小升初经典奥数题 (1)
- 格式:docx
- 大小:226.31 KB
- 文档页数:16
小升初奥数题必考100道及答案(完整版)题目1:有一个两位数,十位上的数字是个位上数字的2 倍,如果把十位上的数字与个位上的数字交换,就得到另外一个两位数,把这个两位数与原两位数相加,和是132。
求原两位数。
答案:设原两位数个位上的数字为x,则十位上的数字为2x。
原两位数为20x + x = 21x,交换后的两位数为10x + 2x = 12x。
根据题意可得:21x + 12x = 132,33x = 132,x = 4。
所以原两位数为84。
题目2:小明从家到学校,如果每分钟走50 米,就要迟到3 分钟;如果每分钟走70 米,则可提前5 分钟到校。
小明家到学校的路程是多少米?答案:设小明按时到校要x 分钟。
50(x + 3) = 70(x - 5),50x + 150 = 70x - 350,20x = 500,x = 25。
路程为50×(25 + 3) = 1400(米)题目3:甲乙两数的和是180,甲数的1/4 等于乙数的1/5,甲乙两数各是多少?答案:设甲数为x,则乙数为180 - x。
1/4 x = 1/5 (180 - x),5x = 4×(180 - x),5x = 720 - 4x,9x = 720,x = 80,乙数为100。
题目4:某工厂有三个车间,第一车间的人数占三个车间总人数的25%,第二车间人数是第三车间的3/4,已知第一车间比第二车间少40 人,三个车间一共有多少人?答案:设三个车间总人数为x 人。
第一车间人数为0.25x,第二车间和第三车间人数之和为0.75x。
第二车间人数为0.75x×3/7 = 9/28 x。
0.25x + 40 = 9/28 x,9/28 x - 7/28 x = 40,2/28 x = 40,x = 560 人。
题目5:一桶油,第一次用去2/5 ,第二次用去10 千克,这时剩下的油正好是整桶油的一半。
这桶油有多少千克?答案:设这桶油有x 千克。
小升初奥数题及答案(经典版)小升初奥数题及答案(经典版)一、选择题1.某数除以6,商是4,余数是多少?A. 3B. 4C. 5D. 6答案:B2.甲数的3倍等于乙数的5倍,则甲数是乙数的几分之几?A. 3/5B. 4/5C. 5/4D. 5/3答案:C3.某数的两倍增加60等于90,这个数是多少?A. 15B. 20C. 45D. 60答案:A4.下一个“完全平方数”是什么?A. 64B. 81C. 88D. 100答案:B5.质数是指只能被1和自己整除的自然数,以下哪个数是质数?A. 1B. 10C. 17D. 27答案:C二、填空题1.现在是星期三,10天后是星期几?答案:星期六2.一个四位数,千位数是2,个位数是4,十位数比个位数多1,百位数比十位数多4,这个数是多少?答案:21443.一个大于1的自然数除以2,商是5,余数是4,这个数是多少?答案:14三、解答题1.小明家附近有一片矩形草坪,长20米,宽15米。
他想在草坪四周围上一圈木栅栏,每段木栅栏的长度都相等。
请问每段木栅栏的长度是多少米?答案:每条木栅栏的长度是20+15+20+15=70米。
2.某书店新到一批数学书籍,分为4个等分。
如果每个等分有55本书,那么这批书共有多少本?答案:这批书共有4 × 55 = 220本。
3.有20个小球,其中16个重量一样,其他4个也重量一样,但比那16个重的小球更重。
请问,至少需要用天平称几次可以找出重的小球?答案:只需要用天平称2次。
首先,我们将20个小球平分成两组,每组10个小球,然后只需要用天平比较这两组小球的重量,就可以确定出重的小球所在的一组。
接下来,我们再将这一组里的10个小球平分成两组,每组5个小球,再次用天平比较,就可确定出重的小球所在的一组。
最后,将这一组的5个小球中任意两个拿出来比较,就能找到重的小球。
总结:小升初奥数题及答案(经典版)涵盖了选择题、填空题和解答题。
