云计算-英文
- 格式:ppt
- 大小:1.98 MB
- 文档页数:19
DSE英文词汇量近年来,数据科学和工程(DSE)领域正在迅速发展,并越来越受到广泛关注。
在这个领域中,熟悉一些基本的英文词汇是非常重要的,因为大多数资料和文献都是用英文编写的。
本文将介绍一些与DSE相关的英文词汇,帮助你更好地理解和学习这个领域。
1. Data Science 数据科学•Data: 数据•Science: 科学•Data Science: 数据科学,指通过应用统计学、机器学习等技术来从数据中提取有用信息的学科2. Big Data 大数据•Big Data: 大数据,指规模巨大且无法用常规方式处理的数据集合•Volume: 体积•Velocity: 速度•Variety: 种类•Veracity: 真实性•Value: 价值3. Machine Learning 机器学习•Machine: 机器•Learning: 学习•Supervised Learning: 监督学习,指通过使用带有标签的数据集来训练模型•Unsupervised Learning: 无监督学习,指通过使用没有标签的数据集来训练模型•Reinforcement Learning: 强化学习,指通过与环境进行互动来学习并获得奖励的方法4. Artificial Intelligence 人工智能•Artificial: 人工•Intelligence: 智能•AI: 人工智能(Artificial Intelligence的缩写)•Natural Language Processing: 自然语言处理,指让机器能够理解和处理人类自然语言的技术•Computer Vision: 计算机视觉,指让机器能够理解和解释图像和视频的技术5. Data Engineering 数据工程•Engineering: 工程•Data Engineering: 数据工程,指在数据科学中运用工程技术来处理和管理大量数据的过程•Data Extraction: 数据提取,指从原始数据源中提取有用的数据•Data Transformation: 数据转换,指将原始数据转换为可用于分析和建模的形式•Data Loading: 数据加载,指将处理好的数据加载到相应的存储介质中6. Data Visualization 数据可视化•Visualization: 可视化•Data Visualization: 数据可视化,指通过图表、图形、地图等可视化方式展示和传达数据的方法•Bar Chart: 条形图•Line Chart: 折线图•Pie Chart: 饼图•Scatter Plot: 散点图7. Cloud Computing 云计算•Cloud: 云•Computing: 计算•Cloud Computing: 云计算,指通过互联网提供计算资源和服务的方式•Infrastructure as a Service (IaaS): 基础设施即服务,指将计算资源作为服务提供给用户•Platform as a Service (PaaS): 平台即服务,指将开发平台作为服务提供给用户•Software as a Service (SaaS): 软件即服务,指将软件作为服务提供给用户以上仅是DSE领域中的一部分英文词汇,希望对你学习和理解这个领域有所帮助。
名词解释中英文对比<using_information_sources> social networks 社会网络abductive reasoning 溯因推理action recognition(行为识别)active learning(主动学习)adaptive systems 自适应系统adverse drugs reactions(药物不良反应)algorithm design and analysis(算法设计与分析) algorithm(算法)artificial intelligence 人工智能association rule(关联规则)attribute value taxonomy 属性分类规范automomous agent 自动代理automomous systems 自动系统background knowledge 背景知识bayes methods(贝叶斯方法)bayesian inference(贝叶斯推断)bayesian methods(bayes 方法)belief propagation(置信传播)better understanding 内涵理解big data 大数据big data(大数据)biological network(生物网络)biological sciences(生物科学)biomedical domain 生物医学领域biomedical research(生物医学研究)biomedical text(生物医学文本)boltzmann machine(玻尔兹曼机)bootstrapping method 拔靴法case based reasoning 实例推理causual models 因果模型citation matching (引文匹配)classification (分类)classification algorithms(分类算法)clistering algorithms 聚类算法cloud computing(云计算)cluster-based retrieval (聚类检索)clustering (聚类)clustering algorithms(聚类算法)clustering 聚类cognitive science 认知科学collaborative filtering (协同过滤)collaborative filtering(协同过滤)collabrative ontology development 联合本体开发collabrative ontology engineering 联合本体工程commonsense knowledge 常识communication networks(通讯网络)community detection(社区发现)complex data(复杂数据)complex dynamical networks(复杂动态网络)complex network(复杂网络)complex network(复杂网络)computational biology 计算生物学computational biology(计算生物学)computational complexity(计算复杂性) computational intelligence 智能计算computational modeling(计算模型)computer animation(计算机动画)computer networks(计算机网络)computer science 计算机科学concept clustering 概念聚类concept formation 概念形成concept learning 概念学习concept map 概念图concept model 概念模型concept modelling 概念模型conceptual model 概念模型conditional random field(条件随机场模型) conjunctive quries 合取查询constrained least squares (约束最小二乘) convex programming(凸规划)convolutional neural networks(卷积神经网络) customer relationship management(客户关系管理) data analysis(数据分析)data analysis(数据分析)data center(数据中心)data clustering (数据聚类)data compression(数据压缩)data envelopment analysis (数据包络分析)data fusion 数据融合data generation(数据生成)data handling(数据处理)data hierarchy (数据层次)data integration(数据整合)data integrity 数据完整性data intensive computing(数据密集型计算)data management 数据管理data management(数据管理)data management(数据管理)data miningdata mining 数据挖掘data model 数据模型data models(数据模型)data partitioning 数据划分data point(数据点)data privacy(数据隐私)data security(数据安全)data stream(数据流)data streams(数据流)data structure( 数据结构)data structure(数据结构)data visualisation(数据可视化)data visualization 数据可视化data visualization(数据可视化)data warehouse(数据仓库)data warehouses(数据仓库)data warehousing(数据仓库)database management systems(数据库管理系统)database management(数据库管理)date interlinking 日期互联date linking 日期链接Decision analysis(决策分析)decision maker 决策者decision making (决策)decision models 决策模型decision models 决策模型decision rule 决策规则decision support system 决策支持系统decision support systems (决策支持系统) decision tree(决策树)decission tree 决策树deep belief network(深度信念网络)deep learning(深度学习)defult reasoning 默认推理density estimation(密度估计)design methodology 设计方法论dimension reduction(降维) dimensionality reduction(降维)directed graph(有向图)disaster management 灾害管理disastrous event(灾难性事件)discovery(知识发现)dissimilarity (相异性)distributed databases 分布式数据库distributed databases(分布式数据库) distributed query 分布式查询document clustering (文档聚类)domain experts 领域专家domain knowledge 领域知识domain specific language 领域专用语言dynamic databases(动态数据库)dynamic logic 动态逻辑dynamic network(动态网络)dynamic system(动态系统)earth mover's distance(EMD 距离) education 教育efficient algorithm(有效算法)electric commerce 电子商务electronic health records(电子健康档案) entity disambiguation 实体消歧entity recognition 实体识别entity recognition(实体识别)entity resolution 实体解析event detection 事件检测event detection(事件检测)event extraction 事件抽取event identificaton 事件识别exhaustive indexing 完整索引expert system 专家系统expert systems(专家系统)explanation based learning 解释学习factor graph(因子图)feature extraction 特征提取feature extraction(特征提取)feature extraction(特征提取)feature selection (特征选择)feature selection 特征选择feature selection(特征选择)feature space 特征空间first order logic 一阶逻辑formal logic 形式逻辑formal meaning prepresentation 形式意义表示formal semantics 形式语义formal specification 形式描述frame based system 框为本的系统frequent itemsets(频繁项目集)frequent pattern(频繁模式)fuzzy clustering (模糊聚类)fuzzy clustering (模糊聚类)fuzzy clustering (模糊聚类)fuzzy data mining(模糊数据挖掘)fuzzy logic 模糊逻辑fuzzy set theory(模糊集合论)fuzzy set(模糊集)fuzzy sets 模糊集合fuzzy systems 模糊系统gaussian processes(高斯过程)gene expression data 基因表达数据gene expression(基因表达)generative model(生成模型)generative model(生成模型)genetic algorithm 遗传算法genome wide association study(全基因组关联分析) graph classification(图分类)graph classification(图分类)graph clustering(图聚类)graph data(图数据)graph data(图形数据)graph database 图数据库graph database(图数据库)graph mining(图挖掘)graph mining(图挖掘)graph partitioning 图划分graph query 图查询graph structure(图结构)graph theory(图论)graph theory(图论)graph theory(图论)graph theroy 图论graph visualization(图形可视化)graphical user interface 图形用户界面graphical user interfaces(图形用户界面)health care 卫生保健health care(卫生保健)heterogeneous data source 异构数据源heterogeneous data(异构数据)heterogeneous database 异构数据库heterogeneous information network(异构信息网络) heterogeneous network(异构网络)heterogenous ontology 异构本体heuristic rule 启发式规则hidden markov model(隐马尔可夫模型)hidden markov model(隐马尔可夫模型)hidden markov models(隐马尔可夫模型) hierarchical clustering (层次聚类) homogeneous network(同构网络)human centered computing 人机交互技术human computer interaction 人机交互human interaction 人机交互human robot interaction 人机交互image classification(图像分类)image clustering (图像聚类)image mining( 图像挖掘)image reconstruction(图像重建)image retrieval (图像检索)image segmentation(图像分割)inconsistent ontology 本体不一致incremental learning(增量学习)inductive learning (归纳学习)inference mechanisms 推理机制inference mechanisms(推理机制)inference rule 推理规则information cascades(信息追随)information diffusion(信息扩散)information extraction 信息提取information filtering(信息过滤)information filtering(信息过滤)information integration(信息集成)information network analysis(信息网络分析) information network mining(信息网络挖掘) information network(信息网络)information processing 信息处理information processing 信息处理information resource management (信息资源管理) information retrieval models(信息检索模型) information retrieval 信息检索information retrieval(信息检索)information retrieval(信息检索)information science 情报科学information sources 信息源information system( 信息系统)information system(信息系统)information technology(信息技术)information visualization(信息可视化)instance matching 实例匹配intelligent assistant 智能辅助intelligent systems 智能系统interaction network(交互网络)interactive visualization(交互式可视化)kernel function(核函数)kernel operator (核算子)keyword search(关键字检索)knowledege reuse 知识再利用knowledgeknowledgeknowledge acquisitionknowledge base 知识库knowledge based system 知识系统knowledge building 知识建构knowledge capture 知识获取knowledge construction 知识建构knowledge discovery(知识发现)knowledge extraction 知识提取knowledge fusion 知识融合knowledge integrationknowledge management systems 知识管理系统knowledge management 知识管理knowledge management(知识管理)knowledge model 知识模型knowledge reasoningknowledge representationknowledge representation(知识表达) knowledge sharing 知识共享knowledge storageknowledge technology 知识技术knowledge verification 知识验证language model(语言模型)language modeling approach(语言模型方法) large graph(大图)large graph(大图)learning(无监督学习)life science 生命科学linear programming(线性规划)link analysis (链接分析)link prediction(链接预测)link prediction(链接预测)link prediction(链接预测)linked data(关联数据)location based service(基于位置的服务) loclation based services(基于位置的服务) logic programming 逻辑编程logical implication 逻辑蕴涵logistic regression(logistic 回归)machine learning 机器学习machine translation(机器翻译)management system(管理系统)management( 知识管理)manifold learning(流形学习)markov chains 马尔可夫链markov processes(马尔可夫过程)matching function 匹配函数matrix decomposition(矩阵分解)matrix decomposition(矩阵分解)maximum likelihood estimation(最大似然估计)medical research(医学研究)mixture of gaussians(混合高斯模型)mobile computing(移动计算)multi agnet systems 多智能体系统multiagent systems 多智能体系统multimedia 多媒体natural language processing 自然语言处理natural language processing(自然语言处理) nearest neighbor (近邻)network analysis( 网络分析)network analysis(网络分析)network analysis(网络分析)network formation(组网)network structure(网络结构)network theory(网络理论)network topology(网络拓扑)network visualization(网络可视化)neural network(神经网络)neural networks (神经网络)neural networks(神经网络)nonlinear dynamics(非线性动力学)nonmonotonic reasoning 非单调推理nonnegative matrix factorization (非负矩阵分解) nonnegative matrix factorization(非负矩阵分解) object detection(目标检测)object oriented 面向对象object recognition(目标识别)object recognition(目标识别)online community(网络社区)online social network(在线社交网络)online social networks(在线社交网络)ontology alignment 本体映射ontology development 本体开发ontology engineering 本体工程ontology evolution 本体演化ontology extraction 本体抽取ontology interoperablity 互用性本体ontology language 本体语言ontology mapping 本体映射ontology matching 本体匹配ontology versioning 本体版本ontology 本体论open government data 政府公开数据opinion analysis(舆情分析)opinion mining(意见挖掘)opinion mining(意见挖掘)outlier detection(孤立点检测)parallel processing(并行处理)patient care(病人医疗护理)pattern classification(模式分类)pattern matching(模式匹配)pattern mining(模式挖掘)pattern recognition 模式识别pattern recognition(模式识别)pattern recognition(模式识别)personal data(个人数据)prediction algorithms(预测算法)predictive model 预测模型predictive models(预测模型)privacy preservation(隐私保护)probabilistic logic(概率逻辑)probabilistic logic(概率逻辑)probabilistic model(概率模型)probabilistic model(概率模型)probability distribution(概率分布)probability distribution(概率分布)project management(项目管理)pruning technique(修剪技术)quality management 质量管理query expansion(查询扩展)query language 查询语言query language(查询语言)query processing(查询处理)query rewrite 查询重写question answering system 问答系统random forest(随机森林)random graph(随机图)random processes(随机过程)random walk(随机游走)range query(范围查询)RDF database 资源描述框架数据库RDF query 资源描述框架查询RDF repository 资源描述框架存储库RDF storge 资源描述框架存储real time(实时)recommender system(推荐系统)recommender system(推荐系统)recommender systems 推荐系统recommender systems(推荐系统)record linkage 记录链接recurrent neural network(递归神经网络) regression(回归)reinforcement learning 强化学习reinforcement learning(强化学习)relation extraction 关系抽取relational database 关系数据库relational learning 关系学习relevance feedback (相关反馈)resource description framework 资源描述框架restricted boltzmann machines(受限玻尔兹曼机) retrieval models(检索模型)rough set theroy 粗糙集理论rough set 粗糙集rule based system 基于规则系统rule based 基于规则rule induction (规则归纳)rule learning (规则学习)rule learning 规则学习schema mapping 模式映射schema matching 模式匹配scientific domain 科学域search problems(搜索问题)semantic (web) technology 语义技术semantic analysis 语义分析semantic annotation 语义标注semantic computing 语义计算semantic integration 语义集成semantic interpretation 语义解释semantic model 语义模型semantic network 语义网络semantic relatedness 语义相关性semantic relation learning 语义关系学习semantic search 语义检索semantic similarity 语义相似度semantic similarity(语义相似度)semantic web rule language 语义网规则语言semantic web 语义网semantic web(语义网)semantic workflow 语义工作流semi supervised learning(半监督学习)sensor data(传感器数据)sensor networks(传感器网络)sentiment analysis(情感分析)sentiment analysis(情感分析)sequential pattern(序列模式)service oriented architecture 面向服务的体系结构shortest path(最短路径)similar kernel function(相似核函数)similarity measure(相似性度量)similarity relationship (相似关系)similarity search(相似搜索)similarity(相似性)situation aware 情境感知social behavior(社交行为)social influence(社会影响)social interaction(社交互动)social interaction(社交互动)social learning(社会学习)social life networks(社交生活网络)social machine 社交机器social media(社交媒体)social media(社交媒体)social media(社交媒体)social network analysis 社会网络分析social network analysis(社交网络分析)social network(社交网络)social network(社交网络)social science(社会科学)social tagging system(社交标签系统)social tagging(社交标签)social web(社交网页)sparse coding(稀疏编码)sparse matrices(稀疏矩阵)sparse representation(稀疏表示)spatial database(空间数据库)spatial reasoning 空间推理statistical analysis(统计分析)statistical model 统计模型string matching(串匹配)structural risk minimization (结构风险最小化) structured data 结构化数据subgraph matching 子图匹配subspace clustering(子空间聚类)supervised learning( 有support vector machine 支持向量机support vector machines(支持向量机)system dynamics(系统动力学)tag recommendation(标签推荐)taxonmy induction 感应规范temporal logic 时态逻辑temporal reasoning 时序推理text analysis(文本分析)text anaylsis 文本分析text classification (文本分类)text data(文本数据)text mining technique(文本挖掘技术)text mining 文本挖掘text mining(文本挖掘)text summarization(文本摘要)thesaurus alignment 同义对齐time frequency analysis(时频分析)time series analysis( 时time series data(时间序列数据)time series data(时间序列数据)time series(时间序列)topic model(主题模型)topic modeling(主题模型)transfer learning 迁移学习triple store 三元组存储uncertainty reasoning 不精确推理undirected graph(无向图)unified modeling language 统一建模语言unsupervisedupper bound(上界)user behavior(用户行为)user generated content(用户生成内容)utility mining(效用挖掘)visual analytics(可视化分析)visual content(视觉内容)visual representation(视觉表征)visualisation(可视化)visualization technique(可视化技术) visualization tool(可视化工具)web 2.0(网络2.0)web forum(web 论坛)web mining(网络挖掘)web of data 数据网web ontology lanuage 网络本体语言web pages(web 页面)web resource 网络资源web science 万维科学web search (网络检索)web usage mining(web 使用挖掘)wireless networks 无线网络world knowledge 世界知识world wide web 万维网world wide web(万维网)xml database 可扩展标志语言数据库附录 2 Data Mining 知识图谱(共包含二级节点15 个,三级节点93 个)间序列分析)监督学习)领域 二级分类 三级分类。
