The Layer Phase in the Non-isotropic SU(3) Gauge Model at Finite Temperature
- 格式:pdf
- 大小:98.86 KB
- 文档页数:6
Abbr --> 缩写Abbreviation --> 缩写词About --> 关于absolut --> 绝对Active --> 当前add --> 增加add/edit/delete --> 增加/编辑/删除Additional Out --> 附加输出adius --> 心Adjacent --> 相邻Adv --> 高级Advection --> 对流Algorithm --> 算法align --> 定位Align WP with --> 工作区排列按ALPX --> 热膨胀系数Also 副词再Ambient Condit'n --> 环境条件amplitude --> 振幅Analysis --> 分析Angle --> 角度Angles --> 角度Angular --> 角度Animate --> 动画Animation --> 动画Anno --> 注释Anno/Graph --> 注释/图Annotation --> 注释文字Annulus --> 环面ANSYS Multiphysics Utility Menu --> ANSYS 综合物理场有限元分析菜单Any --> 任意apply --> 应用Arbitrary --> 任意arccosine --> 反余弦Archive --> 合并Arcs --> 圆弧线arcsine --> 反正弦area --> 面Area Fillet --> 面圆角Area Mesh --> 已划分的面Areas --> 面Array --> 数组arrow --> 箭头Assembly --> 部件At Coincid Nd --> 在两节点间Attch 动词接触Attr --> 特征Attrib --> 属性Attributes --> 属性Auto --> 自动Automatic Fit --> 自适应Axes --> 坐标轴Axis --> 坐标轴Axi-Symmetric --> 轴对称back up --> 恢复Background --> 背景Banded --> 条状Based --> 基础BC --> 边界Beam --> 梁behavior --> 特性Bellows --> [密封]波纹管Bias --> 偏置Biot Savart --> 毕奥-萨瓦河Bitmap --> BMP图片Block --> 块Body --> 体Booleans --> 布尔操作box --> 框Branch --> 分支brick orient --> 划分块(方向)Builder --> 生成器Built-up --> 合成Buoyancy Terms --> 浮力项By Circumscr Rad --> 外切正多边形By End KPs --> 始点、终点By End Points --> 直径圆By End Pts --> 底圆直径By Inscribed Rad --> 内接?正多边形By Picking --> 鼠标选取By Side Length --> 通过边长确定多边形By Vertices --> 通过顶点确定多边形calc --> 运算Calcs --> 计算Capacitor --> 电容Capped/Q-Slice --> 切面透明度设置Capping --> 盖Capture --> 打印Cartesian --> 笛卡儿坐标系Case --> 情况CE Node Selected --> 约束节点选择cent 中心Center --> 中心centr 中心ceqn --> 约束CFD --> 计算流体力学(CFD)Change 动词更换Check --> 检查Checking --> 检查Checks --> 检查Circle --> 圆Circuit --> 电路circumscr --> 外接圆Clr Size --> 清除尺寸CMS --> 组件模式综合Cnst --> 常数Cntl --> 控制Cntrls --> 控制Coincident --> 重合Collapse --> 折叠收起Color --> 颜色Colors --> 颜色Common --> 普通Comp --> 组件complex variable --> 复数变量Component --> 组件Components --> 组件Compress --> 精减Concats --> 未划分Concentrate --> 集中concrete --> 混凝土Cond --> 导体Conditions --> 条件cone --> 圆锥Configuration --> 配置Connectivity --> 连通性Connt --> 连通区域consistent --> 固定Const --> 常数Constant Amplitude --> 恒幅Constants --> 常数Constr --> 约束Constraint --> 约束Constraints --> 约束constreqn --> 约束方程Contact --> 接触Contour --> 等值线Contour Plot --> 等值云图Contours --> 等值线contraction --> 收缩因子Control --> 控制Controls --> 控制CONVERGENCE INDICATOR --> 收敛精度CONVERGENCE VALUE --> 收敛值Convert ALPx -->热膨胀系数转换Coor --> 坐标系Coord --> 坐标Coord Sys --> 坐标系coordinate --> 坐标Coordinates --> 坐标Coords --> 坐标corner --> 对角Corners --> 对角cornr --> 对角correl field --> 相关性区域correlation --> 相关性count --> 总数Couple --> 耦合Coupled --> 耦合Coupling --> 耦合CP Node Selected --> 耦合节点选择Create 动词新建creep --> 蠕变criteria --> 准则cross product --> 向量积cross-sectional --> 截面CS --> 坐标系csys --> 坐标系ctr --> 中点ctrl --> 控制ctrls --> 控制Cupl --> 耦合Curr --> 电流curvature --> 圆弧Curvature Ctr --> 曲率中心Curve --> 曲线custom --> 定制Cyc --> 循环Cyclic Expansion -->循环扩展设置Cyclic Model --> 周向模型Cyclic Sector --> 扇型周向阵列cylinder --> 圆柱Cylindrical --> 柱坐标系Damper --> 阻尼[减震]器damping --> 阻尼系数Data --> 数据Data Tables --> 数据表格Database --> 数据库DB --> DB definitns --> 特征定义Deformed --> 已变形Degen --> 退化Degeneracy --> 退化Del --> 删除Del Concats --> 删除连接Delete --> 删除dependent --> 相关derivative --> 导数Design Opt --> 优化设计Device --> 设备differentiate --> 微分Digitize --> 数字化dimensions --> 尺寸Diode --> 二极管Directory --> 目录discipline --> 练习Displacement --> 变形Display --> 显示distances --> 距离Divide --> 划分Divs --> 位置DOF --> 自由度dofs --> 自由度dot product --> 点积Dupl --> 复制edge --> 边缘Edit --> 编辑Elbow --> 弯管[肘管]ElecMech --> 电磁ElecStruc --> 静电-结构electr --> 电磁Electric --> 电气类electromag --> 电磁electromagnetic --> 电磁Electromechanic --> 电-机械elem --> 单元Elem Birth/Death --> 单元生/死Element --> 单元Elements --> 单元Elems --> 单元Elm --> 单元EMT CDISP --> 电磁陷阱CDISP Enable 形容词允许ENDS --> 端energy --> 能量ENKE --> 湍动能量Entities --> 实体Entity --> 实体EPPL COMP --> 塑性应变分量EPTO COMP --> 总应变eq --> 方程Eqn --> 方程Eqns --> 方程equation --> 方程式Erase --> 删除Est. --> 估算Everything --> 所有EX --> 弹性模量EX exclude --> 排除Execute --> 执行Execution --> 执行Expansion --> 扩展Expend All --> 展开全部Exponential --> 幂数[指数]exponentiate --> 幂指数Export --> 模型输出Ext Opts --> 拉伸设置Extend Line --> 延伸线extra --> 附加extreme --> 极值Extrude --> 拉伸EY --> 弹性模量EY EZ --> 弹性模量EZ face --> 面Facets --> 表面粗糙fact --> 因子factor --> 系数factr --> 因子failure --> 破坏Fast Sol'n --> 快速求解Fatigue --> 疲劳FD --> 失效挠度field --> 区域Fill --> 填充Fill between KPs -->关键点间填入Fill between Nds --> 节点间填充fillet --> 倒角Fit --> 适当视图Flange --> 法兰Flip --> 翻转Floating Point --> 浮点FLOTRAN --> 流体FLOTRAN Set Up -->流体运行设置Flow --> 流量Fluid --> 流体Flux --> 通量Fnc_/EXI --> 退出Fnc_/GRAPHICS --> 图形界面Focus Point --> 焦点force --> 力Format --> 格式Fourier --> 傅立叶级数Free --> 自由Freq --> 频率From Full --> 完全Full Circle --> 完整圆Func --> 函数function --> 函数Functions --> 函数Gap --> 间隙Gen --> 一般General --> 通用General Options --> 通用设置General Postproc-->通用后处理器Generator --> 生成器Genl --> 普通Geom --> 单元Geometry --> 几何形状Get --> 获取Global --> 全局Globals --> 全局Glue --> 粘合gradient --> 梯度Graph --> 图Graphics --> 图形Graphs --> 图Gravity --> 引力(重力)Grid --> 网格GUI --> 图形用户界面GXY --> 剪切模量GXY GXZ --> 剪切模量GXZ GYZ --> 剪切模量GYZ hard --> 硬Hard Points --> 硬点Hard PT --> 硬点hardening --> 强化hex --> 六面体Hexagon --> 六边形Hexagonal --> 六棱柱hidden --> 隐藏higher-order --> 高阶Hill --> 希尔h-method --> 网格细分法hollow --> 空心Hollow Cylinder --> 空心圆柱体Hollow Sphere --> 空心球体hp-method --> 混合并行法I-J --> I-J imaginary --> 虚部Immediate --> 即时Import --> 模型输入Improve --> 改进independent --> 非相关Individual --> 单个Indp Curr Src --> 感应电流源Indp Vltg Src --> 感应电压源Inductor --> 电感Inertia --> 惯性Inertia Relief Summ --> 惯量概要Inf Acoustic --> 无穷声学单元init --> 初始化Init Condit'n --> 初始条件Initial --> 初始inquire --> 查询inscribed --> 内切圆Installation --> 安装int --> 强度integral --> 积分integrat --> 积分integrate --> 积分interactive --> 交互式Interface --> 接触面intermed --> 中间interpolate --> 插入Intersect --> 相交invert --> 切换is done --> 完成Isometric --> 等轴侧视图Isosurfaces --> 常值表面isotropic --> 各向同性Item --> 项目Items --> 项目Iteration --> 叠代Jobname --> 文件名Joint --> 连接Joints --> 连接KABS --> KABS Keypoint -->关键点Keypoints --> 关键点kinematic --> 随动KP --> 关键点KP between KPs -->关键点间设置kps --> 关键点Labeling --> 标志Layer --> 层Layered --> 分层Layers --> 层Layout --> 布局Lay-up --> 层布置Ld --> 载荷Legal Notices --> 法律声明Legend --> 图例Lib --> 库文件Library --> 材料库文件Licensing --> 许可Light Source --> 光源设置line --> 线Line Fillet --> 圆角Line Mesh --> 已划分的线Line w/Ratio --> 线上/比例Linear --> 线性Linearized --> 线形化Lines --> 线List --> 列出List Results --> 列表结果Ln' s --> 段Load --> 加载Load Step --> 载荷步Loads --> 载荷Loc --> 坐标值Local --> 局部Locate --> 定位Location --> 位置Locations --> 位置Locs --> 位置Log File --> 命令流记录文件lower-order --> 低阶LSDYNA --> LSDYNA(动力分析)LS-DYNA --> 显示动力分析Macro --> 宏命令Magnification --> 放大倍数management --> 管理Manager --> 管理器manual --> 手动ManualSize --> 手动尺寸Map --> 图Mapped --> 映射Mass --> 导体Mass Type --> 聚合量类型Master --> 主mat --> 材料Mat Num --> 材料编号Material --> 材料Materials --> 材料matl --> 材料Matls --> 材料maximum --> 最大Mechanical --> 机械类member --> 构件memory --> 内存MenuCtrls --> 菜单控制Merge --> 合并mesh --> 网格Mesher --> 网格Meshing --> 网格划分MeshTool --> 网格工具Message --> 消息Metafile --> 图元文件Meth --> 方法MIR --> 修正惯性松弛Miter --> 斜接[管]Mod --> 更改Mode --> 模式Model --> 模型Modeling --> 建模Models --> 模型Modify --> 修改Modle --> 模型Module --> 模块moment --> 力矩More --> 更多multi --> 多multi-field --> 多物理场耦合Multilegend --> 多图multilinear --> 多线性Multiple Species --> 多倍样式multiplied --> 乘Multi-Plot --> 多窗口绘图Multi-Plots --> 多图表Multi-Window --> 多窗口Mutual Ind --> 互感Name --> 名称Named --> 已指定natural log --> 自然对数nd --> 节点nds --> 节点NL Generalized -->非线形普通梁截面No Expansion --> 不扩展Nodal --> 节点Node --> 节点Nonlin --> 非线性Nonlinear --> 非线性Non-uniform --> 不均匀norm --> 法向Normal --> 法向Normals --> 没Num --> 编号NUMB --> NUMB Number -->编号Numbered --> 编号Numbering --> 编号Numbers --> 编号NUXY --> 泊松比Oblique --> 等角轴侧视图Octagon --> 八边形Octagonal --> 八棱柱offset --> 偏移Offset WP by Increments --> 指针增量偏移Offset WP to --> 指针偏移到Operate --> 操作Operations --> 运算OPT --> 优化Options --> 设置Optn --> 设置opts --> 设置Ord --> 指令Order --> 顺序Orders --> 指令Orient Normals --> 确定最外层法向Origin --> 原点Orthotropic --> 正交各向异性Other --> 其他Out Derived --> 输出派生outp --> 输出Output --> 输出Over Results --> 整个过程结果Over Time --> 规定时间内全过程Overlaid --> 覆盖Overlap --> 重叠Pair --> 偶Pairwise --> 新生成的Pan --> 移动pan-zoom-rotate --> 移动-缩放-旋转par --> 参数名parall --> 平行Parameters --> 参数Parms --> 参数Part IDs --> 部分ID号Partial --> 部分Partial Cylinder --> 部分圆柱体Particle Flow --> 粒子流迹Partition --> 分割Parts --> 局部Path --> 路径PDS --> 概率设计系统Pentagon --> 五边形Pentagonal --> 五棱柱Percent Error --> 误差率Periodic/Cyclic Symmetry--> 周期/循环阵列Perspective --> 透视phase --> 相位pick --> 选取Picked --> 已选取Piecewise --> 分段Piezoelectric --> 压电元件Pipe --> 管Pipe Run --> 管操作Pipe Tee --> T型管Piping --> 管Plane --> 平面Plane Strn --> 平面应变plasticity --> 塑性plot --> 绘图plotctrls --> 绘图控制Plots --> 绘图P-method --> 高次单元法Pointer --> 指针poisson --> 泊松Polygon --> 多边形POST1 --> 通用后处理器POST26 --> 时间历程后处理器postpro --> 后处理器postproc --> 后处理器potential --> 势POWRGRPH --> 激活窗体preferences --> 参数选项Pre-integrated --> 前集成处理PREP7 --> 前处理器preprocessor --> 前处理器PRES --> 压力Pre-tens Elements --> 删除单元后合并节点pretension --> 主张Pretensn --> 自划分prism --> 棱柱Pro --> Pro Prob --> 概率profiles --> 档案资料Prop --> 属性Properties --> 属性Props --> 属性PRXY --> 泊松比PRXY PRXZ --> 泊松比PRXZ PRYZ --> 泊松比PRYZ PT --> 点Pts --> 点Pulse --> 脉冲Q-Slice --> 切面Quad --> 积分Quadratic --> 二次qualities --> 质量query --> 查询QUIT --> 退出R --> 圆rad --> 半径radiation --> 辐射矩阵radius --> 半径Raise --> 升起random --> 随机range of variable --> 变量范围rate --> 率Rate of Change for Model Mainpulation --> 模型缩放变化率设定Reaction --> 反作用Read --> 读取Read Input from --> 读取命令流文件Real Constante --> 实常数RealConst --> 实常数Rectangle --> 矩形Redirect --> 重定向Reducer --> 接头ref --> 判定Refine --> 细化Reflect --> 阵列reflection --> 镜像Region --> 区域Regions --> 区域Relax/Stab/Cap --> 松弛/稳定/容量Relaxation --> 松弛release --> 版本Remesh --> 重划网格remove --> 删除rename --> 重命名Reorder --> 重置Replay Animation --> 重新播放动画Replot --> 重新绘图Report --> 报告Report --> 报告Res/Quad --> 结果/积分Reselect --> 分解Reset --> 取消Residual --> 余量Resistor --> 电阻response --> 响应Restart --> 重启动Restart/Clear --> 重启动/清除Restart/Iteration --> 重启动/迭代Restart/Load step --> 重启动/载荷步Restart/Set --> 重启动/设置Restart/Time --> 重启动/时间片Restore --> 恢复Result --> 结果Results --> 结果RESUM --> 恢复RESUM_DB --> 恢复_DB resume --> 恢复Reverse --> 相反Reverse Video --> 反色图像Rigid --> 刚性ROM --> 存储器Rotary --> 扭转Rotate --> 旋转Rotating --> 旋转rotational --> 旋转RUNSTAR --> 估计分析模块SAT --> SAT SAVE --> 保存SAVE_DB --> 保存_DBScalar --> 变量scale --> 比例scale factor --> 比例因子Scale Icon --> 图符尺度Scaling --> 比例Screen --> 屏幕se --> 超级单元secn --> 截面号sect --> 截面Sect Mesh --> 自定义网格Section --> 截面Sections --> 截面Sector --> 部分Segment --> 分段Segment Memory --> 分段保存segmented --> 分段Segments --> 分段Sel --> 选择sele --> 选择Select --> 选择Selected --> 已选择Selection --> 选择septagon --> 七边形septagonal --> 七边形的Set --> 设置Set Grid --> 设置栅格Set Up --> 设置Sets --> 设置Settings --> 设置Shaded --> 阴影Shape --> 形状Shell --> 壳Show --> 显示sided --> 边sine --> 正弦Singularity --> 奇异点sint --> 应力强度Sinusoidal --> 正弦Size --> 尺寸skinning --> 2线Slide Film --> 滑动薄膜Smart --> 精确SmartSize --> 智能尺寸Solid --> 实体Solid Circle --> 定圆心圆Solid Cylinder --> 定圆心圆柱体Solid Sphere --> 定圆心球体Solu --> 求解SOLUTION --> 求解器Solver --> 求解Sort --> 排序source --> 源Specification --> 约定Specifications --> 明细单Specified --> 指定Specified --> 指定Specified Loc --> 指定局部坐标spectrm --> 响应谱Spectrum --> 频谱Sphere --> 球体Spherical --> 球坐标系spline --> 样条Splines --> 样条曲线SpotWeld --> 点焊[缝、接点] Spring --> 弹簧Spring Support --> 弹性支撑Spring-Gap Supp -->弹性间隙支撑Src Waveform --> 屏幕波形Standed --> 标准Start --> 开始Start New --> 新建Start Num --> 初始编号Start Number --> 初始编号state --> 状态stats --> 状态Status --> 状态step --> 步store --> 存贮stress --> 应力Stresses --> 应力strn --> 应变Strnd Coil --> 线圈struct --> 结构structural --> 结构Style --> 样式submodeling --> 子模型Subtract --> 减去Summary --> 概要superelem --> 超单元superelement --> 超单元Superelements --> 超单元surf --> 表面Surface --> 面Surfaces --> 表面Sweep --> 扫描switch --> 转换Symbols --> 符号Symmetry Expansion --> 模型对称性扩展-镜像复制扫描Sys --> 系统Table --> 表tan --> 相切tangent --> 相切Taper --> 锥形Target --> 目标tech --> 技术TEMP --> 温度Temp Variatio --> 临时变量Temps --> 温度Tet --> 四面体Tets --> 测试Textured --> 纹理Texturing --> 材质thermal --> 热Thickness --> 壳厚度thickness func --> 函数定义变化的厚度Through --> 通过thru --> 通过Time Integration --> 时间积分Time Stepping --> 时间步设定Time-harmonic --> 时间-谐波timehist --> 时间历程TimeHist Postproc --> 时间历程后处理器Title --> 标题Toggle --> 扭转Tolerance --> 误差Toolbar --> 工具栏Topics --> 主题topological --> 拓扑torus --> 环行圆柱Trace --> 痕迹Trans --> 传递Transducer --> 传感器Transducers --> 传感器Transfer --> 移动Transient --> 暂态Translucency --> 半透视设置Traveling Wave --> 传导波Triangle --> 三角形Triangular --> 三棱柱ttribs --> 属性Turbulence --> 湍流Tutorials --> 指南Type --> 类型Types --> 类型Uniform --> 均布Units --> 单位Unload --> 卸载unpick --> 排除Unselect --> 不选择Update --> 更新user --> 用户User Numbered --> 自定义编号User Specified Expansion --> 自定义扩展模式utility --> 应用分析value --> 值Valve --> 阀Variables --> 变量Vector --> 矢量vectors --> 矢量Vector-Scalar --> 矢量-变量VFRC --> 体积含量View --> 视图Viewing --> 视图visco --> 粘Vltg --> 电压VOF --> 流体Volm --> 体Volms --> 体Volu --> 体volume --> 体Volumes --> 立体Volumes Brick Orient --> 沿Z向立方体Volus --> 体VS --> 电压源VX --> 速度X方向VY --> 速度Y方向VZ --> 速度Z方向w/Same --> w/相同节点Warning/Error --> 警告/错误warp --> 翘曲Wavefront --> 波前win --> 窗口Window --> 窗口Wire --> 导线wish --> 希望with --> 通过Working --> 工作Working Plane --> 工作平面WorkPlane --> 工作平面WP --> 工作平面WP Status --> 工作区指针状态Write DB log file --> 写入日志WrkPlane --> 工作面Zener --> 齐纳Zoom --> 缩放。
《光电技术》专业英语词汇1.Absorption coefficient 吸收系数2.Acceptance angle 接收角3.fibers 光纤4.Acceptors in semiconductors 半导体接收器5.Acousto-optic modulator 声光调制6.Bragg diffraction 布拉格衍射7.Air disk 艾里斑8.angular radius 角半径9.Airy rings 艾里环10.anisotropy 各向异性11.optical 光学的12.refractive index 各向异性13.Antireflection coating 抗反膜14.Argon-ion laser 氩离子激光器15.Attenuation coefficient 衰减系数16.Avalanche 雪崩17.breakdown voltage 击穿电压18.multiplication factor 倍增因子19.noise 燥声20.Avalanche photodiode(APD) 雪崩二极管21.absorption region in APD APD 吸收区域22.characteristics-table 特性表格23.guard ring 保护环24.internal gain 内增益25.noise 噪声26.photogeneration 光子再生27.primary photocurrent 起始光电流28.principle 原理29.responsivity of InGaAs InGaAs 响应度30.separate absorption and multiplication(SAM) 分离吸收和倍增31.separate absorption grading and multiplication(SAGM) 分离吸收等级和倍增32.silicon 硅33.Average irradiance 平均照度34.Bandgap 带隙35.energy gap 能级带隙36.bandgap diagram 带隙图37.Bandwidth 带宽38.Beam 光束39.Beam splitter cube立方分束器40.Biaxial crystals 双轴晶体41.Birefringent 双折射42.Bit rate 位率43.Black body radiation law 黑体辐射法则44.Bloch wave in a crystal 晶体中布洛赫波45.Boundary conditions 边界条件46.Bragg angle 布拉格角度47.Bragg diffraction condition 布拉格衍射条件48.Bragg wavelength 布拉格波长49.Brewster angle 布鲁斯特角50.Brewster window 布鲁斯特窗51.Calcite霰石52.Carrier confinement 载流子限制53.Centrosymmetric crystals 中心对称晶体54.Chirping 啁啾55.Cladding覆层56.Coefficient of index grating 指数光栅系数57.Coherence 连贯性pensation doping 掺杂补偿59.Conduction band 导带60.Conductivity 导电性61.Confining layers 限制层62.Conjugate image 共轭像63.Cut-off wavelength 截止波长64.Degenerate semiconductor简并半导体65.Density of states 态密度66.Depletion layer 耗尽层67.Detectivity 探测率68.Dielectric mirrors 介电质镜像69.Diffraction 衍射70.Diffraction grating 衍射光栅71.Diffraction grating equation 衍射光栅等式72.Diffusion current 扩散电流73.Diffusion flux 扩散流量74.Diffusion Length 扩散长度75.Diode equation 二极管公式76.Diode ideality factor 二极管理想因子77.Direct recombination 直接复合78.Dispersion 散射79.Dispersive medium 散射介质80.Distributed Bragg reflector 分布布拉格反射器81.Donors in semiconductors 施主离子82.Doppler broadened linewidth 多普勒扩展线宽83.Doppler effect 多普勒效应84.Doppler shift 多普勒位移85.Doppler-heterostructure 多普勒同质结构86.Drift mobility漂移迁移率87.Drift Velocity 漂移速度88.Effective density of states 有效态密度89.Effective mass 有效质量90.Efficiency 效率91.Einstein coefficients 爱因斯坦系数92.Electrical bandwidth of fibers 光纤电子带宽93.Electromagnetic wave 电磁波94.Electron affinity 电子亲和势95.Electron potential energy in a crystal 晶体电子阱能量96.Electro-optic effects 光电子效应97.Energy band 能量带宽98.Energy band diagram 能量带宽图99.Energy level 能级100.Epitaxial growth外延生长101.Erbium doped fiber amplifier 掺饵光纤放大器102.Excess carrier distribution 过剩载流子扩散103.External photocurrent 外部光电流104.Extrinsic semiconductors 本征半导体105.Fabry-Perot laser amplifier 法布里-珀罗激光放大器106.Fabry-Perot optical resonator 法布里-珀罗光谐振器107.Faraday effect 法拉第效应108.Fermi-Dirac function 费米狄拉克结109.Fermi energy 费米能级110.Fill factor 填充因子111.Free spectral range 自由谱范围112.Fresnel’s equations菲涅耳方程113.Fresnel’s optical indicatrix 菲涅耳椭圆球114.Full width at half maximum半峰宽115.Full width at half power半功率带宽116.Gaussian beam 高斯光束117.Gaussian dispersion 高斯散射118.Gaussian pulse 高斯脉冲119.Glass perform玻璃预制棒120.Goos Haenchen phase shift Goos Haenchen相位移121.Graded index rod lens 梯度折射率棒透镜122.Group delay 群延迟123.Group velocity 群参数124.Half-wave plate retarder 半波延迟器125.Helium-Neon laser氦氖激光器126.Heterojunction 异质结127.Heterostructure 异质结构128.Hole 空穴129.Hologram 全息图130.Holography 全息照相131.Homojunction 同质结132.Huygens-Fresnel principle惠更斯-菲涅耳原理133.Impact-ionization 碰撞电离134.Index matching 指数匹配135.Injection 注射136.Instantaneous irradiance 自发辐射137.Integrated optics 集成光路138.Intensity of light 光强139.Intersymbol interference 符号间干扰140.Intrinsic concentration本征浓度141.Intrinsic semiconductors 本征半导体142.Irradiance 辐射SER 激光144.active medium 活动介质145.active region 活动区域146.amplifiers 放大器147.cleaved-coupled-cavity解理耦合腔148.distributed Bragg reflection 分布布拉格反射149.distributed feedback 