵由(2)可知,点D 要么与点E 重合,要么在点E 的上方, ∴只需0n ≥, 即2540t t -+-≥.∵当2540t t -+-=时, 解得1t =或4t =.∴结合函数254y t t =-+-的图象可知,符合题意的t 的取值范围是14t ≤≤.海淀27.已知:点(,)P m n 为抛物线24y ax ax b =-+(0a ≠)上一动点.(1) 1P (1,1n ),2P (3,2n )为P 点运动所经过的两个位置,判断1n ,2n 的大小,并说明理由; (2) 当14m ≤≤时,n 的取值范围是14n ≤≤,求抛物线的解析式. 西城 解:(1)12n n =. ……………… 1 分理由如下:由题意可得抛物线的对称轴为2x =.∵1P (1,1n ),2P (3,2n )在抛物线24y ax ax b =-+上, ∴12n n =.………………3分 (2)当0a >时,抛物线的顶点为(2,1),且过点(4,4),∴抛物线的解析式为23344y x x =-+.………………5分 当0a <时,抛物线的顶点为(2,4),且过点(4,1),∴抛物线的解析式为23314y x x =-++. 综上所述,抛物线的解析式为23344y x x =-+或23314y x x =-++.…………7 分房山27.如图,在平面直角坐标系xoy 中,已知点P (-1,0),C()11-2,,D (0,-3),A ,B 在x 轴上,且P 为AB 中点,1=∆CAP S .(1)求经过A 、D 、B 三点的抛物线的表达式.(2)把抛物线在x 轴下方的部分沿x 轴向上翻折,得到一个新的图象G ,点Q 在此新图象G 上,且APC APQ S S ∆∆=,求点Q 坐标. (3)若一个动点M 自点N (0,-1)出发,先到达x 轴上某点(设为点E ),再到达抛物线的对称轴上某点(设为点F ),最后运动到点D ,求使点M 运动的总路程最短的点E 、点F 的坐标.房山27.解:(1)∵1=∆CAP S ,C()1,12-,∴1121=⨯AP ,xy12345–1–2–3–4–512345–2–3–4–5oxy 12345–112345–2–3–4–5o∴AP =2,∵P 为AB 中点,P (-1,0), ∴A (-3,0),B (1,0); -----------1分∴过A 、B 、D 三点的抛物线的表达式为:322-+=x x y ----------------------2分 (2)抛物线322-+=x x y 沿x 轴翻折所得的新抛物线关系式为322+--=x x y ,∵1==∆∆APC APQ S S ,∴点Q 到x 轴的距离为1,且Q 点在图象G 上(27题图1)∴点Q 的纵坐标为1 ∴1322=+--x x 或1322=-+x x .----------------------------------3分解得:311+-=x ,312--=x ,513+-=x ,514--=x -----4分∴所求Q 点的坐标为:)1,31(1+-Q ,)1,31(2--Q ,)1,51(3+-Q ,)1,51(4--Q ----5分27题图227题图1 (3)如图(27题图2)∵N (0,-1),∴点N 关于x 轴对称点N ′(0,1), ∵点D (0,-3),∴点D 关于对称轴的对称点D ′(-2,-3),∴直线N ′D ′的关系式为y =2x +1, -----------------------------------6分∴E (-0,21)当x =-1时,y =-1,∴F (-1,-1) ----------------------------------7分直线与抛物线交点:朝阳27.在平面直角坐标系xOy 中,抛物线22(9)6y x m x =-++-的对称轴是2x =.(1)求抛物线表达式和顶点坐标;(2)将该抛物线向右平移1个单位,平移后的抛物线与原抛xyQ 1Q 3Q 2Q 412345–1–2–3–4–512345–1–2–3–4–5CPA oxyN'D'12345–1–2–3–4–512345–1–2–3–4–5EFDN o物线相交于点A ,求点A 的坐标;(3)抛物线22(9)6y x m x =-++-与y 轴交于点C ,点A 关于平移后抛物线的对称轴的对称点为点B ,两条抛物线在点A 、C 和点A 、B 之间的部分(包含点A 、B 、C )记为图象M .将直线22y x =-向下平移b (b >0)个单位,在平移过程中直线与图象M 始终有两个公共点,请你写出b 的取值范围_________.朝阳27.解:(1)∵抛物线()2296y x m x =-++-的对称轴是2x =,∴922(2)m +-=⨯-.∴1m =-. (1)分 ∴抛物线的表达式为2286y x x =-+-.…………………………………2分∴22(2)2y x =--+.∴顶点坐标为(2,2).………………………………………………3分(2)由题意得,平移后抛物线表达式为()2232y x =--+……………………4分∵()()222223x x --=--,∴52x =. ∴A (52,32).