关于云计算的英语作文英文回答:The advent of cloud computing has revolutionized the way businesses and individuals access and manage their data, applications, and IT infrastructure. By leveraging the power of the internet, cloud computing provides on-demand, scalable, and cost-effective computing resources that can be accessed from anywhere with an internet connection. This has made it possible for enterprises of all sizes to innovate faster, reduce costs, and gain a competitive edge in the digital age.The cloud computing market is expected to grow exponentially over the next decade, with an increasing number of businesses migrating their operations to the cloud. This growth is driven by the numerous advantages that cloud computing offers, including increased flexibility, agility, and reduced capital expenditure. Moreover, the cloud's pay-as-you-go pricing model makes itan attractive option for startups and small businesses with limited budgets.One of the key benefits of cloud computing is its ability to provide on-demand resources. This means that businesses can scale their IT infrastructure up or down as needed, without having to invest in expensive hardware and software. This flexibility is particularly valuable in times of rapid growth or during seasonal fluctuations in demand. Additionally, cloud computing eliminates the need for businesses to maintain their own data centers, which can lead to significant cost savings in terms of electricity, cooling, and maintenance.The cloud also offers a wide range of services, including storage, databases, networking, and analytics, which can be accessed on a pay-as-you-go basis. This allows businesses to choose the services they need and avoid paying for resources they do not use. Furthermore, cloud services are typically more reliable and secure than on-premises infrastructure, as they are managed by teams ofexperts and backed by robust security measures.中文回答:云计算的兴起彻底改变了企业和个人访问和管理其数据、应用程序和 IT 基础设施的方式。
我对云计算的看法英语作文英文回答:Cloud computing has revolutionized the way businesses operate in the digital age. It offers a wide range of benefits, including increased flexibility, scalability, and cost efficiency. By leveraging cloud-based services, businesses can access a virtually limitless pool of computing resources, tailored to their specific needs.However, cloud computing also presents certain challenges. Security is a primary concern, as organizations must ensure the protection of data stored and processed in the cloud. Data privacy is another consideration, as cloud providers may have access to sensitive information.Despite these challenges, cloud computing is poised to continue its rapid growth in the years to come. As businesses increasingly adopt cloud-based technologies, the demand for cloud services will only continue to soar.中文回答:云计算彻底改变了企业在数字时代中的运营方式。
毕业设计说明书英文文献及中文翻译学生姓名:学号:计算机与控制工程学院:专指导教师:2017 年 6 月英文文献Cloud Computing1。
Cloud Computing at a Higher LevelIn many ways,cloud computing is simply a metaphor for the Internet, the increasing movement of compute and data resources onto the Web. But there's a difference: cloud computing represents a new tipping point for the value of network computing. It delivers higher efficiency, massive scalability, and faster,easier software development. It's about new programming models,new IT infrastructure, and the enabling of new business models。
For those developers and enterprises who want to embrace cloud computing, Sun is developing critical technologies to deliver enterprise scale and systemic qualities to this new paradigm:(1) Interoperability —while most current clouds offer closed platforms and vendor lock—in, developers clamor for interoperability。
云计算外文翻译参考文献(文档含中英文对照即英文原文和中文翻译)原文:Technical Issues of Forensic Investigations in Cloud Computing EnvironmentsDominik BirkRuhr-University BochumHorst Goertz Institute for IT SecurityBochum, GermanyRuhr-University BochumHorst Goertz Institute for IT SecurityBochum, GermanyAbstract—Cloud Computing is arguably one of the most discussedinformation technologies today. It presents many promising technological and economical opportunities. However, many customers remain reluctant to move their business IT infrastructure completely to the cloud. One of their main concerns is Cloud Security and the threat of the unknown. Cloud Service Providers(CSP) encourage this perception by not letting their customers see what is behind their virtual curtain. A seldomly discussed, but in this regard highly relevant open issue is the ability to perform digital investigations. This continues to fuel insecurity on the sides of both providers and customers. Cloud Forensics constitutes a new and disruptive challenge for investigators. Due to the decentralized nature of data processing in the cloud, traditional approaches to evidence collection and recovery are no longer practical. This paper focuses on the technical aspects of digital forensics in distributed cloud environments. We contribute by assessing whether it is possible for the customer of cloud computing services to perform a traditional digital investigation from a technical point of view. Furthermore we discuss possible solutions and possible new methodologies helping customers to perform such investigations.I. INTRODUCTIONAlthough the cloud might appear attractive to small as well as to large companies, it does not come along without its own unique problems. Outsourcing sensitive corporate data into the cloud raises concerns regarding the privacy and security of data. Security policies, companies main pillar concerning security, cannot be easily deployed into distributed, virtualized cloud environments. This situation is further complicated by the unknown physical location of the companie’s assets. Normally,if a security incident occurs, the corporate security team wants to be able to perform their own investigation without dependency on third parties. In the cloud, this is not possible anymore: The CSP obtains all the power over the environmentand thus controls the sources of evidence. In the best case, a