分布反馈150.efficiency of the He-Ne 氦氖效率151.multiple quantum well 多量子阱152.oscillation condition 振荡条件ser diode 激光二极管sing emission 激光发射155.LED 发光二极管156.Lineshape function 线形结157.Linewidth 线宽158.Lithium niobate铌酸锂159.Load line 负载线160.Loss coefficient 损耗系数161.Mazh-Zehnder modulator Mazh-Zehnder型调制器162.Macrobending loss 宏弯损耗163.Magneto-optic effects 磁光效应164.Magneto-optic isolator 磁光隔离165.Magneto-optic modulator 磁光调制166.Majority carriers 多数载流子167.Matrix emitter 矩阵发射168.Maximum acceptance angle 最优接收角169.Maxwell’s wave equation 麦克斯维方程170.Microbending loss 微弯损耗171.Microlaser 微型激光172.Minority carriers 少数载流子173.Modulated directional coupler 调制定向偶合器174.Modulation of light 光调制175.Monochromatic wave 单色光176.Multiplication region 倍增区177.Negative absolute temperature 负温度系数 round-trip optical gain 环路净光增益179.Noise 噪声180.Noncentrosymmetric crystals 非中心对称晶体181.Nondegenerate semiconductors 非简并半异体182.Non-linear optic 非线性光学183.Non-thermal equilibrium 非热平衡184.Normalized frequency 归一化频率185.Normalized index difference 归一化指数差异186.Normalized propagation constant 归一化传播常数187.Normalized thickness 归一化厚度188.Numerical aperture 孔径189.Optic axis 光轴190.Optical activity 光活性191.Optical anisotropy 光各向异性192.Optical bandwidth 光带宽193.Optical cavity 光腔194.Optical divergence 光发散195.Optic fibers 光纤196.Optical fiber amplifier 光纤放大器197.Optical field 光场198.Optical gain 光增益199.Optical indicatrix 光随圆球200.Optical isolater 光隔离器201.Optical Laser amplifiers 激光放大器202.Optical modulators 光调制器203.Optical pumping 光泵浦204.Optical resonator 光谐振器205.Optical tunneling光学通道206.Optical isotropic光学各向同性的207.Outside vapor deposition管外气相淀积208.Penetration depth 渗透深度209.Phase change 相位改变210.Phase condition in lasers 激光相条件211.Phase matching 相位匹配212.Phase matching angle 相位匹配角213.Phase mismatch 相位失配214.Phase modulation 相位调制215.Phase modulator 相位调制器216.Phase of a wave 波相217.Phase velocity 相速218.Phonon 光子219.Photoconductive detector 光导探测器220.Photoconductive gain 光导增益221.Photoconductivity 光导性222.Photocurrent 光电流223.Photodetector 光探测器224.Photodiode 光电二极管225.Photoelastic effect 光弹效应226.Photogeneration 光子再生227.Photon amplification 光子放大228.Photon confinement 光子限制229.Photortansistor 光电三极管230.Photovoltaic devices 光伏器件231.Piezoelectric effect 压电效应232.Planck’s radiation distribution law 普朗克辐射法则233.Pockels cell modulator 普克尔斯调制器234.Pockel coefficients 普克尔斯系数235.Pockels phase modulator 普克尔斯相位调制器236.Polarization 极化237.Polarization transmission matrix 极化传输矩阵238.Population inversion 粒子数反转239.Poynting vector能流密度向量240.Preform 预制棒241.Propagation constant 传播常数242.Pumping 泵浦243.Pyroelectric detectors 热释电探测器244.Quantum efficiency 量子效应245.Quantum noise 量子噪声246.Quantum well 量子阱247.Quarter-wave plate retarder 四分之一波长延迟248.Radiant sensitivity 辐射敏感性249.Ramo’s theorem拉莫定理250.Rate equations速率方程251.Rayleigh criterion 瑞利条件252.Rayleigh scattering limit 瑞利散射极限253.Real image 实像254.Recombination 复合255.Recombination lifetime 复合寿命256.Reflectance 反射257.Reflection 反射258.Refracted light 折射光259.Refractive index 折射系数260.Resolving power分辩力261.Response time 响应时间262.Return-to-zero data rate 归零码263.Rise time 上升时间264.Saturation drift velocity 饱和漂移速度265.Scattering 散射266.Second harmonic generation 二阶谐波267.Self-phase modulation 自相位调制268.Sellmeier dispersion equation色列米尔波散方程式269.Shockley equation肖克利公式270.Shot noise肖特基噪声271.Signal to noise ratio 信噪比272.Single frequency lasers 单波长噪声273.Single quantum well 单量子阱274.Snell’s law斯涅尔定律275.Solar cell 光电池276.Solid state photomultiplier 固态光复用器277.Spectral intensity 谱强度278.Spectral responsivity 光谱响应279.Spontaneous emission 自发辐射280.stimulated emission 受激辐射281.Terrestrial light 陆地光282.Theraml equilibrium热平衡283.Thermal generation 热再生284.Thermal velocity 热速度285.Thershold concentration 光强阈值286.Threshold current 阈值电流287.Threshold wavelength 阈值波长288.Total acceptance angle 全接受角289.Totla internal reflection 全反射290.Transfer distance 转移距离291.Transit time 渡越时间292.Transmission coefficient 传输系数293.Tramsmittance 传输294.Transverse electric field 电横波场295.Tranverse magnetic field 磁横波场296.Traveling vave lase 行波激光器297.Uniaxial crystals 单轴晶体298.UnPolarized light 非极化光299.Wave 波300.Wave equation 波公式301.Wavefront 波前302.Waveguide 波导303.Wave number 波数304.Wave packet 波包络305.Wavevector 波矢量306.Dark current 暗电流307.Saturation signal 饱和信号量308.Fringing field drift 边缘电场漂移plementary color 补色310.Image lag 残像311.Charge handling capability 操作电荷量312.Luminous quantity 测光量313.Pixel signal interpolating 插值处理314.Field integration 场读出方式315.Vertical CCD 垂直CCD316.Vertical overflow drain 垂直溢出漏极317.Conduction band 导带318.Charge coupled device 电荷耦合组件319.Electronic shutter 电子快门320.Dynamic range 动态范围321.Temporal resolution 动态分辨率322.Majority carrier 多数载流子323.Amorphous silicon photoconversion layer 非晶硅存储型324.Floating diffusion amplifier 浮置扩散放大器325.Floating gate amplifier 浮置栅极放大器326.Radiant quantity 辐射剂量327.Blooming 高光溢出328.High frame rate readout mode 高速读出模式329.Interlace scan 隔行扫描330.Fixed pattern noise 固定图形噪声331.Photodiode 光电二极管332.Iconoscope 光电摄像管333.Photolelctric effect 光电效应334.Spectral response 光谱响应335.Interline transfer CCD 行间转移型CCD336.Depletion layer 耗尽层plementary metal oxide semi-conductor 互补金属氧化物半导体338.Fundamental absorption edge 基本吸收带339.Valence band 价带340.Transistor 晶体管341.Visible light 可见光342.Spatial filter 空间滤波器343.Block access 块存取344.Pupil compensation 快门校正345.Diffusion current 扩散电流346.Discrete cosine transform 离散余弦变换347.Luminance signal 高度信号348.Quantum efficiency 量子效率349.Smear 漏光350.Edge enhancement 轮廓校正351.Nyquist frequency 奈奎斯特频率352.Energy band 能带353.Bias 偏压354.Drift current 漂移电流355.Clamp 钳位356.Global exposure 全面曝光357.Progressive scan 全像素读出方式358.Full frame CCD 全帧CCD359.Defect correction 缺陷补偿360.Thermal noise 热噪声361.Weak inversion 弱反转362.Shot noise 散粒噪声363.Chrominance difference signal 色差信号364.Color temperature 色温365.Minority carrier 少数载流子366.Image stabilizer 手振校正367.Horizontal CCD 水平CCD368.Random noise 随机噪声369.Tunneling effect 隧道效应370.Image sensor 图像传感器371.Aliasing 伪信号372.Passive 无源373.Passive pixel sensor 无源像素传感器374.Line transfer 线转移375.Correlated double sampling 相关双采样376.Pinned photodiode 掩埋型光电二极管377.Overflow 溢出378.Effective pixel 有效像素379.Active pixel sensor 有源像素传感器380.Threshold voltage 阈值电压381.Source follower 源极跟随器382.Illuminance 照度383.Refraction index 折射率384.Frame integration 帧读出方式385.Frame interline transfer CCD 帧行间转移CCD 386.Frame transfer 帧转移387.Frame transfer CCD 帧转移CCD388.Non interlace 逐行扫描389.Conversion efficiency 转换效率390.Automatic gain control 自动增益控制391.Self-induced drift 自激漂移392.Minimum illumination 最低照度393.CMOS image sensor COMS图像传感器394.MOS diode MOS二极管395.MOS image sensor MOS型图像传感器396.ISO sensitivity ISO感光度。
absolute intensityA display or plot mode in which the signal intensity is proportional to theacquisition timeattenuationThe control applied to voltages (including signal from the sample) within the spectrometer. High attenuation gives low-voltage, low-attenuation gives high-voltage.B 0The static magnetic field. The magnetic flux density is expressed in tesla,T, or often, as an equivalent 1H resonance frequency (for example, 300MHz for a 7 T magnet).B 1Magnetic field associated with a radio-frequency (r.f.) pulse. Often expressed as an equivalent value in kHz.bandshapeUsually used when referring to a complex lineshape or a group of overlapping plex bandshapes often arise from quadrupolar nuclei (see figure 2).centrebandThe signal at the isotropic chemical shift. Its position is the same at all spin-rates.channelThe individual frequencies or frequency bands of a spectrometer. For example: H-channel (proton), C-channel (carbon) or broad-band (or X) channel (usually anything except H).chemical shiftNumber used for reporting the position of a line (νi )relative to a reference line (νref ) in a high-resolution spectrum. The chemical shift parameter is denoted δ and quoted in ppm.coherence pathwayDescription of an experiment that allows the excitation of the spins to be followed. Useful for experiments where excitation or selection of signal from one-, two- or multiple-quantum transitions is needed.contact timeTime during which two matched radio-frequency fields are applied simultaneously in a CP experiment.CPCross-polarisation. Any experiment where energy (magnetisation) is transferred from the nuclei of one element (often H) to those of another.dead-time Time between a pulse and the switch on of the receiver. The spectrometercircuitry needs time to settle after transmitting the high voltage associatedwith a pulse before it can detect the very low voltage associated with thesignal from the sample. See figure 1.610×−=ref ref i νννδTerminology Commonly Used in NMR SpectroscopyFigure 2. Bandshape from a single 11B environment.