高考文科立体几何
- 格式:pptx
- 大小:2.68 MB
- 文档页数:59
专题五 立体几何第一讲 空间几何体1.棱柱、棱锥 (1)棱柱的性质侧棱都相等,侧面是平行四边形;两个底面与平行于底面的截面是全等的多边形;过不相邻的两条侧棱的截面是平行四边形;直棱柱的侧棱长与高相等且侧面与对角面是矩形. (2)正棱锥的性质侧棱相等,侧面是全等的等腰三角形,斜高相等;棱锥的高、斜高和斜高在底面内的射影构成一个直角三角形;棱锥的高、侧棱和侧棱在底面内的射影也构成一个直角三角形;某侧面的斜高、侧棱及底面边长的一半也构成一个直角三角形;侧棱在底面内的射影、斜高在底面内的射影及底面边长的一半也构成一个直角三角形. 2.三视图(1)三视图的正视图、侧视图、俯视图分别是从几何体的正前方、正左方、正上方观察几何体画出的轮廓线.画三视图的基本要求:正俯一样长,俯侧一样宽,正侧一样高; (2)三视图排列规则:俯视图放在正视图的下面,长度与正视图一样;侧视图放在正视图的右面,高度和正视图一样,宽度与俯视图一样. 3.几何体的切接问题(1)解决球的内接长方体、正方体、正四棱柱等问题的关键是把握球的直径即棱柱的体对角线长.(2)柱、锥的内切球找准切点位置,化归为平面几何 问题.4.柱体、锥体、台体和球的表面积与体积(不要求记忆) (1)表面积公式①圆柱的表面积 S =2πr (r +l ); ②圆锥的表面积S =πr (r +l );③圆台的表面积S =π(r ′2+r 2+r ′l +rl ); ④球的表面积S =4πR 2. (2)体积公式①柱体的体积V =Sh ;②锥体的体积V =13Sh ;③台体的体积V =13(S ′+SS ′+S )h ;④球的体积V =43πR 3.1. (2013·广东)某四棱台的三视图如图所示,则该四棱台的体积是( )A .4 B.143C.163D .6答案 B解析 由三视图知四棱台的直观图为由棱台的体积公式得:V =13(2×2+1×1+2×2×1×1)×2=143.2. (2013·四川)一个几何体的三视图如图所示,则该几何体的直观图可以是( )答案 D解析由三视图可知上部是一个圆台,下部是一个圆柱,选D.3. (2013·江西)如图,正方体的底面与正四面体的底面在同一平面α上,且AB∥CD,正方体的六个面所在的平面与直线CE,EF相交的平面个数分别记为m,n,那么m+n=( )A.8 B.9 C.10 D.11答案 A解析取CD的中点H,连接EH,HF.在四面体CDEF中,CD⊥EH,CD⊥FH,所以CD⊥平面EFH,所以AB⊥平面EFH,所以正方体的左、右两个侧面与EF平行,其余4个平面与EF相交,即n=4.又因为CE与AB在同一平面内,所以CE与正方体下底面共面,与上底面平行,与其余四个面相交,即m=4,所以m+n=4+4=8.4. (2013·新课全国Ⅱ)一个四面体的顶点在空间直角坐标系O-xyz中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx平面为投影面,则得到正视图可以为( )答案 A解析根据已知条件作出图形:四面体C1-A1DB,标出各个点的坐标如图(1)所示,可以看出正视图为正方形,如图(2)所示.故选A.5. (2013·福建)已知某一多面体内接于球构成一个简单组合体,如果该组合体的正视图、侧视图、俯视图均如图所示,且图中的四边形是边长为2的正方形,则该球的表面积是________.答案12π解析由三视图知,该几何体为正方体和球组成的组合体,正方体的对角线为球的直径.所以2R=23,即R=3,球的表面积为S=4πR2=12π.题型一空间几何体的三视图例1(1)(2012·广东)某几何体的三视图如图所示,它的体积为( )A.12πB.45πC.57πD.81π(2)(2012·陕西)将正方体(如图(1)所示)截去两个三棱锥,得到如图(2)所示的几何体,则该几何体的左(侧)视图为( )审题破题根据三视图先确定原几何体的直观图和形状,然后再解题.答案(1)C (2)B解析 (1)由三视图知该几何体是由圆柱、圆锥两几何体组合而成,直观图如图所示. 圆锥的底面半径为3,高为4,圆柱的底面半径为3,高为5,∴V =V 圆锥+V 圆柱=13Sh 1+Sh 2=13×π×32×4+π×32×5=57π.(2)还原正方体后,将D 1,D ,A 三点分别向正方体右侧面作垂线.D 1A 的射影为C 1B ,且为实线,B 1C 被遮挡应为虚线.