小升初奥数题大全100道附答案(完整版)题目1:有三个连续的自然数,它们的乘积是60。
这三个数分别是多少?答案:3、4、5因为3×4×5 = 60题目2:一个数除以5 余3,除以6 余4,除以7 余5。
这个数最小是多少?答案:2085、6、7 的最小公倍数是210,这个数为210 - 2 = 208题目3:小明在计算两个数相加时,把一个加数个位上的6 错写成2,把另一个加数十位上的5 错写成3,所得的和是374。
原来两个数相加的正确结果是多少?答案:408一个加数个位上的6 错写成2,少加了4;把另一个加数十位上的5 错写成3,少加了20。
所以正确结果是374 + 4 + 20 = 408题目4:鸡兔同笼,共有30 个头,88 只脚。
求笼中鸡兔各有多少只?答案:鸡16 只,兔14 只假设全是鸡,有脚60 只,少了28 只脚。
每把一只鸡换成一只兔,脚多2 只,所以兔有28÷2 = 14 只,鸡有16 只题目5:在一条长400 米的环形跑道上,甲、乙两人同时从同一点出发,同向而行,甲每秒跑6 米,乙每秒跑4 米。
经过多少秒甲第一次追上乙?答案:200 秒甲每秒比乙多跑2 米,多跑一圈400 米追上,所以400÷2 = 200 秒题目6:一个长方体的棱长总和是80 厘米,长、宽、高的比是5 : 3 : 2。
这个长方体的体积是多少?答案:240 立方厘米长方体有4 条长、4 条宽、4 条高,所以一组长、宽、高的和为20 厘米。
按比例分配可得长10 厘米、宽6 厘米、高4 厘米,体积为10×6×4 = 240 立方厘米题目7:某工厂有三个车间,第一车间人数占总人数的1/4,第二车间人数是第三车间人数的3/4,第一车间比第二车间少40 人。
三个车间共有多少人?答案:560 人设总人数为x 人,则第一车间人数为1/4 x 人,第二车间人数为3/7×3/4 x 人,可列方程3/7×3/4 x - 1/4 x = 40题目8:一个分数,分子与分母的和是48,如果分子、分母都加上1,所得分数约分后是2/3。
小升初数学奥数题及答案小升初数学奥数题是许多学生在准备升学考试时会接触到的题目,它们通常比常规的数学题目更具挑战性,需要学生运用更高层次的逻辑思维和数学技巧。
以下是一些典型的小升初数学奥数题目及答案:题目1:小明有5个苹果,他想将这些苹果平均分给3个朋友,每个朋友至少得到一个苹果,问小明最多能分给每个朋友几个苹果?答案:小明可以将5个苹果中的3个分给3个朋友,每人得到1个,剩下的2个苹果,他可以给其中的两个朋友每人再分一个,这样每个朋友都得到了2个苹果。
题目2:在一个圆形的花坛周围,有10个等距离的点,每个点上都种了一棵树。
如果将这些树重新排列,使得任意两棵树之间的距离都相等,问最少需要移动多少棵树?答案:由于是圆形排列,我们可以将问题转化为将10个点平均分布在圆周上。
在这种情况下,最少需要移动的树的数量是5棵,因为每两棵树之间的距离是圆周的1/10,移动5棵树后,可以形成新的等距离排列。
题目3:有一串数字序列,每个数字都是前两个数字的和,序列开始为1, 1。
如果这个序列无限延长,那么第100个数字是奇数还是偶数?答案:这个序列是斐波那契数列,即1, 1, 2, 3, 5, 8, 13, ...。
观察数列可以发现,奇数和奇数相加得到偶数,偶数和奇数相加得到奇数。
由于序列开始是两个奇数,接下来的数字将是偶数,然后是奇数,以此类推。
因此,每三个数字会形成一个周期:奇数,偶数,奇数。
由于100除以3的余数是1,所以第100个数字将是奇数。
题目4:一个数字钟的时针和分针在12点整时重合。
如果时针和分针下一次重合需要多少分钟?答案:时针和分针重合的情况通常发生在每个小时的某个时刻。
由于时针每小时走30度(360度/12小时),而分针每分钟走6度(360度/60分钟),我们可以设置一个方程来解决这个问题。
设x为分钟数,那么有:\[ 30 + \frac{30}{60}x = 6x \]\[ 30 + 0.5x = 6x \]\[ 30 = 5.5x \]\[ x = \frac{30}{5.5} \]\[ x \approx 5.45 \]由于时间不能是小数,我们取最接近的整数,即5分钟。