trusted third party acts as a trustee and guarantees for the trustworthiness of the CSP. Furthermore, the implementation of the technical architecture and circumstances within cloud computing environments bias the way an investigation may be processed. In detail, evidence data has to be interpreted by an investigator in a We would like to thank the reviewers for the helpful comments and Dennis Heinson (Center for Advanced Security Research Darmstadt - CASED) for the profound discussions regarding the legal aspects of cloud forensics. proper manner which is hardly be possible due to the lackof circumstantial information. For auditors, this situation does not change: Questions who accessed specific data and information cannot be answered by the customers, if no corresponding logs are available. With the increasing demand for using the power of the cloud for processing also sensible information and data, enterprises face the issue of Data and Process Provenance in the cloud [10]. Digital provenance, meaning meta-data that describes the ancestry or history of a digital object, is a crucial feature for forensic investigations. In combination with a suitable authentication scheme, it provides information about who created and who modified what kind of data in the cloud. These are crucial aspects for digital investigations in distributed environments such as the cloud. Unfortunately, the aspects of forensic investigations in distributed environment have so far been mostly neglected by the research community. Current discussion centers mostly around security, privacy and data protection issues [35], [9], [12]. The impact of forensic investigations on cloud environments was little noticed albeit mentioned by the authors of [1] in 2009: ”[...] to our knowledge, no research has been published on how cloud computing environments affect digital artifacts,and on acquisition logistics and legal issues related to cloud computing env ironments.” This statement is also confirmed by other authors [34], [36], [40] stressing that further research on incident handling, evidence tracking and accountability in cloud environments has to be done. At the same time, massive investments are being made in cloud technology. Combined with the fact that information technology increasingly transcendents peoples’ private and professional life, thus mirroring more and more of peoples’actions, it becomes apparent that evidence gathered from cloud environments will be of high significance to litigation or criminal proceedings in the future. Within this work, we focus the notion of cloud forensics by addressing the technical issues of forensics in all three major cloud service models and consider cross-disciplinary aspects. Moreover, we address the usability of various sources of evidence for investigative purposes and propose potential solutions to the issues from a practical standpoint. This work should be considered as a surveying discussion of an almost unexplored research area. The paper is organized as follows: We discuss the related work and the fundamental technical background information of digital forensics, cloud computing and the fault model in section II and III. In section IV, we focus on the technical issues of cloud forensics and discuss the potential sources and nature of digital evidence as well as investigations in XaaS environments including thecross-disciplinary aspects. We conclude in section V.II. RELATED WORKVarious works have been published in the field of cloud security and privacy [9], [35], [30] focussing on aspects for protecting data in multi-tenant, virtualized environments. Desired security characteristics for current cloud infrastructures mainly revolve around isolation of multi-tenant platforms [12], security of hypervisors in order to protect virtualized guest systems and secure network infrastructures [32]. Albeit digital provenance, describing the ancestry of digital objects, still remains a challenging issue for cloud environments, several works have already been published in this field [8], [10] contributing to the issues of cloud forensis. Within this context, cryptographic proofs for verifying data integrity mainly in cloud storage offers have been proposed,yet lacking of practical implementations [24], [37], [23]. Traditional computer forensics has already well researched methods for various fields of application [4], [5], [6], [11], [13]. Also the aspects of forensics in virtual systems have been addressed by several works [2], [3], [20] including the notionof virtual introspection [25]. In addition, the NIST already addressed Web Service Forensics [22] which has a huge impact on investigation processes in cloud computing environments. In contrast, the aspects of forensic investigations in cloud environments have mostly been neglected by both the industry and the research community. One of the first papers focusing on this topic was published by Wolthusen [40] after Bebee et al already introduced problems within cloud environments [1]. Wolthusen stressed that there is an inherent strong need for interdisciplinary work linking the requirements and concepts of evidence arising from the legal field to what can be feasibly reconstructed and inferred algorithmically or in an exploratory manner. In 2010, Grobauer et al [36] published a paper discussing the issues of incident response in cloud environments - unfortunately no specific issues and solutions of cloud forensics have been proposed which will be done within this work.III. TECHNICAL BACKGROUNDA. Traditional Digital ForensicsThe notion of Digital Forensics is widely known as the practice of identifying, extracting and considering evidence from digital media. Unfortunately, digital evidence is both fragile and volatile and therefore requires the attention of special personnel and methods in order to ensure that evidence data can be proper isolated and evaluated. Normally, the process of a digital investigation can be separated into three different steps each having its own specificpurpose:1) In the Securing Phase, the major intention is the preservation of evidence for analysis. The data has to be collected in a manner that maximizes its integrity. This is normally done by a bitwise copy of the original media. As can be imagined, this represents a huge problem in the field of cloud computing where you never know exactly where your data is and additionallydo not have access to any physical hardware. However, the snapshot technology, discussed in section IV-B3, provides a powerful tool to freeze system states and thus makes digital investigations, at least in IaaS scenarios, theoretically possible.2) We refer to the Analyzing Phase as the stage in which the data is sifted and combined. It is in this phase that the data from multiple systems or