反思归纳 将三视图还原成直观图是解答该类问题的关键,其解题技巧是对常见简单几何体及其组合体的三视图,特别是正方体、长方体、圆柱、圆锥、棱柱、棱锥、球等几何体的三视图分别是什么图形,数量关系有什么特点等都应该熟练掌握,会画出其直观图,然后由三视图验证.变式训练1 若某几何体的三视图(单位:cm)如图所示,则此几何体的体积是________ cm 3.答案 18解析 由几何体的三视图可知,该几何体由两个直四棱柱构成,其直观图如图所示.上底面直四棱柱的长是3 cm ,宽是3 cm ,高是1 cm ,故其体积为9 cm 3,下底面直四棱柱的高是3 cm ,长是1 cm ,宽是3 cm ,其体积为9 cm 3.故该几何体的体积为V =18 cm 3. 题型二 空间几何体的表面积和体积例2 如图所示,已知E 、F 分别是棱长为a 的正方体ABCD —A 1B 1C 1D 1的棱A 1A 、CC 1的中点,求四棱锥C 1—B 1EDF 的体积.审题破题 本题可从两个思路解题:思路一:先求出四棱锥C 1—B 1EDF 的高及其底面积,再利用棱锥的体积公式求出其体积; 思路二:先将四棱锥C 1—B 1EDF 化为两个三棱锥B 1—C 1EF 与D —C 1EF ,再求四棱锥C 1—B 1EDF 的体积.解 方法一 连接A 1C 1,B 1D 1交于点O 1,连接B 1D ,过O 1作。
高考文科数学立体几何题型与方法〔文科〕一、考点回顾 1.平面〔1〕平面的基本性质:掌握三个公理与推论,会说明共点、共线、共面问题。
〔2〕证明点共线的问题,一般转化为证明这些点是某两个平面的公共点〔依据:由点在线上,线在面内,推出点在面内〕,这样,可根据公理2证明这些点都在这两个平面的公共直线上。
〔3〕证明共点问题,一般是先证明两条直线交于一点,再证明这点在第三条直线上,而这一点是两个平面的公共点,这第三条直线是这两个平面的交线。
〔4〕证共面问题一般用落入法或重合法。
〔5〕经过不在同一条直线上的三点确定一个面. 2. 空间直线.〔1〕空间直线位置分三种:相交、平行、异面. 相交直线—共面有反且有一个公共点;平行直线—共面没有公共点;异面直线—不同在任一平面内。
〔2〕异面直线判定定理:过平面外一点与平面内一点的直线和平面内不经过该点的直线是异面直线.〔不在任何一个平面内的两条直线〕〔3〕平行公理:平行于同一条直线的两条直线互相平行.〔4〕等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,则这两个角相等推论:如果两条相交直线和另两条相交直线分别平行,则这两组直线所成锐角〔或直角〕相等.〔5〕两异面直线的距离:公垂线的长度.空间两条直线垂直的情况:相交〔共面〕垂直和异面垂直.21,l l 是异面直线,则过21,l l 外一点P ,过点P 且与21,l l 都平行平面有一个或没有,但与21,l l 距离相等的点在同一平面内. 〔l 1或l 2在这个做出的平面内不能叫l 1与l 2平行的平面〕3. 直线与平面平行、直线与平面垂直.〔1〕空间直线与平面位置分三种:相交、平行、在平面内.〔2〕直线与平面平行判定定理:如果平面外一条直线和这个平面内一条直线平行,则这条直线和这个平面平行.〔"线线平行,线面平行"〕〔3〕直线和平面平行性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,则这条直线和交线平行.〔"线面平行,线线平行"〕〔4〕直线与平面垂直是指直线与平面任何一条直线垂直,过一点有且只有一条直线和一个平面垂直,过一点有且只有一个平面和一条直线垂直.PO A a4 若PA⊥α,a⊥AO,得a⊥PO〔三垂线定理〕,得不出α⊥PO. 因为a⊥PO,但PO不垂直OA.5 三垂线定理的逆定理亦成立.直线与平面垂直的判定定理一:如果一条直线和一个平面内的两条相交直线都垂直,则这两条直线垂直于这个平面.〔"线线垂直,线面垂直"〕直线与平面垂直的判定定理二:如果平行线中一条直线垂直于一个平面,则另一条也垂直于这个平面.推论:如果两条直线同垂直于一个平面,则这两条直线平行.〔5〕a.垂线段和斜线段长定理:从平面外一点向这个平面所引的垂线段和斜线段中,①射影相等的两条斜线段相等,射影较长的斜线段较长;②相等的斜线段的射影相等,较长的斜线段射影较长;③垂线段比任何一条斜线段短.[注]:垂线在平面的射影为一个点. [一条直线在平面内的射影是一条直线.〔×〕]b.射影定理推论:如果一个角所在平面外一点到角的两边的距离相等,则这点在平面内的射影在这个角的平分线上。
