初等代数研究课后习题答案
- 格式:doc
- 大小:847.00 KB
- 文档页数:9
初等数学研究习题二答案初等数学研究习题二答案在学习数学的过程中,习题是不可或缺的一部分。
通过解答习题,我们可以巩固知识,提高解题能力。
初等数学是数学的基础,掌握好初等数学的知识对于后续数学学习的顺利进行至关重要。
在这篇文章中,我将为大家提供初等数学研究习题二的答案,希望能够对大家的学习有所帮助。
1. 问题:已知函数f(x) = 2x + 3,求f(4)的值。
解答:将x = 4代入函数f(x)中,得到f(4) = 2(4) + 3 = 11。
所以f(4)的值为11。
2. 问题:已知函数g(x) = 3x^2 + 2x - 1,求g(-2)的值。
解答:将x = -2代入函数g(x)中,得到g(-2) = 3(-2)^2 + 2(-2) - 1 = 12。
所以g(-2)的值为12。
3. 问题:已知函数h(x) = x^3 - 2x^2 + x,求h(1)的值。
解答:将x = 1代入函数h(x)中,得到h(1) = 1^3 - 2(1)^2 + 1 = 0。
所以h(1)的值为0。
4. 问题:已知函数k(x) = 2x^2 + 3x - 4,求k(2)的值。
解答:将x = 2代入函数k(x)中,得到k(2) = 2(2)^2 + 3(2) - 4 = 14。
所以k(2)的值为14。
5. 问题:已知函数m(x) = x^2 - 5x + 6,求m(3)的值。
解答:将x = 3代入函数m(x)中,得到m(3) = (3)^2 - 5(3) + 6 = 0。
所以m(3)的值为0。
通过以上习题的解答,我们可以看到初等数学中函数的运算和值的求解方法。
这些习题涉及到了一次函数、二次函数和三次函数的运算,通过解答这些习题,我们可以更好地理解函数的性质和特点。
除了函数的运算和值的求解,初等数学还包括了其他的知识点,如代数方程、几何图形等。
通过解答习题,我们可以巩固这些知识点,提高自己的解题能力。
在学习初等数学的过程中,我们还可以通过参加数学竞赛来提高自己的数学水平。
初等数学研究(程晓亮、刘影)版课后习题答案 第一章 数1添加元素法和构造法,自然数扩充到整数可以看成是在自然数的基础上添加0到扩大的自然数集,再添加负数到整数集;实数扩充到复数可以看成是在实数的基础上构造虚数单位i 满足12-=i ,和有序实数对),(b a 一起组成一个复数bi a +. 2(略)3从数的起源至今,总共经历了五次扩充:为了保证在自然数集中除法的封闭性,像b ax =的方程有解,这样,正分数就应运而生了,这是数的概念的第一次扩展,数就扩展为正有理数集.公元六世纪,印度数学家开始用符号“0”表示零.这是数的概念的第二次扩充,自然数、零和正分数合在一起组成算术数集.为了表示具有相反意义的量,引入了负数.并且直到17世纪才对负数有一个完整的认识,这是数的概念的第三次扩充,此时,数的概念就扩展为有理数集.直到19世纪下半叶,才由皮亚诺、戴德金、维尔斯特拉斯等数学家的努力下构建了严格的实数理论.这是数的概念的第四次扩充,形成了实数集.虚数作为一种合乎逻辑的假设得以引进,并在进一步的发展中加以运用.这是数学概念的第五次扩充,引进虚数,形成复数集.4证明:设集合D C B A ,,,两两没有公共元素d c b a ,,,分别是非空有限集D C B A ,,,的基数,根据定义,若b a >,则存在非空有限集'A ,使得B A A ~'⊃;若d c ≥从而必存在非空有限集'C ,使得D C C ~'⊃,所以)(C A ⋃)(D B ⋃⊃所以集合C A ⋃的基数c a +大于集合D B ⋃的基数d b +,所以d b c a +>+.5(1)解:按照自然数序数理论加法定义, 1555555155155)25(2535''=++=++⋅=+⋅=+⋅=⋅=⋅ (2)解:按照自然数序数理论乘法定义87)6(])15[()15()25(2535'''''''''===+=+=+=+=+ 6证明:︒1当2=n 时,命题成立.(反证法)()()()()()()()01121,1111111,111101111111,,2,1,0111,,2,1,0)2(212122121212121212122221212122111112111212222121≥++-+⇒≥++-++≥+-+-≥++++∴≥⎪⎪⎭⎫ ⎝⎛-++⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛->-=-++-+-=+++++=>+=≥+++=+++=>≥=︒+++++++++++++++++k k k k k k k k k k k k k k k i k k k k k k i k k i a k a k k a k k a k k a ka a ka a a a a k a a a a a a a a a a a a a a a a a a k i a k n ka a a a a a k i a k k n ,即要证由归纳假设,得,且得,,且时,由当。
《初等数学研究》课程习题集一、单选题 1. 已知αβ、是方程22(2)(35)0x k x kk --+++=的两实数根,则221αβ++的最大值是( )..20.19.21.18A B C D2. 设()lg (101)2xxxb f x a x x a b -=+++4是偶函数,g ()=是奇函数,则的值为( )11..1.1..22A B C D --3. 设432()f x xa xb xc xd =++++,其中a b c d 、、、为常数,如果(1)1,f =[]1(2)2,(3)3,(4)(0)4f f f f ==+=则( ).5.3.7.11A B C D4. 若不等式2lo g 0m x x -<在区间(0,2)内恒成立,则实数m 的取值范围是( )A .1116m ≤< B.1016m <≤ C.104m <<D.116m ≥5. 已知()()(,),(7)7f x y f x y x y R f +=∈=且, 则(49)f 等于( )A.7B. 14C.49D. 16. 