第九章
重积分
1
§9.2 二重积分的计算
一、利用直角坐标计算二重积分
二、利用极坐标计算二重积分
三、小结
微积分Ⅰ
第九章
重积分
2
一、利用直角坐标计算二重积分
1、积分区域的类型 设积分区域 D 可以用不等式 1 ( x ) y 2 ( x ), a x b 来表示, 则称 D 为 X - 型区域, 其中函数 1 (x)、 2 (x) 在区间 [a, b] 上连续.
微积分Ⅰ
第九章
重积分
22
例 7 求两个底圆半径都等于 R 的直交圆柱面所
围成的立体的体积 V.
z
2 2
解 设两个直圆柱方程为
2 2 2
x y R , x z R . 由立体关于坐标平面的对 o R y 称性可知, 所求体积为第一卦 限部分体积的 8 倍. x ∵所求立体在第一卦限部 分可看成是一个曲顶柱体, 它的顶为柱面 z R2 x 2 ,
若改变该二次积分的次序, 则 D 变为 Y - 型区域,
微积分Ⅰ
第九章
重积分
15
2 D {( x , y ) | 0 y 1, 1 1 y x 2 y }, 即
dx
0
1
2 x x2
0
2 y
f ( x, y)dy dx
1
2
2 x
0
f ( x, y)dy
f ( x , y )d a [ ( x ) f ( x, y)dy]dx.
D
b
上式右端的积分称为先对 y、后对 x 的二次积分. 就是说, 先把 x 看作常数, 把 f (x, y) 只看作 y 的函数, 并 对 y 计算从 1(x) 到 2(x) 的定积分; 然后把所得的结 果 (是 x 的函数) 再对 x 计算在区间 [a, b] 上的定积分. 这个先对 y、后对 x 的二次积分也常记作