立体几何大题题型及解题方法立体几何大题一般考以下五个方面:一、平行位置关系的证明1、证明线面平行(重点)解题方法:(1)线面平行判定定理;(2)面面平行的性质定理。
2、证明面面平行解题方法:(1)面面平行的判定定理;(2)面面平行判定定理的推论;(3)垂直于同一直线的两平面平行;(4)平行平面的传递性。
3、平行位置关系的探索(1)对命题条件的探索;(2)对命题结论的探索;(3)通过翻折来探索。
二、垂直位置关系的证明1、证明线线垂直解题方法:2、证明线面垂直(重点)解题方法:3、证明面面垂直4、垂直位置关系的探索(1)对命题条件的探索;(2)对命题结论的探索;(3)通过翻折来探索。
三、求空间距离1、点到平面的距离解题方法:2、空间线段长解题方法:(1)解三角形法;(2)列方程法。
四、求几何体体积五、求空间角1、异面直线所成的角2、直线与平面所成的角考点一:如何判断空间中点、线、面的位置关系(排除法)考点二:平行位置关系的证明证明题一般的解题步骤:一、根据题目的问题,确定要证明什么;根据题目的条件,确定用什么证明方法,如果无法确定,则要通过逆向思维来分析题目;二、看题目是否需要作辅助线(创造条件),证明平行位置问题一般作的辅助线是连等分点,特别是中点;三、根据确定的证明方法,看该方法需要多少个条件,然后看题目给的条件通过什么方式给,如果是间接条件则需要推理证明得出,如果是直接条件或隐含条件则直接罗列;四、准备好条件后,再次检查条件是否都满足,是否都罗列了,最后得出结论;五、规范书写答案过程:一般过程为1、作辅助线;2、准备间接条件;3、罗列直接条件或隐含条件;4、得出结论。
1、证明线面平行(重点)解题方法:2、证明面面平行解题方法:(1)面面平行的判定定理(最常用方法):(2)面面平行判定定理的推论:(3)垂直于同一直线的两平面平行;(4)3、平行位置关系的探索考点三、垂直位置关系的证明证明垂直的解题步骤:一、根据题目的问题,确定要证明什么;根据题目的条件,确定用什么证明方法,如果无法确定,则要通过逆向思维来分析题目;二、要注意先确定谁垂直于谁,如1、证明线线垂直时常考虑其中一条直线垂直于另一条直线所在的平面,究竟选择哪一条直线垂直于另一条直线所在的平面,需要通过对条件及图形结构做深入细致分析、尝试、判断。
19.(本小题满分12分)2008 如图,在四棱锥P ABCD -中,平面PAD ^平面ABCD ,AB DC ∥,P AD △是等边三角形,已知28BD AD ==,245AB DC ==.(Ⅰ)设M 是PC 上的一点,证明:平面MBD ^平面PAD ; (Ⅱ)求四棱锥P ABCD -的体积.的体积.18.(本小题满分12分)分) 2009 如图,在直四棱柱ABCD-A 1B 1C 1D 1中,底面ABCD 为等腰梯形,AB//CD ,AB=4, BC=CD=2, AA 1=2, E 、E 1分别是棱AD 、AA 1的中点. (1) 设F 是棱AB 的中点,证明:直线EE 1//平面FCC 1; (2) 证明:平面D 1AC ⊥平面BB 1C 1C. 2010 (20)(本小题满分12分)分)在如图所示的几何体中,四边形ABCD 是正方形,BCD A MA 平面^,PD ∥MA ,E G F 、、分别为MB 、PC PB 、的中点,且2MA PD AD ==.(Ⅰ)求证:平面PDC EFG 平面^; (Ⅱ)求三棱锥的体积之比与四棱锥ABCD P MAB P --.A B C M P D EA B C F E 1 A 1 B 1 C 1 D 1 D 2011 19.(本小题满分12分)分)如图,在四棱台1111ABCD A B C D -中,1D D ^平面ABCD ,底面ABCD 是平行四边形,AB=2AD ,11AD=A B ,BAD=Ð60° (Ⅰ)证明:1AA BD ^;(Ⅱ)证明:11CC A BD ∥平面.2012 (19) ( (本小题满分本小题满分12分)如图,几何体E ABCD -是四棱锥,△ABD 为正三角形,,CB CD EC BD =^. (Ⅰ)求证:BE DE =;(Ⅱ)若∠120BCD =°,M 为线段AE 的中点,的中点, 求证:DM ∥平面BEC .53238545545523163 ACM PDOEA B C F 1 