小升初奥数题及答案解析过桥问题(1)1.一列火车经过南京长江大桥,大桥长6700米,这列火车长140米,火车每分钟行400米,这列火车通过长江大桥需要多少分钟?分析:这道题求的是通过时间。
根据数量关系式,我们知道要想求通过时间,就要知道路程和速度。
路程是用桥长加上车长。
火车的速度是已知条件。
总路程:(米)通过时间:(分钟)答:这列火车通过长江大桥需要17.1分钟。
2.一列火车长200米,全车通过长700米的桥需要30秒钟,这列火车每秒行多少米?分析与解答:这是一道求车速的过桥问题。
我们知道,要想求车速,我们就要知道路程和通过时间这两个条件。
可以用已知条件桥长和车长求出路程,通过时间也是已知条件,所以车速可以很方便求出。
总路程:(米)火车速度:(米)答:这列火车每秒行30米。
3.一列火车长240米,这列火车每秒行15米,从车头进山洞到全车出山洞共用20秒,山洞长多少米?分析与解答:火车过山洞和火车过桥的思路是一样的。
火车头进山洞就相当于火车头上桥;全车出洞就相当于车尾下桥。
这道题求山洞的长度也就相当于求桥长,我们就必须晓得总路程和车长,车长是已知条件,那末我们就要使用题中所给的车速和通过时间求出总路程。
总路程:山洞长:(米)答:这个山洞长60米。
和倍问题1.XXX和妈妈的年龄加在一起是40岁,妈妈的年龄是XXX年龄的4倍,问XXX和妈妈各是多少岁?“妈妈的年龄是XXX的4倍”,我们把XXX的年龄作为1倍,这样XXX和妈妈年龄的和就相当于XXX年龄的5倍是40岁,也就是(4+1)倍,也可以理解为5份是40岁,那么求1倍是多少,接着再求4倍是多少?(1)秦奋和妈妈年龄倍数和是:4+1=5(倍)(2)秦奋的年龄:40÷5=8岁(3)妈妈的年岁:8×4=32岁综合:40÷4=32岁(4+1)=8岁8×为了保证此题的正确,验证(1)8+32=40岁(2)32÷8=4(倍)计算成效符合条件,以是解题正确。
小升初常考奥数练习题及答案【三篇】1和差问题已知两数的和与差,求这两个数。
【口诀】和加上差,越加越大;除以2,便是大的;和减去差,越减越小;除以2,便是小的。
例:已知两数和是10,差是2,求这两个数。
按口诀,则大数=(10+2)/2=6,小数=(10-2)/2=4 2差比问题【口诀】我的比你多,倍数是因果。
分子实际差,分母倍数差。
商是一倍的,乘以各自的倍数,两数便可求得。
例:甲数比乙数大12且甲:乙=7:4,求两数。
先求一倍的量,12/(7-4)=4,所以甲数为:4X7=28,乙数为:4X4=16。
3年龄问题【口诀】岁差不会变,同时相加减。
岁数一改变,倍数也改变。
抓住这三点,一切都简单。
例1:小军今年8 岁,爸爸今年34岁,几年后,爸爸的年龄是小军的3倍?分析:岁差不会变,今年的岁数差点34-8=26,到几年后仍然不会变。
已知差及倍数,转化为差比问题。
26/(3-1)=13,几年后爸爸的年龄是13X3=39岁,小军的年龄是13X1=13岁,所以应该是5年后。
例2:姐姐今年13岁,弟弟今年9岁,当姐弟俩岁数的和是40岁时,两人各应该是多少岁?分析:岁差不会变,今年的岁数差13-9=4几年后也不会改变。
几年后岁数和是40,岁数差是4,转化为和差问题。
则几年后,姐姐的岁数:(40+4)/2=22,弟弟的岁数:(40-4)/2=18,所以答案是9年后。
4和比问题已知整体,求部分。
【口诀】家要众人合,分家有原则。
分母比数和,分子自己的。
和乘以比例,就是该得的。
例:甲乙丙三数和为27,甲:乙:丙=2:3:4,求甲乙丙三数。
分母比数和,即分母为:2+3+4=9;分子自己的,则甲乙丙三数占和的比例分别为2/9,3/9,4/9。
和乘以比例,则甲为27X2/9=6,乙为27X3/9=9,丙为27X4/9=12 5鸡兔同笼问题【口诀】假设全是鸡,假设全是兔。
