第1章工程材料
- 格式:ppt
- 大小:3.22 MB
- 文档页数:56
工程材料学知识点第一章材料是有用途的物质。
一般将人们去开掘的对象称为“原料”,将经过加工后的原料称为“材料”工程材料:主要利用其力学性能,制造结构件的一类材料。
主要有:建筑材料、结构材料力学性能:强度、塑性、硬度功能材料:主要利用其物理、化学性能制造器件的一类材料.主要有:半导体材料(Si)磁性材料压电材料光电材料金属材料:纯金属和合金金属材料有两大类:钢铁(黑色金属)非铁金属材料(有色金属)非铁金属材料:轻金属(Ni以前)重金属(Ni以后)贵金属(Ag,Au,Pt,Pd)稀有金属(Zr,Nb,Ta)放射性金属(Ra,U)高分子材料:由低分子化合物依靠分子键聚合而成的有机聚合物主要组成:C,H,O,N,S,Cl,F,Si三大类:塑料(低分子量):聚丙稀树脂(中等分子量):酚醛树脂,环氧树脂橡胶(高分子量):天然橡胶,合成橡胶陶瓷材料:由一种或多种金属或非金属的氧化物,碳化物,氮化物,硅化物及硅酸盐组成的无机非金属材料。
陶瓷:结构陶瓷Al2O3,Si3N4,SiC等功能陶瓷铁电压电材料的工艺性能:主要反映材料生产或零部件加工过程的可能性或难易程度。
材料可生产性:材料是否易获得或易制备铸造性:将材料加热得到熔体,注入较复杂的型腔后冷却凝固,获得零件的能力锻造性:材料进行压力加工(锻造、压延、轧制、拉拔、挤压等)的可能性或难易程度的度量焊接性:利用部分熔体,将两块材料连接在一起能力第二章(详见课本)密排面密排方向fcc{111}<110>bcc{110}<111>体心立方bcc面心立方fcc密堆六方cph点缺陷:在三维空间各方向上尺寸都很小,是原子尺寸大小的晶体缺陷。
类型:空位:在晶格结点位置应有原子的地方空缺,这种缺陷称为“空位”。
间隙原子:在晶格非结点位置,往往是晶格的间隙,出现了多余的原子。
它们可能是同类原子,也可能是异类原子。
异类原子:在一种类型的原子组成的晶格中,不同种类的原子占据原有的原子位置。
工程材料第一章一、名词解释晶体晶格晶胞晶面晶向晶体结构各向异性各向同性合金组元二元合金相固溶体金属化合物组织工艺性能使用性能单体二、填空题1、三种常见金属的晶体结构为体心立方晶格、面心立方晶格。
和密排六方晶格。
2、体心立方晶胞中原子个数为 2 ;面心立方晶胞中原子个数为4;密排六方晶体胞中原子个数为 6 。
3、同非金属相比,金属的主要特性是良好的导电性、导热性、塑性,不透明,有光泽,正的电阻温度系数。
4、晶体与非晶体结构上的最根本的区别是晶体内部的原子是按一定几何形状规则排列的,而非晶体则不是。
5、一般可把材料的结合键分为离子键、共价键、金属键和分子键四种。
6、一般将工程材料分为金属材料、高分子材料、陶瓷材料和复合材料等四大类。
7、高分子材料种类很多,工程上通常根据机械性能和使用状态将其分为四大类工程塑料、合成纤维、合成橡胶和胶黏剂。
8、固态物质按其原子(离子或分子)的聚集状态可分为两大类:晶体和非晶体;固态金属一般情况下均是晶体。
9、晶体中的缺陷按其几何形式的特点可分为点缺陷、线缺陷和面缺陷。
10、点缺陷主要有空位、间隙原子和异类原子等;面缺陷主要有晶界和亚晶界等;线缺陷又称为错位。
11、固态金属中有两类基本相:固溶体和金属化合物。
12、按溶质原子在溶剂中的溶解度,固溶体可分为有限固溶体和无限固溶体。
13、按溶质原子在溶剂中的分布是否有规律,固溶体可分为无序固溶体和有序固溶体。
14、金属化合物主要有正常价化合物、电子化合物、间隙化合物等,这类化合物性能的特点是熔点较高、硬度高、脆性大;合金中含有金属化合物时,强度、硬度和耐磨性提高,而和塑性和韧性降低。
15、金属材料的性能包含工艺性能和使用性能两方面。
16、金属材料的工艺性能主要有铸造性能、锻造性能、焊接性能、切削加工性能、等;力学性能主要有强度、塑性、硬度、韧性、疲劳强度等。
17、大分子链可呈现几种不同几何形状,主要有线型、支化型和体型等三类。
第一章工程材料根底知识参考答案1.金属材料的力学性能指标有哪些?各用什么符号表示?它们的物理意义是什么?答:常用的力学性能包括:强度、塑性、硬度、冲击韧性、疲劳强度等。