………………………5分(3)702b <≤.……………………………7分丰台27.在平面直角坐标系xOy 中,抛物线223(0)y mx mx m =--≠与x 轴交于A ,B 两点,且点A 的坐标为(3,0).(1)求点B 的坐标及m 的值;(2)当23x -<<时,结合函数图象直接写出y 的取值范围;(3)将抛物线在x 轴上方的部分沿x 轴翻折,抛物线的其余部分保持不变,得到一个新图象M .若)0(1≠+=k kx y 直线与图象M 在直线21=x 左侧的部分只有一个公共点,结合图象求k 的取值范围.丰台27.(1)将()3,0A 代入,得1m =.-------1分∴抛物线的表达式为223y x x =--. ∴B 点的坐标()1,0-.-------2分 (2)y 的取值范围是45y -≤<.-------5分(3)当x =21时,y =415-. 代入1y kx =+得219-=k .当x =-1时,y =0,代入1y kx =+得k =1. 结合图象可得,k 的取值范围是1=k 或192k <-. -------7分怀柔27.已知:二次函数y 1=x 2+bx+c 的图象经过A (-1,0),B (0,-3)两点. (1)求y 1的表达式及抛物线的顶点坐标;(2)点C (4,m )在抛物线上,直线y 2=kx+b(k≠0)经过 A , C 两点,当y 1 >y 2时,求自变量x 的取值范围; (3) 将直线AC 沿y 轴上下平移,当平移后的直线与抛物线只有一个公共点时,求平移后直线的表达式.xyO–5–4–3–2–112345–4–3–2–11234567怀柔27.解:(1)把A (-1,0)、B (0,-3)两点带入y 1 得: y 1=x 2-2x-3………………………………1分 顶点坐标(1,-4) ………………………………………2分 (2)把C (4,m )代入y 1, m=5,所以C (4,5), ……………………………………3分把A 、C 两点代入y 2 得:y 2 =x+1.………………………………………………4分如图所示:x 的取值范围:x<-1或x>4 . …………………………………………………5分 (3)设直线AC 平移后的表达式为y=x+k得: x 2-2x-3=x+k ………………………………………6分 令Δ=0,k=-421 所以平移后直线的表达式:y=x-421. ………………………7分顺义27.已知关于x 的一元二次方程2(21)20x m x m -++=. (1)求证:不论m 为任何实数时,该方程总有两个实数根; (2)若抛物线2(21)2y x m x m =-++与x 轴交于A 、B 两点(点A 与点B 在y 轴异侧),且4AB =,求此抛物线的表达式;(3)在(2)的条件下,若抛物线2(21)2y x m x m =-++向上平移b 个单位长度后,所得到的图象与直线y x =没有交点,请直接写出b 的取值范围.顺义 27. 解:(1)[]22224(21)42441(21)b ac m m m m m ∆=-=-+-⨯=-+=- -----1分∵不论m 为任何实数时 ,总有2(21)0m ∆=-≥,∴该方程总有两个实数根 . --------------------------------------------------2分(2)24(21)(21)22b b ac m m x a -±-+±-==∴12x m =, 21x = ………………………………………………….… 4分 不妨设点(1,0)B ,依题意则点(3,0)A -∴ 32m =-∴ 抛物线的表达式为223y x x =+- …………….…………………5分 (3)134b >……………………………………………...………………….…7分 抛物线与抛物线交点东城27.二次函数21:C y x bx c =++的图象过点A (-1,2),B (4,7).(1)求二次函数1C 的解析式;(2)若二次函数2C 与1C 的图象关于x 轴对称,试判断二次函数2C 的顶点是否在直线AB 上;(3)若将1C 的图象位于A ,B 两点间的部分(含A ,B 两点)记为G ,则当二次函数221y x x m=-+++与G 有且只有一个交点时,直接写出m 满足的条件.东城27.解:(1)∵21:C y x bx c =++的图象过点A (-1,2),B (4,7),∴217164.b c b c =-+⎧⎨=++⎩,∴21.b c =-⎧⎨=-⎩,∴221y x x =--. …………2分(2)∵二次函数2C 与1C 的图象关于x 轴对称,∴22:21C y x x =-++.∴2C 的顶点为(1,2). ∵A (-1,2),B (4,7),∴过A 、B 两点的直线的解析式:3y x =+. 令x =1,则y =4.∴2C 的顶点不在直线AB 上. …………4分 (3)414m <≤或4m =-. …………7分抛物线与双曲线交点平谷27.