1 C 1 D 1 D F 1 EC 1 1 C 1 D 1 D 所以CC 1⊥AC,因为底面ABCD 为等腰梯形,AB=4, BC=2, F 是棱AB 的中点,所以CF=CB=BF ,△BCF 为正三角形,为正三角形, 60BCF Ð=°,△ACF 为等腰三角形,且30ACF Ð=°所以AC ⊥BC, 又因为BC 与CC 1都在平面BB 1C 1C 内且交于点C, 所以AC ⊥平面BB 1C 1C,而AC Ì平面D 1AC, 所以平面D 1AC ⊥平面BB 1C 1C. 2010 (20)本小题主要考查空间中的线面关系,考查线面垂直、)本小题主要考查空间中的线面关系,考查线面垂直、面面垂直的判定及几面面垂直的判定及几何体体积的计算,考查试图能力和逻辑思维能力。
高考文数立体几何知识点在高考数学科目中,立体几何是一个相对较难的部分,也是很多学生容易忽视或掌握不牢固的内容之一。
本文旨在对进行详细的论述,帮助学生建立起对这一部分知识的全面理解和应用能力。
立体几何是研究三维空间中的图形,包括空间中的点、线、面以及体的性质和相互关系。
在高考中,主要涉及到的内容包括立体的表面积、体积等。
一、立体的表面积立体的表面积是指立体图形的外表面的总面积。
常见要求计算的立体包括长方体、正方体、棱锥、棱台等。
这里我们以长方体为例进行论述。
长方体的表面积计算公式为:S = 2(ab + bc + ac),其中a、b、c分别为长方体的长、宽和高。
需要注意的是,只有四个侧面的面积相等,而上、下底面的面积可能与其它侧面面积不同,所以在计算时要特别注意。
同时,对于立方体来说,因为它的长、宽、高都相等,所以表面积的计算公式可以简化为S = 6a^2。
在解题过程中,也经常会出现需要计算部分表面积的情况。
例如,需要计算一个长方体上某个面的面积,或者通过已知的面积求解某个长方体的长度。
这些题目需要对长方体的各个面进行拆解,然后根据对应的公式计算得出结果。
二、立体的体积立体的体积是指立体图形中所包含的空间的大小。
同样以长方体为例进行论述。
长方体的体积计算公式为:V = abc,其中a、b、c分别为长方体的长、宽和高。
需要注意的是,体积的计算结果是一个有单位的数值。
在计算时,一般先将给定的数据代入公式中,然后进行运算求解。
在实际问题中,有时需要计算立方体的增长或减少量。
例如,长方体的体积增加了多少倍,或者体积减少了多少百分比。
这些题目一般是通过计算两个长方体之间体积的差异来解决的。
除了长方体外,圆柱、圆锥以及球体等也是常见的立体几何形状。
它们的体积计算公式分别为:圆柱V = πr^2h,圆锥V = 1/3πr^2h,球体V = 4/3πr^3。
其中,r表示半径,h表示高。
这些公式是在考试中必须要掌握的。
立体几何知识点整理一.直线和平面的三种位置关系:1. 线面平行l符号表示:2. 线面相交符号表示:3. 线在面内符号表示:二.平行关系:1.线线平行:方法一:用线面平行实现。
mlmll////⇒⎪⎭⎪⎬⎫=⋂⊂βαβα方法二:用面面平行实现。
mlml////⇒⎪⎭⎪⎬⎫=⋂=⋂βγαγβα方法三:用线面垂直实现。
若αα⊥⊥ml,,则ml//。
方法四:用向量方法:若向量和向量共线且l、m不重合,则ml//。
2.线面平行:方法一:用线线平行实现。
ααα////llmml⇒⎪⎭⎪⎬⎫⊄⊂方法二:用面面平行实现。
αββα////ll⇒⎭⎬⎫⊂方法三:用平面法向量实现。
若n为平面α的一个法向量,ln⊥且α⊄l,则α//l。
3.面面平行:方法一:用线线平行实现。
βααβ//',','//'//⇒⎪⎪⎭⎪⎪⎬⎫⊂⊂且相交且相交mlmlmmll方法二:用线面平行实现。
βαβαα//,////⇒⎪⎭⎪⎬⎫⊂且相交mlml三.垂直关系:1. 线面垂直:方法一:用线线垂直实现。
αα⊥⇒⎪⎪⎭⎪⎪⎬⎫⊂=⋂⊥⊥lABACAABACABlACl,方法二:用面面垂直实现。
αββαβα⊥⇒⎪⎭⎪⎬⎫⊂⊥=⋂⊥llmlm,2. 面面垂直:方法一:用线面垂直实现。
βαβα⊥⇒⎭⎬⎫⊂⊥l l方法二:计算所成二面角为直角。
3. 线线垂直:方法一:用线面垂直实现。
m l m l ⊥⇒⎭⎬⎫⊂⊥αα方法二:三垂线定理及其逆定理。
PO l OA l PA l αα⊥⎫⎪⊥⇒⊥⎬⎪⊂⎭方法三:用向量方法:若向量和向量的数量积为0,则m l ⊥。
三.夹角问题。