多了几只脚,少了几只足?除以脚的差,便是鸡兔数。
例:鸡免同笼,有头36 ,有脚120,求鸡兔数。
小升初奥数题5篇1.小升初奥数题篇一1、765×213÷27+765×327÷272、(101+103+......+199)-(90+92+ (188)3、9×17+91÷17-5×17+45÷174、(9999+9997+......+9001)-(1+3+ (999)5、9039030÷430436、(873×477-198)÷(476×874+199)7、12+16+111112+20+30+428、99999×22222+33333×333349、1000+999-998+997+996-995+……+106+105-104+103+102-10110、甲乙两个水管单独开,注满一池水,分别需要20小时,16小时。
丙水管单独开,排一池水要10小时,若水池没水,同时打开甲乙两水管,5小时后,再打开排水管丙,问水池注满还需要多少小时?2.小升初奥数题篇二老师从写有1~13的13张卡片中抽出9张,分别贴在9位同学的额头上。
大家能看到其他8人的数但看不到自己的数。
(9位同学都诚实而且聪明,且卡片6、9不能颠倒)老师问:现在知道自己的数的约数个数的同学请举手。
有两人举手。
手放下之后,有三个人有如下的对话:甲:我知道我是多少了。
乙:虽然我不知道我的数是多少,但我已经知道自己的奇偶性了。
丙:我的数比乙的小2,比甲的大1。
那么,没有被抽出的四张牌上数的和是?【答案】首先,列举1~13所有数约数个数。
每个人只能看到另外8个人头上的数,而要看到8个数就确定自己的数的约数个数,只能是吧约数个数为1、3、4、6的都看到了。
所以没抽出的四张牌必定约数个数为2个,都是质数。
也就是举手的两名同学头上的数。
甲说:我知道我是多少了。
所以甲头上的数不是质数。
乙说:虽然我不知道我的数是多少,但我已经知道自己的奇偶性了。
小升初最常考奥数题100道及答案(完整版)1. 一桶水可灌3/4 壶水,1 壶水可以冲2 杯水,1 桶水可以冲几杯水?答案:3/4×2 = 3/2 = 1.5(杯)2. 小明看一本书,第一天看了全书的1/4,第二天看了全书的2/5,第二天比第一天多看了21 页,这本书一共有多少页?答案:21÷(2/5 - 1/4)= 21÷3/20 = 140(页)3. 有一批货物,第一天运走了总数的2/5,第二天运走的货物比总数的1/4 多4 吨,这时还剩17 吨,这批货物共有多少吨?答案:(17 + 4)÷(1 - 2/5 - 1/4)= 21÷7/20 = 60(吨)4. 某工厂有三个车间,第一车间的人数占三个车间总人数的25%,第二车间人数是第三车间的3/4,已知第一车间比第二车间少40 人,三个车间一共有多少人?答案:40÷[(1 - 25%)×3/(3 + 4) - 25%] = 40÷[3/7 - 1/4] = 560(人)5. 师徒两人合做一批零件,徒弟做了总数的2/7,比师傅少做21 个,这批零件有多少个?答案:21÷(1 - 2/7 - 2/7)= 21÷3/7 = 49(个)6. 仓库里有一批化肥,第一次取出总数的2/5,第二次取出总数的1/3 少12 袋,这时仓库里还剩24 袋,两次共取出多少袋?答案:(24 - 12)÷(1 - 2/5 - 1/3)= 12÷4/15 = 45(袋),45 - 24 = 21(袋)7. 甲、乙、丙三个数的和是110,甲与乙的比是3:2,乙与丙的比是4:1,乙数是多少?答案:甲:乙= 3:2 = 6:4,乙:丙= 4:1,所以甲:乙:丙= 6:4:1,乙数:110×4/(6 + 4 + 1) = 408. 一辆汽车从甲地开往乙地,行了全程的3/8,离乙地还有135 千米,两地之间的公路长多少千米?答案:135÷(1 - 3/8)= 216(千米)9. 修一条路,已修的与未修的比是1:5,又修了490 米后,已修的与未修的比是3:1,这时还有多少米未修?答案:490÷(3/4 - 1/6)×1/4 = 180(米)10. 