磁共振成像常用技术术语d.c. offset Constant-value offset occurring in the FID (see “Problems”). Results ina central (zero-frequency) “spike” artefact in the spectrum whentransformed.deconvolution Mathematical process used to determine the intensities of overlappinglines.digital resolution This depends on the Fourier number. The bigger the Fourier number thegreater the number of data points per Hz of the spectrum and the higherthe digital resolution. See “Processing”.DP Direct-polarisation. An experiment in which the nuclei to be observedare excited directly.duty cycle A value used to assess whether anexperiment might damage thespectrometer (or the sample). Theduty cycle should never exceed 20 %(see “How to Choose a RecycleDelay”)dwell Spacing between data points in the time-domain. Can depend on theway acquisition is implemented but, commonly, dwell = 1/spectral width. endcap Open rotors have to be closed with endcaps before they can be spun. FID Free Induction Decay (see figure 1).field Magnetic field, with flux density quoted in T (Tesla) for the static magneticfield (B). For the magnetic field associated with an r.f. pulse the fluxdensity is given in mT or, more usually, expressed as a kHz equivalent(see “Matching”).flip-back Experimental procedure for shortening recycle times (see “How to Choosea Recycle”).Fourier number The number of points used in the FT. Always a power of 2.frequency domain Where information is displayed as a function of frequency - the spectrum FT Fourier Transform. Mathematical process to convert time-domain tofrequency-domain. Designed to work with 2n (n = integer) data points. gain Amplification applied to the received signal.Gauss Non-SI unit of magnetic field flux density. The SI equivalent is Tesla (T),1 T = 10,000 Gintensity On its own - the height of a line. Integrated-intensity is the area under theline.linebroadening Spectra can be artificially linebroadened to improve their appearance.This involves multiplying the FID with a decaying function prior to the FT.See “Processing”.lineshape The shape of individual lines in a spectrum. Commonly, Gaussian orLorentzian (figure 3) or a mixture of the two, are encounteredexperimentally.linewidth This is usually the full width at half-height (δν½)r.f. on-timer.f. on-time + r.f. off-timeduty cycle =magic-angle54.7° or 54° 44´magnetisation when described classically (non-quantum mechanically) an ensemble ofspins at equilibrium in an external magnetic field has a net magnetisationprecessing about an axis aligned along that field.magnetogyric ratio Symbol γ . A fundamental physical constant of elements with non-zerospin. For example γH is 2.675x108 rads -1T -1.matchShort for Hartmann-Hahn match (see “Matching”)noisenormalised intensity Signal intensity can be multiplied by an arbitrary factor to give a particularheight to the highest (often) line or the integrated intensity. Opposite ofabsolute intensity.nuclear spin quantum number Symbol I . A fundamental property of a nucleus. Only nuclei with I > 0are said to be NMR “active”.phase (1)The phase of a pulse relates to its position in the xy plane of the rotating frame.phase (2)The phase of a spectral line comes from the way in which the real and imaginary components of a complex FT are combined (see “Processing”).phase cycling The way in which the phase of a pulse (or the receiver) is changed duringsuccessive repetitions of a pulse sequence. Used to suppress artefactsand select specific coherence pathways.ppm Parts per million. Usual way of reporting a chemical shift. A frequencydifference ∆ Hz 610×∆≈n observatio ν ppm precession“Movement of the axis of a spinning body around another axis” (as a gyroscope)probeThe business end of the spectrometer, where the sample goes.pulse angle When described in the rotating frame a pulse rotates the magnetisationthrough an angle θ. A pulse that rotates the magnetisation though 90° iscalled a 90° pulse.pulse duration Time for which a pulse occurs.quadrupole Any nucleus with I > ½.recycle (time)Or pulse delay or relaxation delay. Time between the end of dataacquisition and the start of excitation in successive repetitions of a pulsesequence. (See “How to Choose a Recycle”).referenceThe material giving the signal which defines the zero position in a high-heightresolution spectrum.repetitionsThe number of times a pulse sequence is repeated in an experiment.resolutionThe ability to separate closely spaced lines (see figure 4). As a rule of thumb,a pair of lines will be resolved if their linewidth is less than their separation.resolution enhancementThe opposite of linebroadening. An FID multiplied by an appropriate combination of increasing and decaying functions can yield extra resolution in a spectrum. See “Processing”.rotary echoA feature of an FID that occurs at intervals of 1/spin-rate (see “How to Set the Magic-angle”). They give rise to spinning sidebands in the spectrum.rotating frameA mathematical tool to make the effect of a pulse easy to visualise.Magnetisation precessing at ν Hz in a laboratory-based xyz axis system appears static in an axis system (frame) rotating at ν Hz.rotorThe container that holds the sample. Often referred to in terms of its outside diameter (for example, 5 mm).saturationCondition that arises when there is no population difference between excited and ground states. No signal is observable under such conditions.sidebandsOr spinning sidebands. Under some circumstances sidebands appear in a spectrum. They can occur on both sides of a centreband and separated from it by a frequency equal to the spin-rate. A spectrum may contain a manifold of sidebands and the centreband is not necessarily more intense than all of the sidebands.signalThe FID or one or more of the lines in a spectrum.signal-to-noise ratio (S/N)Ratio of the height of a line or signal (usually the largest) to the noise.Definitions of the measurement of noise vary. Signal increases as n (the number of repetitions) but noise only increases by √n so S/N increases by √n.spectral widthDifference in frequency of the two ends of the full spectrum. Not to be confused with the now largely obsolete term sweep width.spinA property of a nucleus with non-zero nuclear spin-quantum number (I ),as in spin-½. Or, simply, a nucleus with a magnetic moment.spin-lockIf, after a 90°x pulse a second, long-duration (spin-lock) r.f. field is applied along the y-axis the magnetisation is said to be spin-locked.spin-rateThe rate at which the sample is spun.spin-temperature inversionA manipulation carried out within the phase cycling of a CP experiment to remove magnetisation originating directly from the X-channel contact pulse.standard Any sample used to set-up the spectrometer and/or to define the zeroposition in the spectrum.Figure 4. Two lines of constant spacing but different linewidth.T 1Spin-lattice relaxation time-constant. Relates to the time taken for excited spins, in the presence of B 0, to loose energy to their surroundings and return to their equilibrium state.T 1ρSpin-lattice relaxation time-constant in the rotating frame. As for T 1 but this time in the presence of an applied radio-frequency field B 1.T 2Spin-spin relaxation time-constant. Relates to the time for a conserved exchange of energy between spins.T 2*A time-constant sometimes used to describe the decay of the observed time-domain signal (T 2* ≤ T 2). The shorter T 2* the broader the associated signal(s) in the spectrum.time-domainWhere information is recorded or displayed as a function of time (see figure 1).transmitter offsetThis allows fine control of the position of a transmitter (carrier frequency).With an appropriate offset, signals can be put exactly on-resonance or a specific amount off-resonance. Can be applied to any spectrometer channel.truncationIf the acquisition time is shorter than the FID then truncation of the FID is said to have occurred (See “Problems”).zero filling If the number of data points is not a power of two then zeroes are addedto the acquired data so that the total number of points Fourier transformedis 2n . Zero filling adds no signal to the spectrum but it can improveresolution (see “Processing”).。