(一) 异面直线所成的角: (1) 范围:]90,0(︒︒ (2)求法: 方法一:定义法。
步骤1:平移,使它们相交,找到夹角。
步骤2:解三角形求出角。
(常用到余弦定理) 余弦定理:abc b a 2cos 222-+=θ(计算结果可能是其补角)方法二:向量法。
高考文科数学立体几何复习知识点高考文科数学立体几何复习知识点在我们的学习时代,相信大家一定都接触过知识点吧!知识点就是一些常考的内容,或者考试经常出题的地方。
哪些知识点能够真正帮助到我们呢?以下是小编为大家收集的高考文科数学立体几何复习知识点,仅供参考,欢迎大家阅读。
高考文科数学立体几何复习知识点1:棱柱定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。
分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。
表示:用各顶点字母,如五棱柱或用对角线的端点字母,如五棱柱几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。
高考文科数学立体几何复习知识点2:棱锥定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等表示:用各顶点字母,如五棱锥几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。
高考文科数学立体几何复习知识点3:棱台定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等表示:用各顶点字母,如五棱台几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点高考文科数学立体几何复习知识点4:圆柱定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。
高考文科数学立体几何复习知识点5:圆锥定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。
立体几何高中文科数学立体几何部分整理第一章 空间几何体(一)空间几何体的三视图与直观图1.投影:区分中心投影与平行投影。
平行投影分为正投影和斜投影。
2.三视图——是观察者从三个不同位置观察同一个空间几何体而画出的图形;正视图 ——光线从几何体的前面向后面正投影,得到的投影图;侧视图 ——光线从几何体的左面向右面正投影,得到的投影图;正视图 ——光线从几何体的上面向下面正投影,得到的投影图;注:( 1)俯视图画在正视图的下方, “长度”与正视图相等;侧视图画在正视图的右边, “高度”与正视图相等, “宽度”与俯视图。
(简记为“正、侧一样高,正、俯一样长,俯、侧一样宽” .( 2)正视图,侧视图,俯视图都是平面图形,而不是直观图。
3.直观图:3.1 直观图 ——是观察着站在某一点观察一个空间几何体而画出的图形。
直观图通常是在平行投影下画出的空间图形。
3.2 斜二测法:step1:在已知图形中取互相垂直的轴 Ox 、 Oy ,(即取 xoy 90);step2:画直观图时,把它画成对应的轴 o ' x ',o ' y' ,取 x ' o ' y' 45 (or 135 ) ,它们确定的平面表示水平平面;step3:在坐标系 x ' o ' y ' 中画直观图时,已知图形中平行于数轴的线段保持平行性不变,平行于 x 轴(或在 x 轴上)的线段保持长度不变,平行于y 轴(或在 y 轴上)的线段长度减半。
结论:一般地,采用斜二测法作出的直观图面积是原平面图形面积的2倍 .4解决两种常见的题型时应注意: ( 1)由几何体的三视图画直观图时,一般先考虑“俯视图”.( 2)由几何体的直观图画三视图时,能看见的轮廓线和棱画成实线,不能看见的轮廓线和棱画成虚线。
【例题点击】将正三棱柱截去三个角(如图1 所示 A ,B , C 分别是 △GHI 三边的中点)得到几何体如图 2,则该几何体按图 2 所示方向的侧视图(或称左视图)为()HA G ABBB侧视BBBCCIEDEDEEEEF F A .B .C .D .图 1图 2第 1页立体几何解:在图 2 的右边放扇墙 (心中有墙 ), 可得答案 A(二)立体几何1.棱柱1.1 棱柱——有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。