设33,(5)2003(5)1,(4)2003(4)1,x y xx y y -+-=--+-=为实数,满足则().x y +=A.1B. 9C. -1D. -97. 实数x y 、满足关系式[][]21yx x =+--和[]1y x =+,则x y +的值一定是( )1012.1516.910.A B C D .与之间与之间与之间一个整数8. 对每一个自然数n, 抛物线22()(21)1,n yn n x n x x A =+-++与轴交于n B 两点,||n n A B 以表示该两点的距离,则1122||||A B A B ++ 20022002||A B +等于( )2001200220032004.....2002200320042003A B C D9. 已知多项式2(),4(1)1,1(2)5,(3)f x a x c f f f =--≤≤--≤≤则满足()3825.4(3)15.1(3)20.(3)33f B f C f D f ≤≤-≤≤-≤≤-≤≤A .7(3)2610. 若2222,260,2x y x x yx yx -+=++实数满足则的最大值为( )A.15B. 14C. 17D. 1611.设2250,320,a x x b x x +=-+=是一元二次方程的较大的一根是的较小的一根那么a b +的值是( )A.-4B. -3C. 1D. 312. 2320x x -+=方程的最小一个根的负倒数是()A.1B. 12C. 2D. 413. 在,A B C G ∠022直角中,A =90为重心,且G A =2, 则G B +G C =( )A . 25 B. 10 C. 20 D. 1514. 圆锥的侧面展开图的圆心角等于0120,该圆锥的侧面积与表面积之比值为( )A.23B.45C.12D.3415. ∠∠0A B -A C 在A B C 中,C =90,A 的平分线A D 交B C 于D ,则C D等于( ).tan .sin .co s .co t .A AB AC AD A16. 在A B C 中,A B A C =,,,D B C B E A C E ⊥为中点且于交A D P 于,已知3B P =, 1P E =,则P A =( )A B C D ....17.已知梯形A中,//,,A B CA B C DA DBC BD A B C B D D C S S∠⊥=梯形平分且则,3A B C D .:1. 2.5:1.2:1. 1.5:118. 已知A D是直角三角形A B C斜边上的高,43A B A C ==,,:()A B CA C DS S=则,5A B C D .:3.25:9.4:3.16:919. 已知直角三角形的周长为2+斜边上的中线为1,则这个三角形的面积为( )14A B C D 1..1..220. 若一个正三角形和一个正六边形的面积相等,则他们的边长之比为( )11113A B C D ....二、填空题1 21. 集合2{1,2,31},{1,3},{3}A mm B AB =--=-=,实数m 的值是 _______22. 若函数2()1f x x a x =-+能取得负值,则实数a 的取值范围为23. 设x y z 、、为实数,1()2x y z =++,则23x y z=24. 函数sin ()yA x b =ω+ϕ+在同一周期内有最高点(,312π),最底点(7,512π-),则它的解析式为25. 若函数[]2(2)1,()2x f xf -+∞的定义域为,则的定义域为26. 在等差数列{}n a 中,已知前20项的和n S =170,则691116a a a a +++ =27. 已知:1ta n 11ta n +α=-α,则sin 2α的值=28. 设11(0),()f x f x x x ⎛⎫=-<= ⎪⎝⎭则29. 2,120nn S n =数列的前项和那么这个数列的前项中所有奇数项的和是30. 2006!的末尾的“0”的个数是 31. 已知:12()()3f x f x x x+-=+,则()___________f x =32. 不等式20a x a b x b ++>的解集是{23}M x =<<,则_____,______a b ==33. 以三角形的三条中线长为边作三角形,则它的面积与原三角形面积之比为34. P 是正方形ABCD 内一点,PA=2, PB=1, PD=3, 则A P B ∠的度数为 35. 1E F GA EB F A BC A E B F G S=,是的中线,与交于,若,则A B CS=36. 在A B C 中,5B C M I A B C =,与分别是的重心与内心,若//M I B C则A B A C +的值为37. 在A B C 中,90C ∠=,I IE A B E ⊥为内心,于,若2B C =,A C =3, 则A E E B ⋅=38. 设直角三角形的斜边为C, 其内切圆的半径为r, 则内切圆的面积与三角形面积之比是39. 若等腰梯形的两条对角线互相垂直, 高为8cm ,则上、下底之和为40. 凸n 边形的n 个内角与某一个外角的和为1350°,则n 等于三、计算题41. 121212{}1,2,,n n n n n n n a a a a a a a a a ++++===++已知数列中,且121,n n a a ++≠求20031.n n a =∑42. 求函数332s in 3s inc o s 3c o s s in 2c o s 2x x x xy x x+=+的最小值。
初等数学研究习题答案初等数学是学习数学的基础,它包括了数学的基本概念、运算法则、方程与不等式、几何图形与变换等内容。
在学习初等数学的过程中,习题是非常重要的一部分,通过解答习题可以帮助我们巩固知识,提高解题能力。
然而,有时候我们在解答习题时可能会遇到困难,不知道如何下手或者答案是否正确。
因此,在这篇文章中,我将为大家提供一些初等数学习题的答案,希望对大家的学习有所帮助。