材料科学基础专业词汇:第一章晶体结构原子质量单位Atomic mass unit (amu) 原子数Atomic number原子量Atomic weight 波尔原子模型Bohr atomic model键能Bonding energy 库仑力Coulombic force共价键Covalent bond 分子的构型molecular configuration 电子构型electronic configuration 负电的Electronegative正电的Electropositive 基态Ground state氢键Hydrogen bond 离子键Ionic bond同位素Isotope 金属键Metallic bond摩尔Mole泡利不相容原理Pauli exclusion principle 元素周期表Periodic table原子atom 分子molecule分子量molecule weight 极性分子Polar molecule量子数quantum number 价电子valence electron范德华键van der waals bond 电子轨道electron orbitals点群point group 对称要素symmetry elements各向异性anisotropy 原子堆积因数Atomic packing factor(APF)体心立方结构body-centered cubic (BCC) 面心立方结构face-centered cubic (FCC) 布拉格定律bragg’s law 配位数coordination number晶体结构crystal structure 晶系crystal system晶体的crystalline 衍射diffraction中子衍射neutron diffraction 电子衍射electron diffraction晶界grain boundary 六方密堆积hexagonal close-packed(HCP)鲍林规则Pauling’s rules NaCl型结构NaCl-type structure CsCl型结构Caesium Chloride structure 闪锌矿型结构Blende-type structure纤锌矿型结构Wurtzite structure 金红石型结构Rutile structure萤石型结构Fluorite structure 钙钛矿型结构Perovskite-type structure 尖晶石型结构Spinel-type structure 硅酸盐结构Structure of silicates岛状结构Island structure 链状结构Chain structure层状结构Layer structure 架状结构Framework structure滑石talc 叶蜡石pyrophyllite高岭石kaolinite 石英quartz长石feldspar 美橄榄石forsterite各向同性的isotropic 各向异性的anisotropy晶格lattice 晶格参数lattice parameters密勒指数miller indices 非结晶的noncrystalline多晶的polycrystalline 多晶形polymorphism单晶single crystal 晶胞unit cell电位electron states (化合)价valence电子electrons 共价键covalent bonding金属键metallic bonding 离子键Ionic bonding极性分子polar molecules 原子面密度atomic planar density衍射角diffraction angle 合金alloy粒度,晶粒大小grain size 显微结构microstructure显微照相photomicrograph 扫描电子显微镜 scanning electronmicroscope (SEM)重量百分数weight percent透射电子显微镜transmission electronmicroscope (TEM)四方的tetragonal 单斜的monoclinic配位数coordination number材料科学基础专业词汇:第二章晶体结构缺陷缺陷defect, imperfection 点缺陷point defect线缺陷line defect, dislocation 面缺陷interface defect体缺陷volume defect 位错排列dislocation arrangement 位错线dislocation line 刃位错edge dislocation螺位错screw dislocation 混合位错mixed dislocation晶界grain boundaries 大角度晶界high-angle grainboundaries小角度晶界tilt boundary, 孪晶界twin boundaries位错阵列dislocation array 位错气团dislocation atmosphere 位错轴dislocation axis 位错胞dislocation cell位错爬移dislocation climb 位错聚结dislocation coalescence 位错滑移dislocation slip 位错核心能量dislocation core energy位错裂纹dislocation crack 位错阻尼dislocation damping位错密度dislocation density 原子错位substitution of a wrongatom间隙原子interstitial atom 晶格空位vacant lattice sites间隙位置interstitial sites 杂质impurities弗伦克尔缺陷Frenkel disorder 肖脱基缺陷Schottky disorder主晶相the host lattice 错位原子misplaced atoms缔合中心Associated Centers. 自由电子Free Electrons电子空穴Electron Holes 伯格斯矢量Burgers克罗各-明克符号Kroger Vink notation 中性原子neutral atom材料科学基础专业词汇:第二章晶体结构缺陷-固溶体固溶体 solid solution 固溶度solid solubility化合物 compound 间隙固溶体 interstitial solid solution 置换固溶体 substitutional solid solution 金属间化合物 intermetallics不混溶固溶体 immiscible solid solution 转熔型固溶体 peritectic solid solution 有序固溶体 ordered solid solution 无序固溶体 disordered solid solution 固溶强化 solid solution strengthening 取代型固溶体Substitutional solid solutions过饱和固溶体 supersaturated solid solution非化学计量化合物 Nonstoichiometric compound材料科学基础专业词汇:第三章熔体结构熔体结构structure of melt 过冷液体 supercooling melt 玻璃态 vitreous state 软化温度 softening temperature 粘度viscosity 表面张力 Surface tension 介稳态过渡相 metastable phase 组织 constitution 淬火 quenching 退火的 softened玻璃分相phase separation in glasses 体积收缩 volume shrinkage材料科学基础专业词汇:第四章固体的表面与界面表面 surface界面 interface 同相界面 homophase boundary 异相界面 heterophase boundary 晶界grain boundary表面能 surface energy 小角度晶界 low angle grain boundary 大角度晶界 high angle grain boundary 共格孪晶界 coherent twin boundary 晶界迁移 grain boundary migration 错配度 mismatch 驰豫 relaxation 重构 reconstuction 表面吸附 surface adsorption 表面能 surface energy倾转晶界 titlt grain boundary 扭转晶界 twist grain boundary 倒易密度 reciprocal density 共格界面 coherent boundary 半共格界面 semi-coherent boundary 非共格界面 noncoherent boundary 界面能 interfacial free energy 应变能strain energy晶体学取向关系 crystallographicorientation惯习面habit plane材料科学基础专业词汇:第五章相图相图phase diagrams 相phase组分component 组元compoonent相律Phase rule 投影图Projection drawing浓度三角形Concentration triangle 冷却曲线Cooling curve成分composition 自由度freedom相平衡phase equilibrium 化学势chemical potential热力学thermodynamics 相律phase rule吉布斯相律Gibbs phase rule 自由能free energy吉布斯自由能Gibbs free energy 吉布斯混合能Gibbs energy of mixing 吉布斯熵Gibbs entropy 吉布斯函数Gibbs function热力学函数thermodynamics function 热分析thermal analysis过冷supercooling 过冷度degree of supercooling杠杆定律lever rule 相界phase boundary相界线phase boundary line 相界交联phase boundarycrosslinking共轭线conjugate lines 相界有限交联phase boundarycrosslinking相界反应phase boundary reaction 相变phase change相组成phase composition 共格相phase-coherent金相相组织phase constentuent 相衬phase contrast相衬显微镜phase contrast microscope 相衬显微术phase contrastmicroscopy相分布phase distribution 相平衡常数phase equilibriumconstant相平衡图phase equilibrium diagram 相变滞后phase transition lag相分离phase segregation 相序phase order相稳定性phase stability 相态phase state相稳定区phase stabile range 相变温度phase transitiontemperature相变压力phase transition pressure 同质多晶转变polymorphictransformation同素异晶转变allotropic transformation 相平衡条件phase equilibriumconditions显微结构microstructures 低共熔体eutectoid不混溶性immiscibility材料科学基础专业词汇:第六章扩散活化能activation energy 扩散通量diffusion flux浓度梯度concentration gradient 菲克第一定律Fick’s first law菲克第二定律Fick’s second law 相关因子correlation factor稳态扩散steady state diffusion 非稳态扩散nonsteady-state diffusion 扩散系数diffusion coefficient 跳动几率jump frequency填隙机制interstitalcy mechanism 晶界扩散grain boundary diffusion 短路扩散short-circuit diffusion 上坡扩散uphill diffusion下坡扩散Downhill diffusion 互扩散系数Mutual diffusion渗碳剂carburizing 浓度梯度concentration gradient浓度分布曲线concentration profile 扩散流量diffusion flux驱动力driving force 间隙扩散interstitial diffusion自扩散self-diffusion 表面扩散surface diffusion空位扩散vacancy diffusion 扩散偶diffusion couple扩散方程diffusion equation 扩散机理diffusion mechanism扩散特性diffusion property 无规行走Random walk达肯方程Dark equation 柯肯达尔效应Kirkendall equation本征热缺陷Intrinsic thermal defect 本征扩散系数Intrinsic diffusion coefficient离子电导率Ion-conductivity 空位机制Vacancy concentration材料科学基础专业词汇:第七章相变过冷supercooling 过冷度degree of supercooling晶核nucleus 形核nucleation形核功nucleation energy 晶体长大crystal growth均匀形核homogeneous nucleation 非均匀形核heterogeneous nucleation形核率nucleation rate 长大速率growth rate 热力学函数thermodynamics function临界晶核critical nucleus 临界晶核半径critical nucleus radius枝晶偏析dendritic segregation 局部平衡localized equilibrium平衡分配系数equilibriumdistributioncoefficient有效分配系数effective distribution coefficient成分过冷constitutional supercooling 引领(领先)相leading phase共晶组织eutectic structure 层状共晶体lamellar eutectic伪共晶pseudoeutectic 离异共晶divorsed eutectic表面等轴晶区chill zone 柱状晶区columnar zone中心等轴晶区equiaxed crystal zone 定向凝固unidirectional solidification 急冷技术splatcooling 区域提纯zone refining单晶提拉法Czochralski method 晶界形核boundary nucleation位错形核dislocation nucleation 晶核长大nuclei growth斯宾那多分解spinodal decomposition有序无序转变disordered-order transition马氏体相变martensite phase transformation 马氏体martensite材料科学基础专业词汇:第八、九章固相反应和烧结固相反应solid state reaction 烧结sintering烧成fire 合金alloy再结晶Recrystallization 二次再结晶Secondary recrystallization 成核nucleation 结晶crystallization子晶,雏晶matted crystal 耔晶取向seed orientation异质核化heterogeneous nucleation 均匀化热处理homogenization heattreatment铁碳合金iron-carbon alloy 渗碳体cementite铁素体ferrite 奥氏体austenite共晶反应eutectic reaction 固溶处理solution heat treatment。
材料专业英语常见词汇The saying "the more diligent, the more luckier you are" really should be my charm in2006.材料专业英语常见词汇一Structure 组织Ceramic 陶瓷Ductility 塑性Stiffness 刚度Grain 晶粒Phase 相Unit cell 单胞Bravais lattice 布拉菲点阵Stack 堆垛Crystal 晶体Metallic crystal structure 金属性晶体点阵 Non-directional 无方向性Face-centered cubic 面心立方Body-centered cubic体心立方 Hexagonal close-packed 密排六方 Copper 铜Aluminum 铝Chromium 铬 Tungsten 钨Crystallographic Plane晶面 Crystallographic direction 晶向 Property性质 Miller indices米勒指数 Lattice parameters 点阵参数Tetragonal 四方的Hexagonal 六方的Orthorhombic 正交的Rhombohedra 菱方的Monoclinic 单斜的Prism 棱镜 Cadmium 镉 Coordinate system 坐 Point defec点缺陷Lattice 点阵 Vacancy 空位Solidification 结晶Interstitial 间隙Substitution 置换Solid solution strengthening 固溶强化Diffusion 扩散Homogeneous 均匀的Diffusion Mechanisms 扩散机制Lattice distortion 点阵畸变Self-diffusion 自扩散Fick’s First Law 菲克第一定律 Unit time 单位时间Coefficient 系数Concentration gradient 浓度梯度Dislocations 位错Linear defect 线缺陷Screw dislocation 螺型位错Edge dislocation 刃型位错Vector 矢量Loop 环路Burgers’vector 柏氏矢量Perpendicular 垂直于Surface defect 面缺陷Grain boundary 晶界Twin boundary 晶界 Shear force 剪应力Deformation 变形Small or low angel grain boundary 小角度晶界Tilt boundary 倾斜晶界Supercooled 过冷的Solidification 凝固Ordering process 有序化过程Crystallinity 结晶度Microstructure 纤维组织Term 术语Phase Diagram 相图Equilibrium 平衡Melt 熔化Cast 浇注Crystallization 结晶Binary Isomorphous Systems 二元匀晶相图Soluble 溶解Phase Present 存在相Locate 确定Tie line 连接线Isotherm 等温线Concentration 浓度Intersection 交点The Lever Law 杠杆定律Binary Eutectic System 二元共晶相图Solvus Line 溶解线Invariant 恒定Isotherm 恒温线Cast Iron 铸铁Ferrite 珠光体Polymorphic transformation 多晶体转变Austenite 奥氏体Revert 回复Intermediate compound 中间化合物Cementite 渗碳体Vertical 垂线Nonmagnetic 无磁性的Solubility 溶解度Brittle 易脆的Eutectic 共晶Eutectoid