sources is pulled together to create as complete a picture and event reconstruction as possible. Especially in distributed system infrastructures, this means that bits and pieces of data are pulled together for deciphering the real story of what happened and for providing a deeper look into the data.3) Finally, at the end of the examination and analysis of the data, the results of the previous phases will be reprocessed in the Presentation Phase. The report, created in this phase, is a compilation of all the documentation and evidence from the analysis stage. The main intention of such a report is that it contains all results, it is complete and clear to understand. Apparently, the success of these three steps strongly depends on the first stage. If it is not possible to secure the complete set of evidence data, no exhaustive analysis will be possible. However, in real world scenarios often only a subset of the evidence data can be secured by the investigator. In addition, an important definition in the general context of forensics is the notion of a Chain of Custody. This chain clarifies how and where evidence is stored and who takes possession of it. Especially for cases which are brought to court it is crucial that the chain of custody is preserved.B. Cloud ComputingAccording to the NIST [16], cloud computing is a model for enabling convenient, on-demand network access to a shared pool of configurable computing resources (e.g., networks, servers, storage, applications and services) that can be rapidly provisioned and released with minimal CSP interaction. The new raw definition of cloud computing brought several new characteristics such as multi-tenancy, elasticity, pay-as-you-go and reliability. Within this work, the following three models are used: In the Infrastructure asa Service (IaaS) model, the customer is using the virtual machine provided by the CSP for installing his own system on it. The system can be used like any other physical computer with a few limitations. However, the additive customer power over the system comes along with additional security obligations. Platform as a Service (PaaS) offerings provide the capability to deploy application packages created using the virtual development environment supported by the CSP. For the efficiency of software development process this service model can be propellent. In the Software as a Service (SaaS) model, the customer makes use of a service run by the CSP on a cloud infrastructure. In most of the cases this service can be accessed through an API for a thin client interface such as a web browser. Closed-source public SaaS offers such as Amazon S3 and GoogleMail can only be used in the public deployment model leading to further issues concerning security, privacy and the gathering of suitable evidences. Furthermore, two main deployment models, private and public cloud have to be distinguished. Common public clouds are made available to the general public. The corresponding infrastructure is owned by one organization acting as a CSP and offering services to its customers. In contrast, the private cloud is exclusively operated for an organization but may not provide the scalability and agility of public offers. The additional notions of community and hybrid cloud are not exclusively covered within this work. However, independently from the specific model used, the movement of applications and data to the cloud comes along with limited control for the customer about the application itself, the data pushed into the applications and also about the underlying technical infrastructure.C. Fault ModelBe it an account for a SaaS application, a development environment (PaaS) or a virtual image of an IaaS environment, systems in the cloud can be affected by inconsistencies. Hence, for both customer and CSP it is crucial to have the ability to assign faults to the causing party, even in the presence of Byzantine behavior [33]. Generally, inconsistencies can be caused by the following two reasons:1) Maliciously Intended FaultsInternal or external adversaries with specific malicious intentions can cause faults on cloud instances or applications. Economic rivals as well as former employees can be the reason for these faults and state a constant threat to customers and CSP. In this model, also a malicious CSP is included albeit he isassumed to be rare in real world scenarios. Additionally, from the technical point of view, the movement of computing power to a virtualized, multi-tenant environment can pose further threads and risks to the systems. One reason for this is that if a single system or service in the cloud is compromised, all other guest systems and even the host system are at risk. Hence, besides the need for further security measures, precautions for potential forensic investigations have to be taken into consideration.2) Unintentional FaultsInconsistencies in technical systems or processes in the cloud do not have implicitly to be caused by malicious intent. Internal communication errors or human failures can lead to issues in the services offered to the costumer(i.e. loss or modification of data). Although these failures are not caused intentionally, both the CSP and the customer have a strong intention to discover the reasons and deploy corresponding fixes.IV. TECHNICAL ISSUESDigital investigations are about control of forensic evidence data. From the technical standpoint, this data can be available in three different states: at rest, in motion or in execution. Data at rest is represented by allocated disk space. Whether the data is stored in a database or in a specific file format, it allocates disk space. Furthermore, if a file is deleted, the disk space is de-allocated for the operating system but the data is still accessible since the disk space has not been re-allocated and overwritten. This fact is often exploited by investigators which explore these de-allocated disk space on harddisks. In case the data is in motion, data is transferred from one entity to another e.g. a typical file transfer over a network can be seen as a data in motion scenario. Several encapsulated protocols contain the data each leaving specific traces on systems and network devices which can in return be used by investigators. Data can be loaded into memory and executed as a process. In this case, the data is neither at rest or in motion but in execution. On the executing system, process information, machine instruction and allocated/de-allocated data can be analyzed by creating a snapshot of the current system state. In the following sections, we point out the potential sources for evidential data in cloud environments and discuss the technical issues of digital investigations in XaaS environmentsas well as suggest several solutions to these problems.A. Sources