某校有学生465 人,其中女生的2/3 比男生的4/5 少20 人,男、女生各有多少人?答案:设男生有x 人,4/5 x - 2/3×(465 - x) = 20 ,解得x = 225,女生人数:465 - 225 = 240(人)11. 水果店里卖出的梨的重量是苹果的5/7,梨比苹果少卖30 千克,梨卖了多少千克?答案:30÷(1 - 5/7)×5/7 = 75(千克)12. 一筐苹果卖掉1/5 后,又卖掉6 千克,这时卖出的重量正好是剩下的1/2,这筐苹果原来有多少千克?答案:6÷(1/3 - 1/5)= 45(千克)13. 甲、乙两班共有84 人,甲班人数的5/8 与乙班人数的3/4 共有58 人,甲、乙两班各有多少人?答案:设甲班有x 人,5/8 x + 3/4×(84 - x) = 58 ,解得x = 40,乙班:84 - 40 = 44(人)14. 学校买来两种图书共220 本,取出甲种图书的1/4 和乙种图书的1/5 共50 本借给五年级(1)班同学阅读,问甲、乙两种图书各买来多少本?答案:设甲种图书有x 本,1/4 x + 1/5×(220 - x) = 50 ,解得x = 120,乙种图书:220 - 120 = 100(本)15. 某工厂第一车间有工人150 人,第二车间有工人90 人,要使第一车间人数是第二车间的2 倍,需要从第二车间调多少人到第一车间?答案:(150 + 90)÷(2 + 1) = 80(人),90 - 80 = 10(人)16. 甲、乙两堆煤共180 吨,甲堆煤的1/3 比乙堆煤的2/3 多18 吨,甲、乙两堆煤各有多少吨?答案:设甲堆煤有x 吨,1/3 x - 2/3×(180 - x) = 18 ,解得x = 138,乙堆煤:180 - 138 = 42(吨)17. 学校图书馆有科技书和文艺书共3200 本,科技书的本数是文艺书的4/5,科技书和文艺书各有多少本?答案:文艺书:3200÷(1 + 4/5)= 16000/9 ≈1778(本),科技书:3200 - 1778 = 1422(本)18. 一辆汽车从甲地到乙地,已经行了全程的1/5,再向前行50 千米,就比全程的2/3 少6 千米,求甲乙两地的距离。
【导语】奥数是奥林匹克数学竞赛的简称。
1934年—1935年,前苏联开始在列宁格勒和莫斯科举办中学数学竞赛,并冠以数学奥林匹克竞赛的名称,1959年在布加勒斯特举办第xx届国际数学奥林匹克竞赛。
以下是整理的《2021年愚⼈节简短句⼦3篇》相关资料,希望帮助到您。
1.⼩升初奥数题及答案 ⽤1~9可以组成______个不含重复数字的三位数:如果再要求这三个数字中任何两个的差不能是1,那么可以组成______个满⾜要求的三位数? 答案与解析: (1)9×8×7=504个。
(2)504-(6+5+5+5+5+5+5+6)×6-7×6=210个; (减去有2个数字差是1的情况,括号⾥8个数分别表⽰这2个数是12,23,34,45,56,67,78,89的情况,×6是对3个数字全排列,7×6是三个数连续的123、234、345、456、567、789这7种情况)。
2.⼩升初奥数题及答案 龟兔赛跑,全程5.2千⽶,兔⼦每⼩时跑20千⽶,乌龟每⼩时跑3千⽶,乌龟不停地跑;兔⼦边跑边玩,它先跑了1分钟后玩了15分钟,⼜跑了2分钟后玩15分钟,再跑3分钟后玩15分钟,……。
那么先到达终点⽐后到达终点的快多少分钟? 答案与解析: 乌龟⽤时:5.2÷3×60=104(分钟);兔⼦总共跑了:5.2÷20×60=15.6(分钟)。
⽽我们有:15.6=1+2+3+4+5+0.6按照题⽬条件,从上式中我们可以知道兔⼦⼀共休息了5次,共15×5=75(分钟)。
所以兔⼦共⽤时:15.6+75=90.6(分钟)。
兔⼦先到达终点,⽐后到达终点的乌龟快:104-90.6=13.4(分钟)。
3.⼩升初奥数题及答案 ⼩华从甲地到⼄地,3分之1骑车,3分之2乘车;从⼄地返回甲地,5分之3骑车,5分之2乘车,结果慢了半⼩时。