invariant point 共析点Phase transformation 相变Allotropic 同素异形体Recrystallization 再结晶Metastable 亚稳的Martensitic transformation 马氏体转变Lamellae 薄片Simultaneously 同时存在Pearlite 珠光体Ductile 可塑的Mechanically 机械性能Hypo eutectoid 过共析的Particle 颗粒Matrix基体Proeutectoid 先共析Hypereutectoid 亚共析的Bainite 贝氏体Martensite 马氏体Linearity 线性的Stress-strain curve 应力-应变曲线Proportional limit 比例极限Tensile strength 抗拉强度Ductility 延展性Percent reduction in area 断面收缩率Hardness 硬度Modulus of Elasticity 弹性模量Tolerance 公差Rub 摩擦Wear 磨损Corrosion resistance 抗腐蚀性Aluminum 铝Zinc 锌Iron ore 铁矿Blast furnace 高炉Coke 焦炭Limestone 石灰石Slag 熔渣Pig iron 生铁Ladle 钢水包Silicon 硅Sulphur 硫Wrought 可锻的Graphite 石墨Flaky 片状Low-carbon steels 低碳钢Case hardening 表面硬化Medium-carbon steels 中碳钢Electrode 电极As a rule 通常Preheating 预热Quench 淬火Body-centered lattice 体心晶格Carbide 碳化物Hypereutectoid过共晶Chromium 铬Manganese 锰Molybdenum 钼Titanium 钛Cobalt 钴Tungsten 钨Vanadium 钒Pearlitic microstructure 珠光体组织Martensitic microstructure 马氏体组织Viscosity 粘性Wrought 锻造的Magnesium 镁Flake 片状Malleable 可锻的Nodular 球状Spheroidal 球状Superior property 优越性Galvanization 镀锌Versatile 通用的Battery grid 电极板Calcium 钙Tin 锡Toxicity 毒性Refractory 耐火的Platinum铂Polymer 聚合物Composite 混合物Erosive 腐蚀性Inert 惰性Thermo chemically 热化学Generator 发电机Flaw 缺陷Variability 易变的Annealing 退火Tempering回火Texture 织构Kinetic 动力学Peculiarity 特性Critical point 临界点Dispersity 弥散程度Spontaneous 自发的Inherent grain 本质晶粒Toughness 韧性Rupture 断裂Kinetic curve of transformation 转变动力学曲线Incubation period 孕育期Sorbite 索氏体Troostite 屈氏体Disperse 弥散的Granular 颗粒状Metallurgical 冶金学的Precipitation 析出Depletion 减少Quasi-eutectoid 伪共析Superposition 重叠Supersede 代替Dilatometric 膨胀Unstable 不稳定Supersaturate 使过饱和Tetragonality 正方度Shear 切变Displacement 位移Irreversible 不可逆的金属材料工程专业英语acid-base equilibrium酸碱平衡 acid-base indicator酸碱指示剂 acid bath酸槽 acidBessemerconverter 酸性转炉 acid brick酸性耐火砖 acid brittleness酸洗脆性、氢脆性 acid burden酸性炉料acid clay酸性粘土 acid cleaning同pickling酸洗 acid concentration酸浓度 acid converter酸性转炉 acid converter steel酸性转炉钢 acid content酸含量 acid corrosion酸腐蚀 acid deficient弱酸的、酸不足的 acid dip酸浸acid dip pickler沉浸式酸洗装置 aciddiptank酸液浸洗槽acid drain tank排酸槽acidless descaling无酸除鳞acid medium酸性介质acid mist酸雾acid-proof paint耐酸涂料漆acid-proof steel耐酸钢acid-resistant耐酸钢acid-resisting vessel耐酸槽acid strength酸浓度acid supply pump供酸泵acid wash酸洗acid value酸值acid wash solution酸洗液acieration渗碳、增碳Acm point Acm转变点渗碳体析出温度acorn nut螺母、螺帽acoustic absorption coefficient声吸收系数acoustic susceptance声纳actifier再生器action line作用线action spot作用点activated atom激活原子activated bath活化槽activated carbon活性碳activating treatment活化处理active corrosion活性腐蚀、强烈腐蚀active area有效面积active power有功功率、有效功率active product放射性产物active resistance有效电阻、纯电阻active roll gap轧辊的有效或工作开口度active state活性状态active surface有效表面activity coefficient激活系数、活度系数actual diameter钢丝绳实际直径actual efficiency实际效率actual error实际误差actual time实时actual working stress实际加工应力actuating device调节装置、传动装置、起动装置actuating lever驱动杆、起动杆actuating mechanism 动作机构、执行机构actuating motor驱动电动机、伺服电动机actuating pressure作用压力actuation shaft起动轴actuator调节器、传动装置、执行机构acute angle锐角adaptive feed back control自适应反馈控制adaptive optimization自适应最优化adaptor接头、接合器、连结装置、转接器、附件材料科学基础专业词汇:第一章晶体结构原子质量单位 Atomic mass unit amu 原子数 Atomic number 原子量 Atomic weight波尔原子模型 Bohr atomic model 键能 Bonding energy 库仑力 Coulombic force共价键 Covalent bond 分子的构型 molecular configuration电子构型electronic configuration 负电的 Electronegative 正电的 Electropositive基态 Ground state 氢键 Hydrogen bond 离子键 Ionic bond 同位素 Isotope金属键 Metallic bond 摩尔 Mole 分子 Molecule 泡利不相容原理 Pauli exclusion principle 元素周期表 Periodic table 原子 atom 分子 molecule 分子量 molecule weight极性分子 Polar molecule 量子数 quantum number 价电子 valence electron范德华键 van der waals bond 电子轨道 electron orbitals 点群 point group对称要素 symmetry elements 各向异性 anisotropy 原子堆积因数 atomic packing factorAPF 体心立方结构 body-centered cubic BCC 面心立方结构 face-centered cubic FCC布拉格定律bragg’s law 配位数 coordination number 晶体结构 crystal structure晶系 crystal system 晶体的 crystalline 衍射 diffraction 中子衍射 neutron diffraction电子衍射 electron diffraction 晶界 grain boundary 六方密堆积 hexagonal close-packed HCP 鲍林规则 Paulin g’s rules NaCl型结构 NaCl-type structureCsCl型结构Caesium Chloride structure 闪锌矿型结构 Blende-type structure纤锌矿型结构 Wurtzite structure 金红石型结构 Rutile structure萤石型结构 Fluorite structure 钙钛矿型结构 Perovskite-type structure尖晶石型结构 Spinel-type structure 硅酸盐结构 Structure of silicates岛状结构 Island structure 链状结构 Chain structure 层状结构 Layer structure架状结构 Framework structure 滑石 talc 叶蜡石 pyrophyllite 高岭石 kaolinite石英 quartz 长石 feldspar 美橄榄石 forsterite 各向同性的 isotropic各向异性的 anisotropy 晶格 lattice 晶格参数 lattice parameters 密勒指数 miller indices 非结晶的 noncrystalline多晶的 polycrystalline 多晶形 polymorphism 单晶single crystal 晶胞 unit cell电位 electron states化合价 valence 电子 electrons 共价键 covalent bonding金属键 metallic bonding 离子键Ionic bonding 极性分子 polar molecules原子面密度 atomic planar density 衍射角 diffraction angle 合金 alloy粒度,晶粒大小 grain size 显微结构 microstructure 显微照相 photomicrograph扫描电子显微镜 scanning electron microscope SEM透射电子显微镜 transmission electron microscope TEM 重量百分数 weight percent四方的 tetragonal 单斜的monoclinic 配位数 coordination number材料科学基础专业词汇:第二章晶体结构缺陷缺陷 defect, imperfection 点缺陷 point defect 线缺陷 line defect, dislocation面缺陷 interface defect 体缺陷 volume defect 位错排列 dislocation arrangement位错线 dislocation line 刃位错 edge dislocation 螺位错 screw dislocation混合位错 mixed dislocation 晶界 grain boundaries 大角度晶界 high-angle grain boundaries 小角度晶界 tilt boundary, 孪晶界 twin boundaries 位错阵列 dislocation array位错气团 dislocation atmosphere 位错轴dislocation axis 位错胞 dislocation cell位错爬移 dislocation climb 位错聚结 dislocation coalescence 位错滑移 dislocation slip位错核心能量 dislocation core energy 位错裂纹 dislocation crack位错阻尼 dislocation damping 位错密度 dislocation density原子错位 substitution of a wrong atom 间隙原子 interstitial atom晶格空位 vacant lattice sites 间隙位置 interstitial sites 杂质 impurities弗伦克尔缺陷 Frenkel disorder 肖脱基缺陷 Schottky disorder 主晶相 the host lattice错位原子 misplaced atoms 缔合中心 Associated Centers. 自由电子 Free Electrons电子空穴Electron Holes 伯格斯矢量 Burgers 克罗各-明克符号 Kroger Vink notation中性原子 neutral atom材料科学基础专业词汇:第二章晶体结构缺陷-固溶体固溶体 solid solution 固溶度 solid solubility 化合物 compound间隙固溶体 interstitial solid solution 置换固溶体 substitutional solid solution金属间化合物 intermetallics 不混溶固溶体 immiscible solid solution转熔型固溶体 peritectic solid solution 有序固溶体 ordered solid solution无序固溶体 disordered solid solution 固溶强化 solid solution strengthening取代型固溶体 Substitutional solid solutions 过饱和固溶体 supersaturated solid solution非化学计量化合物 Nonstoichiometric compound材料科学基础专业词汇:第三章熔体结构熔体结构 structure of melt过冷液体 supercooling melt 玻璃态 vitreous state软化温度 softening temperature 粘度 viscosity 表面张力 Surface tension介稳态过渡相 metastable phase 组织 constitution 淬火 quenching退火的 softened 玻璃分相 phase separation in glasses 体积收缩 volume shrinkage材料科学基础专业词汇:第四章固体的表面与界面表面 surface 界面 interface 同相界面 homophase boundary异相界面 heterophase boundary 晶界 grain boundary 表面能 surface energy小角度晶界 low angle grain boundary 大角度晶界 high angle grain boundary共格孪晶界 coherent twin boundary 晶界迁移 grain boundary migration错配度 mismatch 驰豫 relaxation 重构 reconstuction 表面吸附 surface adsorption表面能 surface energy 倾转晶界 titlt grain boundary 扭转晶界 twist grain boundary倒易密度 reciprocal density 共格界面 coherent boundary 半共格界面 semi-coherent boundary 非共格界面 noncoherent boundary 界面能 interfacial free energy应变能 strain energy 晶体学取向关系 crystallographic orientation惯习面habit plane材料科学基础专业词汇:第五章相图相图 phase diagrams 相 phase 组分 component 组元 compoonent相律 Phase rule 投影图 Projection drawing 浓度三角形 Concentration triangle冷却曲线 Cooling curve 成分 composition 自由度 freedom相平衡 phase equilibrium 化学势 chemical potential 热力学 thermodynamics相律 phase rule 吉布斯相律 Gibbs phase rule 自由能 free energy吉布斯自由能 Gibbs free energy 吉布斯混合能 Gibbs energy of mixing吉布斯熵 Gibbs entropy 吉布斯函数 Gibbs function 热力学函数 thermodynamics function 热分析 thermal analysis 过冷 supercooling 过冷度 degree of supercooling杠杆定律 lever rule 相界 phase boundary 相界线 phase boundary line相界交联 phase boundary crosslinking 共轭线 conjugate lines相界有限交联 phase boundary crosslinking 相界反应 phase boundary reaction相变 phase change 相组成 phase composition 共格相 phase-coherent金相相组织 phase constentuent 相衬 phase contrast 相衬显微镜 phase contrast microscope 相衬显微术 phase contrast microscopy 相分布 phase distribution相平衡常数 phase equilibrium constant 相平衡图 phase equilibrium diagram相变滞后 phase transition lag 相分离 phase segregation 相序 phase order相稳定性 phase stability 相态 phase state 相稳定区 phase stabile range相变温度 phase transition temperature 相变压力 phase transition pressure同质多晶转变 polymorphic transformation 同素异晶转变 allotropic transformation相平衡条件 phase equilibrium conditions 显微结构 microstructures 低共熔体 eutectoid不混溶性 immiscibility材料科学基础专业词汇:第六章扩散活化能 activation energy 扩散通量 diffusion flux 浓度梯度 concentration gradient菲克第一定律Fick’s first law 菲克第二定律Fick’s second law 