一、基本概念和运算法则1. 2+3=52. 4-2=23. 5×6=304. 12÷3=4二、方程与不等式1. 求解方程2x+3=7:解:2x+3=72x=7-32x=4x=22. 求解不等式3x-5<7:解:3x-5<73x<7+53x<12x<4三、几何图形与变换1. 计算三角形的面积:已知三角形的底边长为4cm,高为3cm,求面积。
解:面积=(底边长×高)÷2=(4×3)÷2=6cm²2. 计算矩形的周长:已知矩形的长为6cm,宽为3cm,求周长。
解:周长=(长+宽)×2=(6+3)×2=18cm以上是一些初等数学习题的答案,希望对大家的学习有所帮助。
在解答习题时,除了直接给出答案,我们还应该注意解题思路和方法。
数学是一门需要思考和推理的学科,通过思考和推理,我们可以更好地理解和运用数学知识。
因此,在解答习题时,我们应该思考问题的本质,运用适当的方法和技巧,而不仅仅是追求答案的正确与否。
另外,解答习题时也可以结合实际问题,将数学知识应用到实际生活中。
通过与实际问题的联系,我们可以更好地理解和掌握数学知识,并将其应用到实际生活中解决问题。
例如,在解决几何问题时,我们可以将几何图形与实际物体相联系,通过观察和测量来解决问题,这样可以增加问题的趣味性和实用性。
总之,初等数学习题的答案只是学习的一部分,更重要的是我们在解答习题的过程中能够思考问题、运用知识、培养逻辑思维和解决问题的能力。
习题一1、数系扩展的原则是什么?有哪两种扩展方式?(P9——P10) 答:设数系A 扩展后得到新数系为B ,则数系扩展原则为:(1)B A ⊂(2)A 的元素间所定义的一些运算或几本性质,在B 中被重新定义。
而且对于A 的元素来说,重新定义的运算和关系与A 中原来的意义完全一致。
(3)在A 中不是总能实施的某种运算,在B 中总能施行。
(4)在同构的意义下,B 应当是A 的满足上述三原则的最小扩展,而且有A 唯一确定。
数系扩展的方式有两种:(1)添加元素法。
(2)构造法。
2、对自然数证明乘法单调性:设,,,a b c N ∈则(1),;a b ac bc ==若则(2),;a b ac bc <<若则(3),a b ac bc >>若则;证明:(1)设命题能成立的所有C 组成集合M 。
a b,a a 1,b b 1,P13(1),(1)a 111,a ac a c ac a bc b c bc b b Mc M c bc==⋅=⋅=+=+=+=+''∴⋅=⋅∴∈∈=Q Q (规定)假设即ac ,ac a c .bc a ba bcbc bc M ==∴+=+∴=''∴∈'Q 又 由归纳公理知,,N M =所以命题对任意自然数成立。
(2),,.a b b a k k N <=+∈若则有 (P17定义9)由(1)有()bc a k c =+a c kc =+ac bc ∴< (P17.定义9)或:,,.a b b a k k N <=+∈若则有 bc ()a k c ac kc =+=+ ()ac ac kc a k c bc ∴<+=+=.ac bc ∴=(3),,.a b a b k k N >=+∈若则有a ().cb kc bc kc =+<+ac bc ∴>3、对自然数证明乘法消去律:,,,a b c N ∈设则(1),;ac bc a b ==若则(2)ac bc a b <<若,则;(3)ac bc a b >>若,则。
初等代数研究课后习题完整版(1)对任何a,b N,当且仅当a b时,b a.(2))对任何a,bN,在a b,a b,a b 中有且只有一个成立证明:对任何a,bN,设A a,Bb(1)a ” a b,则B, B,使A~ B,, B B,~ A,b aa ”b a,则B, B ,使B,~A ,A~ B,B , a b综上对任何a,b N ,a b ba(2)由(1)a b ba a b与a 1 b 不可能同时成立,假设a b与ab 同时成立,则B,B,使A~ B,且A~ B,1、证明自然数的顺序关系具有对逆性与全序性,即B ~ B,与B为有限集矛盾, a b与a b不可能同时成立,综上,对任何a,b N ,在a b,a b,a b 中有且只有一个成立2、证明自然数的加法满足交换律先证a 11 a,设满足此式的 a 组成集合k,显然有1+1=1+1 成立1k ,设a k ,a 1 1 a,则a1 (a ) (a 1) (1 a)1aak ,kN,取定a ,则1 M ,设 b M,a b b a,则a b (a b) (b a) b abM IMN对任何a,b N,a b b a证明:对任何a,b N设M为使等式abb a 成立的所有 b 组成的集合3、证明自然数的乘法是唯一存在的证明:唯一性:取定a ,反证:假设至少有两个对应关系f,g,对b N,有f(b), g(b) N,设M是由使f (b) g(b)成立的所有的b组成的集合,f (b) g(b) a 1 1 M 设b N 则f (b) g(b) f (b) a g(b) af(b ) g(b ),b M ,M N 即b N,f(b) g(b)乘法是唯一的存在性:设乘法存在的所有 a 组成集合K 当a 1时, b N ,11 1,1 b b b即乘法存在A 2,A 2A3A3,As AA74,A5基数和为23 34 35 28p24— 6、证明:A a,B b , A 中的x 与B 中的 y 对应A B ab , B A ba abA B abA BA BB Ap24— &证明: 1) 3+4=73 13 4 3 2 3 1 (3 1) 453 33 2 (3 2) 5 63 43 3(3 3)672)3 4123 1 33 2 3 1 3 1 3 63 3 3 23 2 3 93 43 3 3 3 3 12p24—12、证明:1)(mn )mnA 5(m n )m n 1 (m 1) n有a, b 与它对应,ab aba ,对b N ,令a b ab bab ab(ab a bb) (a 1),设 a K ,p24— 5、 解:满足条件的A 有 A {1,2},A 2 {1,2,3},A {1,2,4},A {125} {1,2,3, 4},A{123,5},A {1,2,4,5},A {1,2,3,4,5}2) (mn ) nm m(mn ) mn 1 mn (m 1) nm mp26—36、已知f(m, n)对任何m,n N满足f(1,n) n 1f(m 1,1) f(m,2)f(m 1,n 1) f (m, f (m 1,n))求证:f(2,n) n21 )2)f(3,n) 2n 23)f(4,n) 2n 12证n 1 时,f(2,1) f(1 1,1) f(1,2) 2 1 1 2明:1)当结论成立,假设n k时,结论成立,即f (2, k) k 2 ,当n k 1时,f(2,k 1) f(1 1,k 1) f(1,f(2,k))f(1,k 2) (k 2) 1 (k 1) 2 所以对一切自然数结论都成立2)当n 1时,f(3,n) f(2 1,n) f(2,2) 2 2 2 1 2结论成立假设n k时,结论成立,即f(3,k) 2k 2当n k 1 时,f(3,k 1) f(2 1,k 1) f(2, f(3,k))f (2,2k 2) 2k 2 2 2(k 1) 2所以对一切自然数结论都成立3)当n 1 时,f(4,1) f(3 1,1) f (3,2) 2 2 2 21 1 2 结论成立假设n k时,结论成立,即k1f (4,k) 2k 1 2当n k 1 时,f(4,k 1) f (3, f (4, k)) f (3,2k 12)2(2k 12) 2 2k 22所以对一切自然数结论都成立p62 —1、证明定理2.1证明: [ a, b],[ c,d] Z ,[a,b] [c,d] [a c,b d] 因为自然数加法满足交换律 [a c,b d] [c a, d b] 而[c,d] [a,b] [c a,d b] [a,b] [c,d][c,d] [a,b]证明:“ ”已知[a,b] [c,d]则 a d b c[a,b] [c,d] [a d,b c] [1,1]“ ”已知[a,b] [c,d][1,1]则[a d,b c] [1,1], a d b c[a,b] [c,d]p62—4、已知 a,b N ,求证([a, b])[a,b]证明: [a,b][b,a]( [a,b])[b,a][a,b] p62—5、已知[a,b],[c, d] Z ,求证([a,b] [c, d])[a,b] [c,d]证明:左边 ([a,b] [c,d])[a d,b c] [b c,a d]右边 [a,b] [c,d] [b,a] [c,d] [b c,a d] 所以左边等于右边 ([a,b] [c,d]) [a,b] [c,d]p62—7、已知a,b,c N ,求证当且仅当 a d b c 时[a,b] [c,d]证明:“ ” 已知 a d b c , [a,b] [c,d] [a d,b c]因为 a d b c [a d,b c] 是负数, [a,b][c,d]已知[a,b][c,d]则[a,b] [c,d] [a d,b c]因为 [ a d ,b c] 是负数, a d b c[a,b],[c,d],[ e, f] Z , [a,b] [c,d] [e, f] [a c,b d]以为自然数满足加法结合律 ([a,b] 即整数加法满足交换律和结合律p62—2、已知[a,b],[c, d] Z ,求证[a, b] [e, f] [(a c) e,(b d) f ] [c,d]) [e, f] [a,b] ([c,d] [e, f])[c, d ]的充要条件是 [a,b] [c,d][1,1]p62—9、已知Z,求证:1) ,2) II 证明:设[a,b], [Gd][a c,b d] (a c) (b d)(a c) ac bd a b,(b d)(a b) (c d)[ac(ad I I bd, ad bc] ac bd (ad bc) a(c d) b(d c) b)(c d)p63—12、n名棋手每两个比赛一次,没有平局,若第k名胜负的次数各为a k,b k,、 2 2k 1,2, .......... , n ,求证:a1 a2 a2b1证明:对于a k(k 1,2,..., n),必存在一个b j( j 1,2,..., n)使得a k b ja:b2(k, j 2 2 a?bf ...b np63—16、已知p 10a p 10c d,求证p ad bc证明:由已知: s,t Z 使10a b ps,10c d pt10a ps, d 10c ptad bc 10ac apt (10ac cps) p(cs at)p ad bcp63—17、设2不整除a,求证8 a21证明:因为2不整除a,所以存在唯一一对q, r Z,使a 2q r,其中0 r 2 r 1,a2 4q2 4q 1 a24q(q 1) 8 a21p63—20、设a Z ,求证a(a 1)(a 2)(a 3) 1是奇数的平方证明:(a 1)(a 2) 1肯定为奇数p63— 22、证明:前n 个自然数之和的个位数码不能是2、4、7、9证明:前n 个自然数的和为° n)n2因为:n 个自然数的和仍为自然数 1+n 与n 中必定一个为奇数一个为偶数 若个位数码为2则1+n 与n 的个位数码只能是 1,4或4,1 而(1+n ) - n=1 个位数码不能为 2 若个位数码为4则1+n 与n 的个位数码只能是 1,8或8,1也不可能成立 若个位数码为7 则1+n 与n 的个位数码有2种可能,则2,7或1,14 也不可能成立,若个位数码为9则1+n 与n 的个位数码有2种可能,即2,9或1,18 也不可能成立, 综上,前n 个自然数和的个位数码不能是2,4,7,9p63—26、证明 2.3定理 1( a 1,a 2,……a.,) =( a 1 , a 2 ,……a n )证明:因为:(a 1,a 2,……a“)是印^,……a n 的公因数中的最大数 所以R 需考虑非负整数(a 1, a 2, ..... a n ,) = ( a 1 , a 2 , ......... a n )p63—29、证明2.3定理4的推论(a,b)1的充要条件是有 x, y Z 使得ax by 1 证明:因为(a,b) 1a, b 不全为0“ ” 由定理4 x, y Z 使 ax by (a, b) 1“ ”设(a,b)d 则 d a,d b , d ax by d 1d (a,b)1p63— 30、证明2.3定理6及其推论。