已知,骑车每⼩时12千⽶,乘车每⼩时30千⽶,问:甲⼄两地相距多少千⽶? 解答:把路程当作1,得到时间系数 去时时间系数:1/3÷12+2/3÷30 返回时间系数:3/5÷12+2/5÷30 两者之差:(3/5÷12+2/5÷30)-(1/3÷12+2/3÷30)=1/75相当于1/2⼩时 去时时间:1/2×(1/3÷12)÷1/75和1/2×(2/3÷30)1/75 路程:12×〔1/2×(1/3÷12)÷1/75〕+30×〔1/2×(2/3÷30)1/75〕=37.5(千⽶)4.⼩升初奥数题及答案 ⽼奶奶家有20个鸡蛋,还养了⼀天能下⼀个蛋的⽼母鸡,如果她家⼀天吃两个鸡蛋,⽼奶奶家的鸡蛋可以连续吃多少天? 解答: (1)20个鸡蛋,每天吃2个 20÷2=10天,在这10天⾥,母鸡⼜下了10个鸡蛋 (2)10个鸡蛋,每天吃2个 10÷2=5天,在这5天⾥,母鸡⼜下了5个鸡蛋 (3)5个鸡蛋,每天吃2个 5÷2=2天……1个,在这2天⾥,母鸡⼜下了2个鸡蛋 (4)2个鸡蛋+余下的1个鸡蛋,每天吃2个 3÷2=1天……1个,在这1天⾥,母鸡⼜下了1个鸡蛋 (5)1个鸡蛋+余下的1个鸡蛋,每天吃2个 2÷2=1天 (6)总天数 10+5+2+1+1=19天5.⼩升初奥数题及答案 有⼀班同学去划船,他们算了⼀下,如果增加⼀条船,每条船正好坐6⼈;如果减少⼀条船,每条船正好坐9⼈。
周长:(高等难度)如图,把正方形ABCD的对角线AC任意分成10段,并以每一段为对角线作为正方形.设这10个小正方形的周长之和为P,大正方形的周长为L,则P与L的关系是______(填<,>,=)。
巧求周长部分题目:(高等难度)如图,长方形ABCD中有一个正方形EFGH,且AF=16厘米,HC=13厘米,求长方形ABCD 的周长是多少厘米。
年龄问题题目:(中等难度)甲、乙、丙三人年龄之和是94岁,且甲的2倍比丙多5岁,乙2倍比丙多19岁,问:甲、乙、丙三人各多大?【试题】刘老师搬一批书,每次搬15本,搬了12次,正好搬完这批书的一半。
剩下的书每次搬20本,还要几次才能搬完?【试题】小华每分拍球25次,小英每分比小华少拍5次。
照这样计算,小英5分拍多少次?小华要拍同样多次要用几分?【试题】同学们到车站义务劳动,3个同学擦12块玻璃。
(补充不同的条件求问题,编成两道不同的两步计算应用题)。
"照这样计算,9个同学可以擦多少块玻璃?"【试题】两个车间装配电视机。
第一车间每天装配35台,第二车间每天装配37台。
照这样计算,这两个车间15天一共可以装配电视机多少台?【试题】把7本相同的书摞起来,高42毫米。
如果把28本这样的书摞起来,高多少毫米?(用不同的方法解答)【试题】纺织厂运来一堆煤,如果每天烧煤1500千克,6天可以烧完。
如果每天烧1000千克,可以多烧几天?【试题】一台拖拉机5小时耕地40公顷,照这样的速度,耕72公顷地需要几小时1.一条路长100米,从头到尾每隔10米栽1棵梧桐树,共栽多少棵树?2.12棵柳树排成一排,在每两棵柳树中间种3棵桃树,共种多少棵桃树?一根200厘米长的木条,要锯成10厘米长的小段,需要锯几次?4.蚂蚁爬树枝,每上一节需要10秒钟,从第一节爬到第13节需要多少分钟?5.在花圃的周围方式菊花,每隔1米放1盆花。
花圃周围共20米长。
需放多少盆菊花?6.从发电厂到闹市区一共有250根电线杆,每相邻两根电线杆之间是30米。
从发电厂到闹市区有多远?7.王老师把月收入的一半又20元留做生活费,又把剩余钱的一半又50元储蓄起来,这时还剩40元给孩子交学费书本费。
他这个月收入多少元?8.一个人沿着大提走了全长的一半后,又走了剩下的一半,还剩下1千米,问:大提全长多少千米?9.甲在加工一批零件,第一天加工了这堆零件的一半又10个,第二天又加工了剩下的一半又10个,还剩下25个没有加工。
问:这批零件有多少个?10.一条毛毛虫由幼虫长到成虫,每天长一倍,16天能长到16厘米。