反比例函数()0ky k x=≠过A (3,4),点B 与点A 关于直线y =2对称,抛物线2y x bx c =-++过点B 和C (0,3).(1)求反比例函数的表达式; (2)求抛物线的表达式;k y x=(3)若抛物线2y x bx m =-++在22x -≤<的部分与无公共点,求m 的取值范围.平谷27.(1)∵反比例函数ky x=过A (3,4), ∴12k =. ∴12y x=.…………………………………………………………………………1 (2)∵点B 与点A 关于直线y =2对称,∴B (3,0). (2)∵抛物线2y x bx c =-++过点B 和C (0,3)∴9303b c c ⎧-++=⎨=⎩.∴23b c ⎧=⎨=⎩.……………………………………………………………………………3 ∴223y x x =-++. (4)(3)12y x=,令2x =-时,6y =-,即()26,--令2x =时,6y =,即()26, (5)当2y x bx m =-++过()26,--时,2m =.当2y xbx m =-++过()26,时,6m=. (6)∴26m <≤ (7)两个直接写出结果的问题:昌平27. 在平面直角坐标系xOy 中,直线y=kx +b 的图象经过(1,0),(-2,3)两点,且与y 轴交于点A . (1)求直线y=kx +b 的表达式;Oy x-6-5-4-3-2-1654321-11-2-3-4-5234512Ox-2-3-4-1-1443132y(2)将直线y=kx +b 绕点A 沿逆时针方向旋转45º后与抛物线21:1(0)G y ax a =->交于B ,C 两点.若BC ≥4,求a 的取值范围;(3)设直线y=kx +b 与抛物线22:1G y x m =-+交于D ,E 两点,当3252DE ≤≤时,结合函数的图象,直接写出m 的取值范围.昌平27.解:(1)∵直线y=kx +b 的图象经过(1,0),(-2,3)两点,∴0,2 3.k b k b +=⎧⎨-+=⎩………………………………………………………………1分解得:1,1.k b =-⎧⎨=⎩∴直线y=kx +b 的表达式为: 1.y x =-+…………………………………………2分 (2)①将直线1y x =-+绕点A 沿逆时针方向旋转45º后可得直线1y =.…………3分∴直线1y =与抛物线21:1(0)G y ax a =->的交点B ,C 关于y 轴对称.∴当线段BC 的长等于4时,B ,C 两点的坐标分别为(2,1),(-2,1). ∴1.2a =…………………………………………………………………………………4分由抛物线二次项系数的性质及已知a >0可知,当BC ≥4时,10.2a ≤<……………5分②40.m -≤≤………………………………………………………………………………7分石景山27.已知关于x 的方程()021222=-+-+m m x m x .(1)求证:无论m 取何值时,方程总有两个不相等的实数根;(2)抛物线()m m x m x y 21222-+-+=与x 轴交于()0,1x A ,()0,2x B 两点,且210x x <<,抛物线的顶点为C ,求△ABC 的面积;(3)在(2)的条件下,若m 是整数,记抛物线在点B ,C 之间的部分为图象G (包含B ,C 两点),点D 是图象G 上的一个动点,点P 是直线b x y +=2上的一个动点,若线段DP 的最小值是55,请直接写出b 的值. 石景山27.解:(1)∵1=a ,()12-=m b ,m m c 22-= ∴()()0424144222>=---=-=∆m m m ac b∴无论m 取任何实数时,方程总有两个不相等的实数根.……2分 (2)令,则()021222=-+-+m m x m x()()02=-++m x m x∴m x -=或2+-=m x ∵210x x <<∴m x -=1,22+-=m x …………………………………………4分 ∴2=AB当1+-=m x 时,1-=y ∴1-=c y∴121=⨯=∆c ABC y AB S .………………………………………5分 (3)0=b 或3-=b .……………………………………………………..7分如何找对称点:通州27. 已知:二次函数c bx -x y ++=2的图象过点A (-1,0)和C (0,2). (1)求二次函数的表达式及对称轴;(2)将二次函数c bx -x y ++=2的图象在直线y =1上方的部分沿直线y =1翻折,图象其余的部分保持不变,得到的新函数图象记为G ,点M (m ,1y )在图象G 上,且0y 1≥,求m 的取值范围。
20 —20 学年上《初等代数研究》期末试卷B答案及评分标准
一、填空题(本大题共8题,每空3分,共24分)
1、2780;
2、43x +;
3、1;
4、(,10)1b =;
5、4;
6、
12
; 7、9m ≥; 8、21x -
二、判断题(本大题共 5题,每小题2分,共10分)
1、╳;
2、√;
3、╳;
4、╳;
5、√.