习题一1、数系扩展的原则是什么?有哪两种扩展方式?(P9——P10) 答:设数系A 扩展后得到新数系为B ,则数系扩展原则为:(1)B A ⊂(2)A 的元素间所定义的一些运算或几本性质,在B 中被重新定义。
而且对于A 的元素来说,重新定义的运算和关系与A 中原来的意义完全一致。
(3)在A 中不是总能实施的某种运算,在B 中总能施行。
(4)在同构的意义下,B 应当是A 的满足上述三原则的最小扩展,而且有A 唯一确定。
数系扩展的方式有两种:(1)添加元素法。
(2)构造法。
2、对自然数证明乘法单调性:设,,,a b c N ∈则(1),;a b ac bc ==若则(2),;a b ac bc <<若则(3),a b ac bc >>若则;证明:(1)设命题能成立的所有C 组成集合M 。
a b,a a 1,b b 1,P13(1),(1)a 111,a ac a c ac a bc b c bc b b Mc M c bc==⋅=⋅=+=+=+=+''∴⋅=⋅∴∈∈= (规定)假设即ac ,ac a c .bc a ba bcbc bc M ==∴+=+∴=''∴∈' 又 由归纳公理知,,N M =所以命题对任意自然数成立。
(2),,.a b b a k k N <=+∈若则有 (P17定义9)由(1)有()bc a k c =+a c kc =+ac bc ∴< (P17.定义9)或:,,.a b b a k k N <=+∈若则有 bc ()a k c ac kc =+=+ ()ac ac kc a k c bc ∴<+=+=.ac bc ∴=(3),,.a b a b k k N >=+∈若则有a ().cb kc bc kc =+<+ac bc ∴>3、对自然数证明乘法消去律:,,,a b c N ∈设则(1),;ac bc a b ==若则(2)ac bc a b <<若,则;(3)ac bc a b >>若,则。
大学数学之初等数学研究,李长明,周焕山版,高等教育出版社 习题一1答:原则:(1)A ⊂B(2)A 的元素间所定义的一些运算或基本关系,在B 中被重新定义。
而且对于A 的元素来说,重新定义的运算和关系与A 中原来的意义完全一致。
(3)在A 中不是总能施行的某种运算,在B 中总能施行。
(4) 在同构的意义下,B 应当是A 满足上述三原则的最小扩展,而且由A 唯一确定。
方式:(1)添加元素法;(2)构造法2证明:(1)设命题能成立的所有c 组成集合M 。
a=b ,M 11b 1a ∈∴⋅=⋅∴, 假设bc ac M c =∈,即,则M c c b b bc a ac c a ∈'∴'=+=+=',由归纳公理知M=N ,所以命题对任意自然数c 成立。
(2)若a <b ,则bc kc ac bc,k)c (a )1(b k a N k =+=+=+∈∃即,,由,使得 则ac<bc 。
(3)若a>b ,则ac mc bc ac,m)c (b )1(a m b N m =+=+=+∈∃即,,由,使得 则ac>bc 。
3证明:(1)用反证法:若b a b,a b a <>≠或者,则由三分性知。
当a >b 时,由乘法单调性知ac >bc. 当a <b 时,由乘法单调性知ac<bc.这与ac=bc 矛盾。
则a=b 。
(2)用反证法:若b a b,a b a =>或者,则由三分性知不小于。
当a >b 时,由乘法单调性知ac >bc. 当a=b 时,由乘法单调性知ac=bc.这与ac<bc 矛盾。
则a <b 。
(3)用反证法:若b a b,a b a =<或者,则由三分性知不大于。
当a<b 时,由乘法单调性知ac<bc. 当a=b 时,由乘法单调性知ac=bc.这与ac>bc 矛盾。
习题三1解:(1)由.222r x AE AB AE AD =⋅=得则.2)(22rx r AE r CD -=-= 则)20.(2422r x r x x r x AB CD y <<-+=++= (2) .5.5)(124max 22r y r x r r x r r x x r y ==+--=-+=时,当 2证明:(1)令时,0n m ==).0()0()0(f f f =即或者0f(0)=1;f(0)= 当时0f(0)=0)0()()(==f m f m f ,又当时0m ≠f(0).f(m)≠则 1.f(0)= (2)时,,当0n n m >-=即,1)()()(=-=+-n f n f n n f )(1)(n f n f -=则)(1)(x f x f -=;又当,则时1f(x),0x >>1)(1>-x f ,即1)(0<-<x f 由此得;0;1)(001)(0;1)(⎪⎩⎪⎨⎧<<<==>>x x f x x f x x f ; 则对于任意.0f(x)R,x >∈均有3答:(1)是;(2)不是4解:(1)由}45,088|{01||80||054≠≠≤≤-⎪⎪⎩⎪⎪⎨⎧≥-≠≠-x x x x x x x 且得:.(2) 由}132|{112012023≠>⎪⎩⎪⎨⎧≠->->-x x x x x x 且得:(3) 由].1,22()22,1[001log 0)1(log log 222225.0⋃--∈⎪⎩⎪⎨⎧>>+≥+x x x x 得: (4) 由}.8log 25|{0)39lg(0390|2|73≠<≤-⎪⎩⎪⎨⎧≠->-≥--x x x x x x且得:(5) }21|{0)31(112≥≥--x x x 得:由(6) 由.)25,1[00250lg ∈⎪⎩⎪⎨⎧>>-≥x x x x 得:(7) }.121|{1212≤≤-≤-≤-x x x x 得:由 (8) 由]2,51(015111∈⎩⎨⎧>-≤-≤-x x x 得:(9) 由}2,1,0,22|{0sin 101sin ±±=+=⎩⎨⎧≥-≥-k k x x x x ππ得:(10)由得:03cos >x }2,1,0,326326|{ ±±=+<<+-k k x k x ππππ5. (1)解:}.121211|{4112≤≤-≤≤-≤≤x x x x或得:由(2)解:}.40|{22≤≤≤≤-x x x 得:由(3) 解:}.1010|{3lg 213≤≤≤≤x x x 得:由6证明:⇒f(x)的定义域为实数集R ,则0.1-k 1k 4k 4kx -x 22>+++ 即.1,0144)114(41622><---=-++-=∆k k k k k k k 则 ⇒当时1>k ,0144)114(41622<---=-++-k k k k k k 则 即0.1-k 1k 4k 4kx -x 22>+++故f(x)的定义域为实数集R 7解:(1)-=+++=11x x y 22x x-=++11x 12x 43)21(x 12++;而,3443)21(x 102≤++<则).1,31[1x x 22-∈+++=x x y (2)]23,23[3)6sin(23sin cos +-∈++=++x x x π,则].23,23[3sin cos 7+-∈++=x x y(3),则由1076312≤++-≤x x .1)763lg(02≤++-≤x x(4) 133212122-+-=-+-=x x x x x y ,则0)3()3(22=+++-y x y x , ,01522≥--=∆y y 得.35-≤≥y y 或法二:=-+-=1212x x y 1)1(212+-+-x x ;则 =-+-|)1(212|x x 4|)1(|2|12|≥-+-x x 即或4)1(212≥-+-x x 4)1(212-≤-+-x x 则]3,(),5[1212--∞+∞∈-+-=或x x y (5) 令,413t x =-则44)1(21413322≤+--=-+-=t x x y(6)=-++-=344342x x x y 4)12(342-++-x x当).,23[,2343min +∞∈==y y x 则时, (7) ,11ln 21y yx e e e e y xx x x -+=+-=--得由即.11,011<<->-+y y y 则 (8))23lg ,45(lg )211lg(212lg 11122lg 1∈+=+=-++=x x x x x y y 得,由则).54lg 1,32lg 1++∈(y (9) ]3,0[)21arccos(3π∈-=x y ;(10) ∴∈-],3,0[12x]2,6[12ππ∈-=x arcctgy8 解:令t x =+14,则即,112t 11t 5)(2--+=t t f ∆≡--+=112x 11x 5)(2x x f y 则.01111)52(2=--+-y x y yx当0=y 时,有意义;当0≠y 时,.,0R y ∈>∆即9解:(1)2x 2y +--=由得反函数为212x y -=.其定义域和值域为.1,0≤≤y x(2)由1x 5x 2y +=得反函数为x x y 52-=.其定义域和值域为.51,52-≠≠y x 10证明:对使,1,00Mx M =∃>∀M M >+=+=1x 11y 2,则2x 11y +=无上界.但对,0≠∀x 2x 11y +=>1,则任何小于1的数都是2x 11y +=的下界.11 证明: 由于f(x)是有界函数,则.|)(|,,0M x f D x M <∈∀>∃有对而g(x)没有上界,则对.)(,,0N x g D x N >∈∃>∀有则W M N x g x f ∆≡->+)()(对使,,0x W ∃>∀W x g x f >+)()(,则f(x)与g(x)的和在定义域D 上无上界. 12 解:.),0[,2.822y 2上单调递增当,令+∞∈=++-==u y x x u u u在上单调递增当而.)1,2[.822-∈++-=x x x u .]4,1[上单调递减∈x 则8x 2x 22y ++-=在上单调递增当.)1,2[-∈x .]4,1[上单调递减∈x13. (1)奇函数 (2)偶函数 (3)非奇非偶函数 (4)非奇非偶函数 (5)偶函数 (6)偶函数14解: )211a 1g(-x)(f (-x)x-+-=)21a-1a g(-x)(x x +=f (x))211a 1g(x)(x =+-= 则)(x f 是偶函数. 15解: 则-f (x),x 1x 1lgf (-x)=-+=.它是奇函数)1,1(,0x1x 1-∈>-+x 得定义域为而 .)1,1(x 1x 1上单调递减在而-∈-+x 则x1x 1lg y +-=.)1,1(上单调递减在-∈x 16解:(1) =++==)1lg(-x f(-x)y 2x =++)1lg(-x 2x ).()1lg(x -2x f x -=++则f(x)的定义域为R x ∈,它是奇函数.(2)由和)1lg(x y 2++=x ,110110)1lg(-x y -222⎪⎩⎪⎨⎧+-=-++=++=-xx x x x y y 得 则即y y x 1021102⋅-=.102110)(21xx x f ⋅-=- (3) 则由于,11x 2≥++x ),0[)1lg(x f(x)y 2+∞∈++==x(4) 对),()(,2121x f x f x x <<∀.f(x)在其定义域上是增函数则 17解:当0x <时,0x ->即.2x x f(-x)2++=又f(x)是奇函数,则)()(x f x f -=-则.2x x f(x)2---= 18解:则,cosx sinx 1cosx -sinx 1f (-x)+--=++++=+cosx sinx 1cosx -sinx 1f (x)f (-x)cosxsinx 1cosx-sinx 1+--=0则.cosxsinx 1cosx-sinx 1f (x)是奇函数函数+++=19解:(1)a,632z y x ===令 1.a ,R z y,x,>∈+则由于.log ,log ,log 632a z a y a x ===即6log log 6log 66,3log log 3log log 33,log 22226223332aa z a a a y a x ======。