相关因子 correlation factor 稳态扩散 steady state diffusion 非稳态扩散 nonsteady-state diffusion扩散系数 diffusion coefficient 跳动几率 jump frequency填隙机制 interstitalcy mechanism 晶界扩散 grain boundary diffusion短路扩散 short-circuit diffusion 上坡扩散 uphill diffusion 下坡扩散 Downhill diffusion互扩散系数 Mutual diffusion 渗碳剂 carburizing 浓度梯度 concentration gradient浓度分布曲线 concentration profile 扩散流量 diffusion flux 驱动力 driving force间隙扩散 interstitial diffusion 自扩散 self-diffusion 表面扩散 surface diffusion空位扩散 vacancy diffusion 扩散偶 diffusion couple 扩散方程 diffusion equation扩散机理 diffusion mechanism 扩散特性 diffusion property 无规行走 Random walk达肯方程 Dark equation 柯肯达尔效应 Kirkendall equation本征热缺陷 Intrinsic thermal defect 本征扩散系数 Intrinsic diffusion coefficient离子电导率 Ion-conductivity 空位机制 Vacancy concentration材料科学基础专业词汇:第七章相变过冷 supercooling 过冷度 degree of supercooling 晶核 nucleus 形核 nucleation形核功 nucleation energy 晶体长大 crystal growth 均匀形核 homogeneous nucleation非均匀形核 heterogeneous nucleation 形核率 nucleation rate 长大速率 growth rate热力学函数 thermodynamics function 临界晶核 critical nucleus临界晶核半径 critical nucleus radius 枝晶偏析 dendritic segregation局部平衡 localized equilibrium 平衡分配系数 equilibrium distributioncoefficient有效分配系数 effective distribution coefficient 成分过冷 constitutional supercooling引领领先相 leading phase 共晶组织 eutectic structure 层状共晶体 lamellar eutectic伪共晶 pseudoeutectic 离异共晶 divorsed eutectic 表面等轴晶区 chill zone柱状晶区 columnar zone 中心等轴晶区 equiaxed crystal zone定向凝固 unidirectional solidification 急冷技术 splatcooling 区域提纯 zone refining单晶提拉法 Czochralski method 晶界形核 boundary nucleation位错形核 dislocation nucleation 晶核长大 nuclei growth斯宾那多分解 spinodal decomposition 有序无序转变 disordered-order transition马氏体相变 martensite phase transformation 马氏体 martensite材料科学基础专业词汇:第八、九章固相反应和烧结固相反应 solid state reaction 烧结 sintering 烧成 fire 合金 alloy 再结晶 Recrystallization 二次再结晶 Secondary recrystallization 成核 nucleation 结晶 crystallization子晶,雏晶 matted crystal 耔晶取向 seed orientation 异质核化 heterogeneous nucleation均匀化热处理 homogenization heat treatment 铁碳合金 iron-carbon alloy渗碳体 cementite 铁素体 ferrite 奥氏体austenite 共晶反应 eutectic reaction 固溶处理 solution heat treatment。
Journal of Magnetism and Magnetic Materials242–245(2002)1277–1283Invited paperNanocrystalline high performance permanent magnets O.Gutfleisch*,A.Bollero,A.Handstein,D.Hinz,A.Kirchner,A.Yan,K.-H.M.uller,L.SchultzInstitute of Solid State and Materials Research,IFW Dresden,P.O.Box270016,01171Dresden,GermanyAbstractRecent developments in nanocrystalline rare earth–transition metal magnets are reviewed and emphasis is placed on research work at IFW Dresden.Principal synthesis methods include high energy ball milling,melt spinning and hydrogen assisted methods such as reactive milling and hydrogenation-disproportionation-desorption-recombination. These techniques are applied to NdFeB-,PrFeB-and SmCo-type systems with the aim to produce high remanence magnets with high coercivity.Concepts of maximizing the energy density in nanostructured magnets by either inducing a texture via anisotropic HDDR or hot deformation or enhancing the remanence via magnetic exchange coupling are evaluated.r2002Elsevier Science B.V.All rights reserved.Keywords:Permanent magnets;Nanocrystalline materials;Exchange coupling;Texture;Hydrogen absorption1.IntroductionNanocrystalline materials,including those of mag-netic materials,have been at the centre of numerousR&D activities during the last decade because of theirparticular scientific and technological properties.In thecase of hard magnetic rare earth–transition metal(R–T)compounds,it is the grain size and the presence orabsence of intergranular phases which give rise tounusual magnetic properties because of surface/interfaceeffects different from those of bulk or microcrystallinerge coercivities can be obtained once thegrain size is below a certain threshold where thecrystallites become single domain.In most of the R–T-compounds discussed here,the critical single-domainparticle size d c is a fraction of a micron.Assuming idealized microstructures,three prototypesof NdFeB-type magnets can be distinguished on thebasis of the ternary phase diagram[1]:Type(I)israre earth rich and the individual crystallites are sepa-rated by a thin paramagnetic layer,the rare earth-richintergranular phase.This structure leads to a decouplingof the hard magnetic grains resulting in high coercivities.Type(II)is obtained using the stoichiometric R2Fe14Bcomposition and the hard magnetic grains are in directcontact with each other(‘single-phase exchange coupledmagnets’)[2].Type(III)nanocomposite magnets are Rdeficient(i.e.,R concentrations o11.76at%)and thecoupling occurs between the R2Fe14B grains(to providehigh coercivity)and soft magnetic Fe3B or Fe rich grains(to provide high magnetisation;e.g.J sða2FeÞ¼2:16T).The exchange interaction between the grains of thedifferent phases leads to single-phase demagnetisationcurves despite a multi-phase microstructure providedgrain sizes are below a certain threshold and para-magnetic intergranular phases are absent[3–5].En-hanced remanences of the isotropic hard magneticmaterials,larger than those predicted by the Stoner-Wohlfarth theory[6]for systems of isotropicallyoriented,magnetically uniaxial,non-interacting singledomain particles where M r=M S p0:5;are the conse-quence.The development of melt-spun or rapidly quenchedNd–Fe–B magnets by Croat and Herbst[7]coincidedwith that of sintered magnets by Sagawa[8].Nanocrys-talline structures can also be synthesised by mechanical *Corresponding author.Tel.:+49-351-4659-664;fax+49-351-4659-781.E-mail address:o.gutfleisch@ifw-dresden.de(O.Gutfleisch).0304-8853/02/$-see front matter r2002Elsevier Science B.V.All rights reserved.PII:S0304-8853(01)00989-1alloying [9],intensive milling or hydrogenation dispro-portionation desorption and recombination (HDDR)processing [10,11].These nanostructures,provide energy barriers preserving the metastable,permanently magne-tised state.The resulting isotropic powders are most commonly used for the production of bonded magnets,where they are usually mixed with polymer resin and are then injection or compression moulded.Bonded mag-nets have the advantage of easily accomplished near net-shape processing,the avoidance of eddy-currents and good mechanical properties.The disadvantage being the dilution of magnetic properties due to the polymer binder.The randomly oriented grain structure results in magnetically isotropic magnets,with the remanent polarisation,J r ;and (BH )max limited to 0.5and 0.25,respectively,of the values obtainable for ideal micro-structures consisting of single domain grains and with full crystallographic alignment.Therefore various con-cepts have to be developed in order to increase remanence as shown in Fig.1.The three most relevant ways of maximising the energy density (BH )max are hot deformation [12,13],inducement of texture via ‘aniso-tropic’HDDR [14]or thirdly,remanence enhancement via exchange coupling [3,4].In summary,the task of transferring good intrinsic properties such as high values of Curie temperature (T C >500K),high saturation magnetisation (M s >1T)and high anisotropy field,H A into useful extrinsic properties of nanocrystalline magnets such as coercive field H C ;remanent magnetisation B r and maximum energy density (BH )max by appropriate processing is described in this paper.2.Maximising the energy density (BH)max 2.1.High energy ball millingAs a non-equilibrium processing technique,mechan-ical alloying circumvents,like rapid quenching,many limitations of conventional alloying and thus can be used for the preparation of metastable alloys.The mixing of the elements is achieved by an interdiffusional reaction,enabled by the formation of ultrafine layered composite particles during high energy ball milling.Depending on the thermodynamics of the alloy system,energy input and the mechanical workability of the starting powders,the alloying can take place during milling or during a subsequent heat treatment [9].A variation of this high energy ball milling technique is intensive milling,where an alloy is exposed to high energy ball milling rather than the elemental powders.Here,an example is given for the intensive milling of a Pr–Fe–B-based alloy.Pr 2Fe 14B-type alloys are compar-able in terms of their intrinsic magnetic properties [15]and phase relations with the advantage of a much lower spin reorientation temperature.An alloy with the nominal composition Pr 9Nd 3Dy 1Fe 72Co 8B 6.9Zr 0.1has been milled for 60h (leading to a type II magnet)and also with various amounts of Fe powder (leading to type III magnets)and subsequently annealed