and Nature of EvidenceConcerning the technical aspects of forensic investigations, the amount of potential evidence available to the investigator strongly diverges between thedifferent cloud service and deployment models. The virtual machine (VM), hosting in most of the cases the server application, provides several pieces of information that could be used by investigators. On the network level, network components can provide information about possible communication channels between different parties involved. The browser on the client, acting often as the user agent for communicating with the cloud, also contains a lot of information that could be used as evidence in a forensic investigation. Independently from the used model, the following three components could act as sources for potential evidential data.1) Virtual Cloud Instance: The VM within the cloud, where i.e. data is stored or processes are handled, contains potential evidence [2], [3]. In most of the cases, it is the place where an incident happened and hence provides a good starting point for a forensic investigation. The VM instance can be accessed by both, the CSP and the customer who is running the instance. Furthermore, virtual introspection techniques [25] provide access to the runtime state of the VM via the hypervisor and snapshot technology supplies a powerful technique for the customer to freeze specific states of the VM. Therefore, virtual instances can be still running during analysis which leads to the case of live investigations [41] or can be turned off leading to static image analysis. In SaaS and PaaS scenarios, the ability to access the virtual instance for gathering evidential information is highly limited or simply not possible.2) Network Layer: Traditional network forensics is knownas the analysis of network traffic logs for tracing events that have occurred in the past. Since the different ISO/OSI network layers provide several information on protocols and communication between instances within as well as with instances outside the cloud [4], [5], [6], network forensics is theoretically also feasible in cloud environments. However in practice, ordinary CSP currently do not provide any log data from the network components used by the customer’s instances or applications. For instance, in case of a malware infection of an IaaS VM, it will be difficult for the investigator to get any form of routing information and network log datain general which is crucial for further investigative steps. This situation gets even more complicated in case of PaaS or SaaS. So again, the situation of gathering forensic evidence is strongly affected by the support the investigator receives from the customer and the CSP.3) Client System: On the system layer of the client, it completely depends on the used model (IaaS, PaaS, SaaS) if and where potential evidence could beextracted. In most of the scenarios, the user agent (e.g. the web browser) on the client system is the only application that communicates with the service in the cloud. This especially holds for SaaS applications which are used and controlled by the web browser. But also in IaaS scenarios, the administration interface is often controlled via the browser. Hence, in an exhaustive forensic investigation, the evidence data gathered from the browser environment [7] should not be omitted.a) Browser Forensics: Generally, the circumstances leading to an investigation have to be differentiated: In ordinary scenarios, the main goal of an investigation of the web browser is to determine if a user has been victim of a crime. In complex SaaS scenarios with high client-server interaction, this constitutes a difficult task. Additionally, customers strongly make use of third-party extensions [17] which can be abused for malicious purposes. Hence, the investigator might want to look for malicious extensions, searches performed, websites visited, files downloaded, information entered in forms or stored in local HTML5 stores, web-based email contents and persistent browser cookies for gathering potential evidence data. Within this context, it is inevitable to investigate the appearance of malicious JavaScript [18] leading to e.g. unintended AJAX requests and hence modified usage of administration interfaces. Generally, the web browser contains a lot of electronic evidence data that could be used to give an answer to both of the above questions - even if the private mode is switched on [19].B. Investigations in XaaS EnvironmentsTraditional digital forensic methodologies permit investigators to seize equipment and perform detailed analysis on the media and data recovered [11]. In a distributed infrastructure organization like the cloud computing environment, investigators are confronted with an entirely different situation. They have no longer the option of seizing physical data storage. Data and processes of the customer are dispensed over an undisclosed amount of virtual instances, applications and network elements. Hence, it is in question whether preliminary findings of the computer forensic community in the field of digital forensics apparently have to be revised and adapted to the new environment. Within this section, specific issues of investigations in SaaS, PaaS and IaaS environments will be discussed. In addition, cross-disciplinary issues which affect several environments uniformly, will be taken into consideration. We also suggest potential solutions to the mentioned problems.1) SaaS Environments: Especially in the SaaS model, the customer does notobtain any control of the underlying operating infrastructure such as network, servers, operating systems or the application that is used. This means that no deeper view into the system and its underlying infrastructure is provided to the customer. Only limited userspecific application configuration settings can be controlled contributing to the evidences which can be extracted fromthe client (see section IV-A3). In a lot of cases this urges the investigator to rely on high-level logs which are eventually provided by the CSP. Given the case that the CSP does not run any logging application, the customer has no opportunity to create any useful evidence through the installation of any toolkit or logging tool. These circumstances do not allow a valid forensic investigation and lead to the assumption that customers of SaaS offers do not have any chance to analyze potential incidences.a) Data Provenance: The notion of Digital Provenance is known as meta-data that describes the ancestry or history of digital objects. Secure provenance that records ownership and process history of data objects is vital to the success of data forensics in cloud environments, yet it is still a challenging issue today [8]. Albeit data provenance is of