问它几天可以长到4厘米?11.一桶水,第一次倒出一半,然后倒回桶里30千克,第二次倒出桶中剩下水的一半,第三次倒出180千克,桶中还剩下80千克。
桶里原来有水多少千克?四年级有三个班,每班有两个班长,开班会时,每次每班只要一个班长参加。
第一次到会的有A,B,C;第二次到会的有B,D,E;第三次到会的有A,E,F。
请问哪两位班长是同班的?拳击比赛,有甲1,甲2,乙1,乙2,丙1,丙2,丁1,丁2共8名选手,其中甲1不需要和甲2比,乙1不需要和乙2比....问总共需要多少场比赛?(2005年第10届华杯赛决赛第14题)两条直线相交,四个交角中的一个锐角或一个直角称为这两条直线的"夹角"(见图4)。
如果在平面上画L条直线,要求它们两两相交,并且"夹角"只能是15°、30°、45°、60°、75°、90°之一,问:(1)L的最大值是多少?(2)当L取最大值时,问所有的"夹角"的和是多少?有4个自然数,用它们拼成四位数,其中最大数和最小数的和是11588,问拼成的四位数中第二小的数是______。
奇偶求和:(高等难度)下表中有18个数,选出5个数,使它们的和为28,你能否做到?为什么?ABC路程:(高等难度)A、B、C三地一次分布在由西向东的一条道路上,甲、乙、丙分别从A、B、C三地同时出发,甲、乙向东,丙向西。
乙、丙在距离B地18千米处相遇,甲、丙在B地相遇,而当甲在C地追上乙时,丙已经走过B地32千米。
试问:A、C间的路程是多少千米?个位数字:(高等难度)求的个位数字。
修水渠问题:(高等难度)某工程队预计30天修完一条水渠,先由18 人修了12 天后完成工程的一半,如果要提前9 天完成,还要增加多少人?AB间距:(高等难度)甲、乙两车分别同时从A 、B 两地相对开出,第一次在离A 地95 千米处相遇.相遇后继续前进到达目的地后又立刻返回,第二次在离B 地25 千米处相遇.求A 、B 两地间的距离下图大小两个正方形有一部分重合,两块没有重合的阴影部分面积相差是多少?(单位:厘米)舞蹈节目:(高等难度)一台晚会上有6个演唱节目和4个舞蹈节目。
问:(1)如果4个舞蹈节目要排在一起,有多少种不同的排列顺序?(2)如果要求每两个舞蹈节目之间至少安排一个演唱节目,一共有多少种不同的安排顺序?游泳路程:(高等难度)两名游泳运动员在长为30米的游泳池里来回游泳,甲的速度是每秒游1米,乙的速度是每秒游米,他们同时分别从游泳池的两端出发,来回共游了5分钟。
如果不计转向的时间,那么在这段时间内两人共相遇多少次?巧算公式:(高等难度)时间路程:(高等难度)甲、乙两地相距6千米,某人从甲地步行去乙地,前一半时间平均每分钟行80米,后一半时间平均每分钟行70米。
问他走后一半路程用了多少分钟?速算问题:(高等难度)如果两个四位数的差等于8921,那么就说这两个四位数组成一个数对,问这样的数对共有多少个?三角面积:(高等难度)在边长为1的正方形内随意放进9个点,证明其中必有3个点构成的三角形的面积不大于1 /8画圆:(高等难度)平面上画____个圆,再画一条直线,最多可以把平面分成44部分。
五位数能被3整除,它的最末三个数字组成的三位数能被2整除,求这个五位数.在43的右边补上三个数字,组成一个五位数,使它能被3,4,5整除,求这样的最小五位数.整除规律:(高等难度)6539724能被4,8,9,24,36,72中的哪几个数整除?五位数能被12整除,求这个五位数树间距:(高等难度)正方形操场四周栽了一圈树,每两棵树相隔5米。
甲乙二人同时从一个角出发,向不同的方向走去(如右图),甲的速度是乙的2倍,乙在拐了第一弯之后的第5棵树与甲相遇。
操场四周一共栽了多少棵树?从0,2,5,7四个数字中任选三个,组成能同时被2,5,3整除的数,并将这些数从小到大进行排列。