三、单项选择题(选择正确答案的字母填入括号,本大题共 5题,每小题 2 分,共 10 分)
1、D;
2、C;
3、A;
4、D;
5、B.
四、解答题(本大题共 7 题,第1-5小题每题 6分,第6、7小题每题7分,共 44 分) 1、 解:设()()2f x g x =-,则有
(0)18,(1)(2)(3)0f f f f =-=== ―――――――――――――――――2分
根据多项式关于它的根的分解式,可设
()(1)(2)(3)f x A x x x =---
再由(0)18f =-,得618,3A A -=-= ―――――――――――――――――2分 所以 ()()23(1)(2)(3)2g x f x x x x =+=---+
3
2
3183316x x x =-+- ―――――――――――――――――――2分
2、 解:24224
(1)2(1)a x a x y y ++-+ 2
2
2
22
[(1)]2(1)2(1)
a x y
a x y a x y =++-
+
+
- ―――――――――――2分 2
22
2
2
[(1)]4a x y x y =++- ――――――――――――――――――――2分 2
2
2
2
[(1)2][(1)2]a x y xy a x y xy =+++++- ――――――――――――2分
或 2222
[()][()]x y ax x y ax =++-+
3、 解:因为2
2
6sin sin cos 2cos 0x x x +-=,所以有 (2s i n c o s )(3s i n 2c o s
x x x x -
+=――――――――――――――1分 于是 2s i n
c o s
x x -=或3sin 2cos 0x x +=
得 12
t g x =
或23
tgx =- ――――――――――――――――――――――2分
由于
2
x π
π<<, 所以取23
tgx =-
―――――――――――――――――1分
从而 2
22
2()
212322151()
3
tgx tg x tg x
⨯-
=
=
=---- ―――――――――――――――2分
4、 解:不等式同解于不等式组
22240104(1)x x x x ⎧-≥⎪
+>⎨⎪-<+⎩
(1) (2)
(3)――――――――――――――-2分 由(1)式,得24x ≤,于是22x -≤≤ 由(2)式,得1x >-
由(3)式,得22230x x +->
,于是12x --
<
或12
x -+
>
――――――――3分
所以不等式的解集为:
22
x <≤ ―――――――――――――――――1分
5、 解:令(1)(1)(2)k u k k k k ∆=-++,则 ―――――――――――――――――2分
1(1)(2)(3)(1)(1)(2)k k k u u u k k k k k k k k +∆=-=+++--++
(1)(2)[(3)(1)]4(1)(2)k k k k k k k k =+++--=++ ―――――――――2分
于是
1
1
1
(1)(2)4
n
n
k k k k k k u ==++=
∆∑
∑111()4
n u u +=
-
1(1)(2)(3)4
n n n n =
+++ ――――――――――――――――――――――2分
6、
解:由x =
,得x -=,两边平方整理得
2
11)x x +=+ ―――――――――――――――――――――――2分
两边再平方整理,得
4
2
2248230x x x ---=――――――――――――――――――――――2分
令42
()2248230g x x x x =---=
,则0g +=
因 ()()
25f x g x =+,
所以
)2
5f =
―――――――――――――――――――――3分
7、 解:利用换底公式,有
2
42444log log 2log log log 2
x x x x =
== ――――――――――――――――-1分
方程组可写为24433log log (4)log ()log x y x x x y y ⎧=-⎪⎨+=⎪⎩
⇒2(4)x y x x
x y y ⎧=-⎪
⎨+=⎪⎩ (1) (2) ―――――2分 由(1)得 2
4x
y x
=
- 代入(2)式,得2
44x
x x x
x
-+
=
-
解得4x =-(舍), 或43
x = ―――――――――――――――――――-3分
所以方程组的解为 4323
x y =
⎧⎨
=
⎩ ――――――――――――――――――――――1分
五、证明题(本大题共2题,每小题6分,共12分)
证明:(1)91910++== (2)919⋅= 9291(91)1011+
+
+
+=+=+== 92919199+
⋅=⋅=⋅+=+
=
9392(92)1112+
+
+
∴+=+=+== 9392
929189+
∴⋅=⋅=⋅+=+=
―――――――――――3分 ――――――――――3分
2、证明:设
22x y z k a b c
a c
a b c
=
=
=++--+,则有
(2)()(2)x a b c k y a c k z a b c k =++⎧⎪
=-⎨⎪=-+⎩
(1)
(2)
(3) ――――――――――――――――2分 解得 24x y z ak ++=
4x z bk -= ―――――――――――――――――――――3分
24x y z ck -+=
所以
1
224a
b c x y z
x z
x y z k
=
==++--+―――――――――――――1分。