high significance also for IaaS and PaaS, it states a huge problem specifically for SaaS-based applications: Current global acting public SaaS CSP offer Single Sign-On (SSO) access control to the set of their services. Unfortunately in case of an account compromise, most of the CSP do not offer any possibility for the customer to figure out which data and information has been accessed by the adversary. For the victim, this situation can have tremendous impact: If sensitive data has been compromised, it is unclear which data has been leaked and which has not been accessed by the adversary. Additionally, data could be modified or deleted by an external adversary or even by the CSP e.g. due to storage reasons. The customer has no ability to proof otherwise. Secure provenance mechanisms for distributed environments can improve this situation but have not been practically implemented by CSP [10]. Suggested Solution: In private SaaS scenarios this situation is improved by the fact that the customer and the CSP are probably under the same authority. Hence, logging and provenance mechanisms could be implemented which contribute to potential investigations. Additionally, the exact location of the servers and the data is known at any time. Public SaaS CSP should offer additional interfaces for the purpose of compliance, forensics, operations and security matters to their customers. Through an API, the customers should have the ability to receive specific information suchas access, error and event logs that could improve their situation in case of aninvestigation. Furthermore, due to the limited ability of receiving forensic information from the server and proofing integrity of stored data in SaaS scenarios, the client has to contribute to this process. This could be achieved by implementing Proofs of Retrievability (POR) in which a verifier (client) is enabled to determine that a prover (server) possesses a file or data object and it can be retrieved unmodified [24]. Provable Data Possession (PDP) techniques [37] could be used to verify that an untrusted server possesses the original data without the need for the client to retrieve it. Although these cryptographic proofs have not been implemented by any CSP, the authors of [23] introduced a new data integrity verification mechanism for SaaS scenarios which could also be used for forensic purposes.2) PaaS Environments: One of the main advantages of the PaaS model is that the developed software application is under the control of the customer and except for some CSP, the source code of the application does not have to leave the local development environment. Given these circumstances, the customer obtains theoretically the power to dictate how the application interacts with other dependencies such as databases, storage entities etc. CSP normally claim this transfer is encrypted but this statement can hardly be verified by the customer. Since the customer has the ability to interact with the platform over a prepared API, system states and specific application logs can be extracted. However potential adversaries, which can compromise the application during runtime, should not be able to alter these log files afterwards. Suggested Solution:Depending on the runtime environment, logging mechanisms could be implemented which automatically sign and encrypt the log information before its transfer to a central logging server under the control of the customer. Additional signing and encrypting could prevent potential eavesdroppers from being able to view and alter log data information on the way to the logging server. Runtime compromise of an PaaS application by adversaries could be monitored by push-only mechanisms for log data presupposing that the needed information to detect such an attack are logged. Increasingly, CSP offering PaaS solutions give developers the ability to collect and store a variety of diagnostics data in a highly configurable way with the help of runtime feature sets [38].3) IaaS Environments: As expected, even virtual instances in the cloud get compromised by adversaries. Hence, the ability to determine how defenses in the virtual environment failed and to what extent the affected systems havebeen compromised is crucial not only for recovering from an incident. Also forensic investigations gain leverage from such information and contribute to resilience against future attacks on the systems. From the forensic point of view, IaaS instances do provide much more evidence data usable for potential forensics than PaaS and SaaS models do. This fact is caused throughthe ability of the customer to install and set up the image for forensic purposes before an incident occurs. Hence, as proposed for PaaS environments, log data and other forensic evidence information could be signed and encrypted before itis transferred to third-party hosts mitigating the chance that a maliciously motivated shutdown process destroys the volatile data. Although, IaaS environments provide plenty of potential evidence, it has to be emphasized that the customer VM is in the end still under the control of the CSP. He controls the hypervisor which is e.g. responsible for enforcing hardware boundaries and routing hardware requests among different VM. Hence, besides the security responsibilities of the hypervisor, he exerts tremendous control over how customer’s VM communicate with the hardware and theoretically can intervene executed processes on the hosted virtual instance through virtual introspection [25]. This could also affect encryption or signing processes executed on the VM and therefore leading to the leakage of the secret key. Although this risk can be disregarded in most of the cases, the impact on the security of high security environments is tremendous.a) Snapshot Analysis: Traditional forensics expect target machines to be powered down to collect an image (dead virtual instance). This situation completely changed with the advent of the snapshot technology which is supported by all popular hypervisors such as Xen, VMware ESX and Hyper-V.A snapshot, also referred to as the forensic image of a VM, providesa powerful tool with which a virtual instance can be clonedby one click including also the running system’s mem ory. Due to the invention of the snapshot technology, systems hosting crucial business processes do not have to be powered down for forensic investigation purposes. The investigator simply creates and loads a snapshot of the target VM for analysis(live virtual instance). This behavior is especially important for scenarios in which a downtime of a system is not feasible or practical due to existing SLA. However the information whether the machine is running or has been properly powered down is crucial [3] for the investigation. Live investigations of running virtual instances become more common providing evidence data that。