强度是指金属材料在静荷作用下抵抗破坏〔过量塑性变形或断裂〕的性能。
强度常用材料单位面积所能承受载荷的最大能力〔即应力σ,单位为Mpa〕表示。
塑性是指金属材料在载荷作用下,产生塑性变形〔永久变形〕而不被破坏的能力。
金属塑性常用伸长率δ和断面收缩率ψ来表示:硬度是指材料抵抗局部变形,特别是塑性变形、压痕或划痕的能力,是衡量材料软硬程度的指标,是一个综合的物理量。
常用的硬度指标有布氏硬度〔HBS、HBW〕、洛氏硬度〔HRA、HRB、HRC等〕和维氏硬度〔HV〕。
以很大速度作用于机件上的载荷称为冲击载荷,金属在冲击载荷作用下抵抗破坏的能力叫做冲击韧性。
冲击韧性的常用指标为冲击韧度,用符号αk表示。
疲劳强度是指金属材料在无限屡次交变载荷作用下而不破坏的最大应力称为疲劳强度或疲劳极限。
疲劳强度用σ–1表示,单位为MPa。
2.对某零件有力学性能要求时,一般可在其设计图上提出硬度技术要求而不是强度或塑性要求,这是为什么?答:这是由它们的定义、性质和测量方法决定的。
硬度是一个表征材料性能的综合性指标,表示材料外表局部区域内抵抗变形和破坏的能力,同时硬度的测量操作简单,不破坏零件,而强度和塑性的测量操作复杂且破坏零件,所以实际生产中,在零件设计图或工艺卡上一般提出硬度技术要求而不提强度或塑性值。
3.比拟布氏、洛氏、维氏硬度的测量原理及应用范围。
答:〔1〕布氏硬度测量原理:采用直径为D的球形压头,以相应的试验力F压入材料的外表,经规定保持时间后卸除试验力,用读数显微镜测量剩余压痕平均直径d,用球冠形压痕单位外表积上所受的压力表示硬度值。
实际测量可通过测出d值后查表获得硬度值。
布氏硬度测量范围:用于原材料与半成品硬度测量,可用于测量铸铁;非铁金属〔有色金属〕、硬度较低的钢〔如退火、正火、调质处理的钢〕〔2〕洛氏硬度测量原理:用金刚石圆锥或淬火钢球压头,在试验压力F 的作用下,将压头压入材料外表,保持规定时间后,去除主试验力,保持初始试验力,用剩余压痕深度增量计算硬度值,实际测量时,可通过试验机的表盘直接读出洛氏硬度的数值。
第1章工程材料的基本知识第1章工程材料的基本知识主要内容:1.1 金属材料1.2 非金属材料的力学性能一、工程材料的种类:工程材料:金属材料、非金属材料和复合材料;1、金属材料:黑色金属、有色金属2、非金属材料:高分子材料、陶瓷材料3、复合材料:金属基复合材料、非金属基复合材料1、使用性能:力学性能、物理性能、化学性能;2、工艺性能:铸造性能、锻造性能、焊接性能、切削加工性能、热处理性能;二、工程材料的主要性能:1.1 金属材料金属材料的力学性能也称机械性能,指金属材料在外载荷1.1.1 金属材料的力学性能作用下,其抵抗变形和破坏的能力;注意:材料在不同的外部条件和载荷作用下,会呈现出不同的特性;如:常温状态下和高、低温状态下金属材料的力学性能就不一样;静载荷和动载荷作用下金属材料的力学性能也不一样;常见的金属材料的力学性能有:强度、塑性、硬度、韧性、疲劳强度等;1、强度和塑性(1)强度强度是指金属材料在外(静)载荷作用下抵抗塑性变形和断裂的能力。
强度指标一般用单位面积所承受的载荷(即力)表示,符号为σ,单位为MPa。
工程中常用的强度指标有屈服强度和抗拉强度。
屈服强度是指金属材料在外力作用下,产生屈服现象时的应力,或开始出现塑性变形时的最低应力值,用σs表示。
抗拉强度是指金属材料在拉力的作用下,被拉断前所能承受的最大应力值,用σb表示。
对于大多数机械零件(如压力容器),工作时不允许产生塑性变形,所以屈服强度是零件强度设计的依据;对于因断裂而失效的零件(如螺栓),而用抗拉强度作为其强度设计的依据。
(2)塑性塑性是指金属材料在外力作用下产生塑性变形而不断裂的能力。
工程中常用的塑性指标有伸长率和断面收缩率。
伸长率指试样拉断后的伸长量与原来长度之比的百分率,用符号δ表示。
断面收缩率指试样拉断后,断面缩小的面积与原来截面积之比,用表示。
伸长率和断面收缩率越大,其塑性越好;反之,塑性越差。
良好的塑性是金属材料进行压力加工的必要条件,也是保证机械零件工作安全,不发生突然脆断的必要条件。