铅笔:(高等难度)小雪、刘星、小雨,他们的关系特别好,一天妈妈分别给他们三个人一些铅笔,小雪觉得自己铅笔很多,于是给了刘星和小雨一部分,结果刘星和小雨的铅笔数量在现有的基础上增加了倍,这时小雨又觉得自己铅笔多了,于是小雨又把自己现有的铅笔给了小雪和刘星一部分,结果小雪和刘星的铅笔数量也在现有的基础上增加了倍,此时刘星的铅笔当然多了,于是刘星也将自己现有的铅笔给了小雪和小雨一部分,结果也是小雪和小雨的铅笔数量在现有的基础上增加了倍,此时他们三个人各自数了数自己的铅笔,发现他们三个人的铅笔数量竟然一样多!但最后小雪发现自己现有的铅笔数量比原来却少了支,同学们你们知道妈妈原来分别给他们三个人各多少支铅笔吗?(2007年第五届走美五年级初赛第15题)如图,8个单位正方体拼成大正方体,沿着面上的格线,从A到B的最短路线共有()条.整除:(高等难度)六位数2003□□能被99整除,它的最后两位数是()计算:(高等难度)1-100的自然数中,最多可以选出多少个数,使得选出的数中,每两个数的和都是3的倍数?最多可以选出多少个数,使得选出的数中,每两个数的和都不是3的倍数?货物的重量:(高等难度)商店里有六箱重量不等的货物,分别装货15、16、18、19、20、31千克,有两位顾客买走了其中的5箱货物,而且一个顾客买的货物的重量是另一个顾客买的货物的2倍,问:商店剩下的一箱货物的重量是多少?小明家与学校相距6千米.每天小明都以一定的速度骑自行车去学校,恰好在上课前5分钟赶到。
这天,小明比平时晚出发了10分钟,于是他提速骑车,结果在上课前1分钟赶到了学校。
已知小明提速后的速度是平时的倍。
小明平时骑车的速度是每小时多少千米?把20个苹果分给3个小朋友,每人最少分3个,可以有多少种不同的分法?数字推理问题:(高等难度)用1、2、3、4、6、7、8、9这8个数组成的2个四位数,使这两个数的差最小(大减小),这个差最小是多少?图形:(高等难度)如图,长方形ABCD中,E为的AD中点,AF与BE、BD分别交于G、H,OE垂直AD于E,交AF于O,已知AH=5cm,HF=3cm,求AG.图形面积:(高等难度)直角三角形ABC的两直角边AC=8cm,BC=6cm,以AC、BC为边向形外分别作正方形ACD E与BCFG,再以AB为边向上作正方形ABMN,其中N点落在DE上,BM交CF于点T.问:图中阴影部分(与梯形BTFG)的总面积等于多少?应用题:(高等难度)我国某城市煤气收费规定:每月用量在8立方米或8立方米以下都一律收元,用量超过8立方米的除交元外,超过部分每立方米按一定费用交费,某饭店1月份煤气费是元,8月份煤气费是元,又知道8月份煤气用量相当于1月份的,那么超过8立方米后,每立方米煤气应收多少元?乒乓球训练(逻辑):(高等难度)甲、乙、丙三人用擂台赛形式进行乒乓球训练,每局2人进行比赛,另1人当裁判.每一局的输方去当下一局的裁判,而由原来的裁判向胜者挑战.半天训练结束时,发现甲共打了15局,乙共打了21局,而丙共当裁判5局.那么整个训练中的第3局当裁判的是_______.唐老鸭和米老师赛跑:(高等难度)唐老鸭与米老鼠进行一万米赛跑,米老鼠的速度是每分钟125米,唐老鸭的速度是每分钟100米。
唐老鸭手中掌握一种迫使米老鼠倒退的电子遥控器,通过这种遥控器发出第n 次指令,米老鼠就以原来速度的n×10%倒退一分钟,然后再按原来的速度继续前进。
如果唐老鸭想在比赛中获胜,那么它通过遥控器发出指令的次数至少是_____次。
逻辑推理:(高等难度)数学竞赛后,小明、小华、小强各获得一枚奖牌,其中一人得金牌,一人得银牌,一人得铜牌.王老师猜测:"小明得金牌;小华不得金牌;小强不得铜牌."结果王老师只猜对了一个.那么小明得___牌,小华得___牌,小强得___牌。
一副扑克牌(去掉两张王牌),每人随意摸两张牌,至少有多少人才能保证他们当中一定有两人所摸两张牌的花色情况是相同的?牛吃草:(高等难度)一水库原有存水量一定,河水每天均匀入库.5台抽水机连续20天可抽干;6台同样的抽水机连续15天可抽干.若要求6天抽干,需要多少台同样的抽水机?奇偶性应用:(高等难度)在圆周上有1987个珠子,给每一珠子染两次颜色,或两次全红,或两次全蓝,或一次红、一次蓝.最后统计有1987次染红,1987次染蓝.求证至少有一珠子被染上过红、蓝两种颜色。