云计算相关名词缩写英文回答:Infrastructure as a Service (IaaS) A cloud computing model that provides infrastructure as a service to customers.Platform as a Service (PaaS) A cloud computing model that provides a platform for customers to develop and deploy applications.Software as a Service (SaaS) A cloud computing model that provides software as a service to customers.Virtual Machine (VM) A virtual computing environment that simulates a physical computer.Virtual Private Cloud (VPC) A private cloud that is isolated from the public cloud.Elastic Cloud Compute (ECC) A type of cloud computing that allows users to dynamically adjust the amount of computing resources they use.Hypervisor A virtualization software layer that allows multiple VMs to run on a single physical server.Container A lightweight, isolated environment for running applications.Kubernetes An open-source container orchestration system for automating the deployment, management, and scaling of containerized applications.OpenStack An open-source cloud computing platform for managing and orchestrating large-scale clouds.Cloud Management Platform (CMP) A tool for managing and monitoring cloud computing resources.Cloud Service Provider (CSP) A company that provides cloud computing services to customers.Cloud Adoption Framework A framework for adopting cloud computing technologies.Cloud Computing Reference Architecture (CCRA) A reference architecture for designing and implementing cloud computing solutions.Cloud Security Alliance (CSA) An organization that promotes the understanding and adoption of cloud security best practices.中文回答:基础设施即服务 (IaaS) 云计算模型,为客户提供基础设施即服务。
《云计算》课程教学大纲(Cloud Computing)编写单位:计算机与通信工程学院计算机科学与技术系编写时间: 2021年 7月《云计算》课程教学大纲一、基本信息课程名称:云计算英文名称:Cloud Computing课程类别:专业教育课程课程性质:选修课课程编码:0812001946学分:2.5总学时:40。
其中,讲授26学时,实验14学时,上机0学时,实训0学时适用专业:计算机科学与技术、网络工程先修课程与知识储备: Linux编程技术。
后继课程:大数据技术基础二、课程简介:《云计算技术》是网络工程、计算机科学与技术专业的选修课。
通过本课程的学习,使学生对云服务、云服务接口、并行计算与云计算的相互关系、云计算平台及其技术实现等有所了解。
本课程主要介绍云计算的原理及关键技术的基本概念,Hadoop、Open Stack等开源平台的云计算实现方法,以及云计算领域具有代表性的国外Google平台、国内阿里云平台。
通过学习云计算的框架、云计算的模式、云计算的研究热点、云计算的企业应用场景,为学生对云计算这门科学前沿学科有深入的认知,为以后开展类似的工作打下基础。
三、教学目标1、课程思政教学目标:通过本课程的学习,使学生充分了解云计算领域的科学发展史,重点了解云计算技术对社会经济产生的影响和贡献,熟悉本领域国内外企业的发展现状及领先世界的技术和产品。
了解云计算领域相应的国家标准、法律法规;学会一定的沟通、组织、团队合作的社会能力。
通过课程思政教学,培养爱国、爱党、具有良好的职业道德和高度职业责任感的专业人才。
2、课程教学总目标:通过本课程的学习,使学生对云计算技术的兴起、由来、概念及分类、云计算的原理及关键技术建立基本的概念,并通过实践了解云服务,虚拟化技术,并行计算与云计算的相互关系等相关内容;通过对云计算开源平台Hadoop、OpenStack等的介绍,让学生对云计算平台的相关技术有所了解;结合云计算平台中各项应用及核心技术的介绍,拓展学生对云计算的认识。
英语作文关于云计算Title: The Evolution and Impact of Cloud Computing。
Cloud computing has emerged as a transformative force in the realm of technology, revolutionizing the way individuals and organizations store, access, and process data. This paradigm shift has brought about significant advancements in efficiency, scalability, and accessibility across various sectors. In this essay, we delve into the intricacies of cloud computing, exploring its evolution, functionalities, and profound impact on modern society.Firstly, it is essential to understand the concept of cloud computing. In simple terms, cloud computing refers to the delivery of computing services—including servers, storage, databases, networking, software, and analytics—over the internet ("the cloud"). Instead of owning physical infrastructure or data centers, users can access resources on-demand from cloud service providers on a pay-as-you-go basis. This on-demand availability, coupled with thescalability and flexibility offered by cloud platforms, has revolutionized the way businesses operate and individuals interact with technology.The evolution of cloud computing can be traced back to the early 2000s when companies began exploring ways to outsource IT infrastructure and services to reduce costsand improve efficiency. However, it was not until the mid-2000s that cloud computing gained widespread adoption with the introduction of Amazon Web Services (AWS) in 2006. AWS pioneered the concept of Infrastructure as a Service (IaaS), allowing businesses to rent virtual servers and storage space on a per-hour basis. This marked the beginning of a new era in computing, characterized by the democratizationof IT resources and the rise of cloud-native applications.Since then, cloud computing has continued to evolve,with major players such as Microsoft Azure, Google Cloud Platform, and IBM Cloud entering the market. These cloud providers offer a comprehensive suite of services,including Platform as a Service (PaaS) and Software as a Service (SaaS), enabling developers to build, deploy, andmanage applications without worrying about underlying infrastructure. Moreover, advancements in virtualization, containerization, and serverless computing have further optimized resource utilization and simplified the deployment of complex applications.One of the key advantages of cloud computing is its scalability. Unlike traditional on-premises infrastructure, which requires upfront investment in hardware and software, cloud services allow organizations to scale resources up or down based on demand. This elasticity not only reducescosts but also ensures optimal performance during peakusage periods. Furthermore, cloud computing facilitatesrapid innovation by providing developers with access to cutting-edge tools and technologies, such as artificial intelligence, machine learning, and big data analytics.In addition to scalability and innovation, cloud computing offers enhanced reliability and security. Cloud providers invest heavily in robust infrastructure and employ sophisticated security measures to protect data from unauthorized access, data breaches, and other cyber threats.Furthermore, cloud-based backups and disaster recovery solutions ensure business continuity and mitigate the risk of data loss due to hardware failures or natural disasters.From a societal perspective, cloud computing has democratized access to technology, leveling the playing field for startups, small businesses, and aspiring entrepreneurs. By eliminating the need for substantial upfront investment in IT infrastructure, cloud services enable organizations of all sizes to compete on a global scale. Moreover, the scalability and accessibility of cloud platforms have facilitated the proliferation of remote work and collaboration, particularly in the wake of the COVID-19 pandemic.In conclusion, cloud computing represents a paradigm shift in the way we harness the power of technology. Its evolution from a niche concept to a ubiquitous computing model has transformed industries, empowered individuals, and driven innovation on a global scale. As we continue to embrace the cloud-first mentality, it is imperative torecognize its potential and adapt to the ever-changing landscape of technology.。