初等代数研究课后习题20071115033 数学院 07(1) 杨明1、证明自然数的顺序关系具有对逆性与全序性,即(1)对任何N b a ∈,,当且仅当b a <时,a b >.(2))对任何N b a ∈,,在b a <,b a =,b a >中有且只有一个成立.证明:对任何N b a ∈,,设a A ==,b B ==(1)“⇒” b a <,则B B ⊂∃,,使,~B A ,A B B ~,⊃∴,a b >∴“⇐” a b >,则B B ⊂∃,,使A B ~,,B B A ⊂∴,~,b a <∴综上 对任何N b a ∈,,b a <⇔a b >(2)由(1)b a <⇔a b > b a <∴与b a >不可能同时成立,假设b a <∴与b a =同时成立,则B B ⊂∃,,使,~B A 且B A ~, ,~B B ∴与B 为有限集矛盾,b a <∴与b a =不可能同时成立,综上,对任何N b a ∈,,在b a <,b a =,b a >中有且只有一个成立..2、证明自然数的加法满足交换律.证明:对任何N b a ∈,设M 为使等式a b b a +=+成立的所有b 组成的集合先证 a a +=+11,设满足此式的a 组成集合k ,显然有1+1=1+1成立φ≠∈∴k 1,设k a ∈,a a +=+11,则+++++++=+=+==+a a a a a 1)1()1()(1k a ∈∴+,N k =∴, 取定a ,则1M φ∈≠,设,b M a b b a ∈+=+,则 ()()a b a b b a b a +++++=+=+=+ ,b M M N +∴∈∴= ∴ 对任何N b a ∈,,a b b a +=+3、证明自然数的乘法是唯一存在的证明:唯一性:取定a ,反证:假设至少有两个对应关系,f g ,对b N ∀∈,有 (),()f b g b N ∈,设M 是由使()()f b g b =成立的所有的b 组成的集合, ()()1f b g b a ==⋅ 1M φ∴∈≠ 设b N ∈则()()f b g b =()()f b a g b a ∴+=+ ()()f b g b ++∴=,b M +∴∈,M N ∴= 即b N ∀∈,()()f b g b =乘法是唯一的存在性:设乘法存在的所有a 组成集合K 当1a =时,b N ∀∈,111,1111b b b b ++⋅=⋅==+=⋅+ φ≠∈∴k 1,设a K ∈,b N ∀∈, 有,a b 与它对应,且1a a ⋅=,ab ab a +=+,对b N ∀∈,令a b ab b +=+ 1111a a a a ++⋅=⋅+=+=1()(1)a b ab b ab a b ab b a a b a ++++++=+=+++=+++=+a K +∴∈ K N ∴= 即乘法存在p24—5、解:满足条件的A 有1{1,2}A =,2{1,2,3}A =,3{1,2,4}A =,4{1,2,5}A = 5{1,2,3,4}A =,6{1,2,3,5}A =,7{1,2,4,5}A =,8{1,2,3,4,5}A = 123456782,3,4,5A A A A A A A A ========∴========基数和为23343528+⨯+⨯+= p24—6、证明:,A a B b ==,A 中的x 与B 中的y 对应 A B ab ∴⨯=,B A ba ab ∴⨯==A B ab ⨯= A B A B B A ∴⨯=⋅=⨯p24—8、证明:1)3+4=73134++== 3231(31)45++++=+=+== 3332(32)56++++=+=+==3433(33)67++++=+=+==2)3412⋅= 313⋅= 32313136+⋅=⋅=⋅+=33323239+⋅=⋅=⋅+=343333312+⋅=⋅=⋅+=p24—12、证明:1)()m n m n +++++=+()1(1)m n m n m n m n +++++++=++=++=+2)()mn nm m +++=+ ()1(1)mn mn mn m nm m ++++=+=++=+p26—36、已知(,)f m n 对任何,m n N ∈满足(1,)1(1,1)(,2)(1,1)(,(1,))f n n f m f m f m n f m f m n =+⎧⎪+=⎨⎪++=+⎩求证:1)(2,)2f n n =+2)(3,)22f n n =+3)1(4,)22n f n +=-证明:1)当1n =时,(2,1)(11,1)(1,2)2112f f f =+==+=+结论成立,假设n k =时,结论成立,即(2,)2f k k =+,当1n k =+时,(2,1)(11,1)(1,(2,))(1,2)(2)1(1)2f k f k f f k f k k k +=++==+=++=++ 所以对一切自然数结论都成立2)当1n =时,(3,)(21,)(2,2)22212f n f n f =+==+=⋅+结论成立 假设n k =时,结论成立,即(3,)22f k k =+当1n k =+时,(3,1)(21,1)(2,(3,))(2,22)2222(1)2f k f k f f k f k k k +=++==+=++=++ 所以对一切自然数结论都成立3)当1n =时,11(4,1)(31,1)(3,2)22222f f f +=+==⨯-=-结论成立 假设n k =时,结论成立,即1(4,)22k f k +=- 当1n k =+时,112(4,1)(3,(4,))(3,22)2(22)222k k k f k f f k f ++++==-=-+=-所以对一切自然数结论都成立p62—1、证明定理2.1证明:[,],[,]a b c d Z ∀∈,[,][,][,]a b c d a c b d +=++因为自然数加法满足交换律[,][,]a c b d c a d b ∴++=++而[,][,][,]c d a b c a d b +=++[,][,][,][,]a b c d c d a b ∴+=+[,],[,],[,]a b c d e f Z ∀∈,[,][,][,][,][,][(),()]a b c d e f a c b d e f a c e b d f ++=+++=++++以为自然数满足加法结合律([,][,])[,][,]([,][,])a b c d e f a b c d e f ∴++=++ 即整数加法满足交换律和结合律p62—2、已知[,],[,]a b c d Z ∈,求证[,][,]a b c d =的充要条件是[,][,][1,1]a b c d -= 证明:“⇒” 已知[,][,]a b c d =则a d b c +=+[,][,][,][1,1]a b c d a d b c ∴-=++=“⇐” 已知[,][,][1,1]a b c d -=则[,][1,1]a d b c ++=,a d b c +=+ [,][,]a b c d ∴=p62—4、已知N b a ∈,,求证([,])[,]a b a b --=证明:[,][,]a b b a -= ([,])[,][,]a b b a a b --=-=p62—5、已知[,],[,]a b c d Z ∈,求证([,][,])[,][,]a b c d a b c d --=-+证明:左边([,][,])[,][,]a b c d a d b c b c a d --=-++=++右边[,][,][,][,][,]a b c d b a c d b c a d -+=+=++所以左边等于右边([,][,])[,][,]a b c d a b c d ∴--=-+p62—7、已知,,a b c N ∈,求证当且仅当a d b c +<+时[,][,]a b c d <证明:“⇒” 已知a d b c +<+,[,][,][,]a b c d a d b c -=++因为 a d b c +<+ [,]a d b c ∴++是负数,[,][,]a b c d ∴< “⇐” 已知[,][,]a b c d <则[,][,][,]a b c d a d b c -=++因为[,]a d b c ++是负数,a d b c ∴+<+p62—9、已知,Z αβ∈,求证:1)αβαβ+≤+ ,2) αβαβ=证明:设[,],[,]a b c d αβ== 1)[,]a c b d αβ+=++ ()()a c b d αβ∴+=+-+而,a b c d αβ=-=-()()()()a c b d a b c d a b c d +-+=-+-≤-+-αβαβ∴+≤+2)[,]ac bd ad bc αβ=++ ()ac bd ad bc αβ∴=+-+而,a b c d αβ=-=-()()()()()ac bd ad bc a c d b d c a b c d a b c d +-+=-+-=--=-- αβαβ∴=p63—12、n 名棋手每两个比赛一次,没有平局,若第k 名胜负的次数各为,k k a b ,1,2,........,k n =,求证:2222221212......n n a a a b b b +++=+++ 证明:对于(1,2,...,)k a k n =,必存在一个(1,2,...,)j b j n =使得k j a b =⇒22(,1,2,...,)k j a b k j n == 2222221212......n n a a a b b b ∴+++=+++p63—16、已知10p a b -,10p c d -,求证p ad bc -证明:由已知:,s t Z ∃∈使10a b ps -=,10c d pt -=⇒ 10,10b a ps d c pt =-=-10(10)()ad bc ac apt ac cps p cs at ∴-=---=-p ad bc ∴-p63—17、设2不整除a ,求证281a +证明:因为2不整除a ,所以存在唯一一对,q r Z ∈,使2a q r =+,其中02r <<⇒1r =,22441a q q ∴=++⇒214(1)a q q -=+ 281a ∴-p63—20、设a Z ∈,求证(1)(2)(3)1a a a a ++++是奇数的平方证明:22222(1)(2)(3)1[(1)1](1)[(2)(2)1]1[(1)(1)][(2)(2)]1(1)(2)2(1)(2)1[(1)(2)1]a a a a a a a a a a a a a a a a a a ++++=+-+++++=+-+++++=++-+++=++- 1,2a a ++肯定一奇一偶(1)(2)a a ∴++肯定为偶数(1)(2)1a a ∴++-肯定为奇数p63—22、证明:前n 个自然数之和的个位数码不能是2、4、7、9证明:前n 个自然数的和为(1)2n n + 因为:n 个自然数的和仍为自然数∴ 1+n 与n 中必定一个为奇数一个为偶数若个位数码为2则1+n 与n 的个位数码只能是1,4或4,1而(1+n )- n=1 ∴个位数码不能为2若个位数码为4则1+n 与n 的个位数码只能是1,8或8,1也不可能成立若个位数码为7则1+n 与n 的个位数码有2种可能,则2,7或1,14也不可能成立,若个位数码为9则1+n 与n 的个位数码有2种可能,即2,9或1,18也不可能成立,综上,前n 个自然数和的个位数码不能是2,4,7,9p63—26、证明2.3定理1(12,,......,n a a a )=(12,,......n a a a )证明:因为:(12,,......,n a a a )是12,,......n a a a 的公因数中的最大数所以R 需考虑非负整数 ∴(12,,......,n a a a )=(12,,......n a a a ) p63—29、证明2.3定理4的推论(,)1a b =的充要条件是有,x y Z ∈使得1ax by += 证明:因为(,)1a b = ,a b ∴不全为0“⇒” 由定理4 ,x y Z ∃∈使(,)1ax by a b +==“⇐” 设(,)a b d =则,d a d b ,d ax by ∴+ 1d ∴ (,)1d a b ∴== p63—30、证明2.3定理6及其推论。