at 6001C for 30min.The partly amorphous structure after milling is illustrated in Fig.2.The Curie-temperature of the alloy is T C ¼3801C.The magnetic properties of various annealed powders are shown in Fig.3.Optimised valued for (BH )max were above 175kJ/m 3when adding 20–25wt%Fe (B r ¼1:18T and i H c ¼0:66T).A key issueFig.1.Flow chart illustrating the principal processing routes of high energy density magnets based on micro-and nano-crystalline powders.The right branch shows the three principal ways of maximizing the energy product (BH )max of nanocrystalline magnets.O.Gutfleisch et al./Journal of Magnetism and Magnetic Materials 242–245(2002)1277–12831278for the effectiveness of the exchange coupling and thus the degree of remanence enhancement is the develop-ment of a uniform nanoscale microstructure of hard and soft magnetic grains.This can be realised by micro-alloying using additions such as Zr and Co having grain growth inhibiting effects [16,17]or leading to a modification of the tie lines in the phase diagram and thus changed volume fractions of the different phases [18].An effective coupling occurs when the soft regions with a small anisotropy are no bigger than a few times the exchange length l ex ;i.e.o 20nm and thus a complete coupling of the soft magnetic grain occurs.The crystal-lite size of the annealed sample was evaluated from the broadening of the X-ray diffraction peaks (see Fig.3)using the Williamson-Hall method [19]and it was found to be around 20nm.Remanence enhanced high energy density magnets,synthesised by melt spinning or ball milling techniques,are of great commercial interest because no magnetic alignment and less of the costly rare earth element arerequired and an improved corrosion behaviour can be expected.2.2.Rapid quenchingCurrently,rapidly quenched Nd–Fe–B forms the basis for almost the entire bonded magnet industry.The flexibility of bonded Nd–Fe–B-type magnets in proces-sing,shape and magnetic properties and the highly stable nature of the ribbons contribute to its success in a fast growing permanent magnet market [20–22].De-pending on the wheel speed,ejection conditions and melt temperature substantial undercooling below the equili-brium freezing temperature and,consequently,a very high frequency of crystal nucleation are achieved (‘‘over-quenching’’).Lower wheel speeds can lead directly to nano-crystalline material (‘‘direct-quenching’’).The inset of Fig.4shows the DSC curves on first heating of melt-spun Nd 15DyFe 75.9B 8Zr 0.1and Pr 15Dy-Fe 75.9B 8Zr 0.1alloys.XRD patterns of both melt-spun materials showed a partly amorphous structure which explains the presence of a second order thermodynamic phase transition around 3101C and 2951C,respectively,during first heating corresponding to the Curie-tem-perature of the remaining R 2Fe 14B phase.A comparison of the onset of crystallization of both alloys prepared by this technique and by intensive milling showed lower values in the case of the latter method:5801C for the Nd-based alloy and 5301C for the Pr-based alloy whereas values of 6001C and 5751C,respectively,were obtained when using melt-spinning [23].Annealing of the melt-spun alloys at 6501C leads to the com-plete formation of the R 2Fe 14B phase achieving coerciv-ities as high as 2.7T for PrDyFeBZr and 2.37T for3035404550556065707580••600˚Cafter millingi n t e n s i t y (a .u .)2 theta (degree)Fig.2.XRD patterns of Pr 9Nd 3Dy 1Fe 72Co 8B 6.9Zr 0.1after 60h of intensive milling in argon and after annealing at 6001C for 30min.Intensity peaks of a –Fe ( )are indicated.-1.5-1.0-0.50.00.51.01.5P o l a r i s a t i o n J ( T )Applied field µ0H ( T )Fig.3.Hysteresis loops of intensively milled (with various amounts of Fe)and annealed Pr 9Nd 3Dy 1Fe 72Co 8B 6.9Zr 0.1.P o l a r i s a t i o n J ( T )Applied field µ0H ( T )Fig.4.Demagnetisation curves of melt-spun NdDyFeBZr and PrDyFeBZr materials annealed at 6501C for 10min (inset:DSC curves on first heating (40K/min)of melt-spun NdDyFeBZr and PrDyFeBZr showing Curie temperature,T C ;and crystal-lization onset,T x ).O.Gutfleisch et al./Journal of Magnetism and Magnetic Materials 242–245(2002)1277–12831279NdDyFeBZr (see Fig.4).The room temperature aniso-tropy field of Pr 2Fe 14B is around 25%larger than of its Nd counterpart,and the saturation magnetisation is only slightly lower.Melt-spun precipitation hardened Sm 2(Co,Cu,-Fe,Zr)17magnets have been produced using single roller melt-spinning at low velocity and their magnetic proper-ties in the as-spun state and after hardening are shown in Fig.5.Coercivity is developed only during the complex annealing treatment leading to the formation of a cellular structure (see inset in Fig.5)similar to that in sintered 2:17-type magnets.However,the resulting powder in this case is isotropic.It has been found that this type of material can show an abnormal temperature dependence of the coercivity [24]leading to excellent high temperature magnetic properties also reported for sintered magnets [25,26].Another interesting aspect is the production of magnetically anisotropic SmCo 5-type ribbons also using low wheel speeds [27]and a (BH )max of 146kJ/m 3was obtained for Sm 1.1Co 5[28].The c -axis of the crystallites after direct-quenching were found to be parallel to the longitudinal axis of the ribbon.This phenomenon is shown here for various Sm 2(Co)17-type alloys with the successive addition of Fe,Zr and Cu.XRD patterns of Fig.6show that the degree of texture decreases when adding Zr and Cu.This is illustrated by the weaker (110)and (200)and stronger (111)and (002)peaks for the Sm 2(Co,Cu,Fe,Zr)17alloy.2.3.Hydrogen assisted processingThe HDDR process is established as a processing technique for the production of highly coercive Nd 2Fe 14B [10,11]and Sm 2Fe 17N y magnets [29,30].A special type of powder suitable for bonded magnets is the anisotropic powder made by HDDR [14]which could close the gap in the market for high energyproduct bonded magnets.Very recently,excellent magnetic values of B r ¼1:38T,i H c ¼1122kA/m and (BH )max =342kJ/m 3have been obtained for NdFe-GaNbB using a process which controls the reaction rates during exothermic hydrogen absorption (dispro-portionation)and endothermic desorption (recombina-tion)by pressure adjustments [31,32].This multistage HDDR process is beneficial to optimise remanence and coercivity without expensive additions such as Co.Strictly,HDDR does not lead to nanoscale (usually defined as o 100nm)material,as the final product resulting from the reversible,hydrogen-induced chemi-cal reaction shows typical grain sizes of around 300nm.The disproportionated state is certainly nanoscale and it is this intermediate product which should clarify the mechanism of the inducement of texture.Various models have been suggested and they have been detailed in a recent review [33].Intermediate boride phases have been linked with the transfer of the original cast grain orientation to that of the recombined 2-14-1-type grains in both,NdFeCoGaB [34]and NdFeB [35]alloys.The HRSEM micrograph in Fig.7shows the solid-dispro-portionated state of a Nd 16.2Fe 78.2B 5.6alloy.The eutectoid-type decomposition into NdH 27x rods of appr.20nm and Fe and a build-up of finely dispersed Fe 3B particles of 10–50nm diameter in the intercolony regions due to an ejection of this phase from the rod-like areas can be observed.The principal solid-disproportionation reactions of the R 2Fe 14B (with R=Nd or Pr)phases can be described as follows:R 2Fe 14B þð27x ÞH 2)2RH 27x þ11Fe þFe 3B )2RH 27x þ12Fe þFe 2B :ð1ÞIn the case of a Pr 13.7Fe 63.5Co 16.7Zr 0.1B 6alloy a new intermediate boride phase,Pr(Fe,Co)12B 6(R3m),has been found recently after solid-disproportionation[36]Fig.5.Hysteresis loops of as-spun and precipitation hardened (T h =11601C,1h,T a =8501C,20h,cooling to 4001C with 0.75K/min)Sm(Co 0.74Cu 0.12Fe 0.1Zr 0.04)7.5(inset:TEM bright field image of the latter).3035404550556065707580Sm 2Co 17Sm 2(Co 0.9Fe 0.1)17Sm 2(Co 0.86Fe 0.1Zr 0.04)17Sm 2(Co 0.74Fe 0.1Cu 0.12Zr 0.04)17(201)(002)(111)(110)(200)I n t e n s i t y (a .u .)2 theta (degree)Fig.6.XRD patterns of as-spun (using a low wheel speed)Sm 2(Co)17-type alloys with the successive addition of Fe,Zr and Cu.O.Gutfleisch et al./Journal of Magnetism and Magnetic Materials 242–245(2002)1277–12831280and a high degree of texture has also been reported for this type of alloys after conventional processing [37].The application of the HDDR process to the Nd–Co–B or Sm–Co systems requires more severe hydrogena-tion conditions which is due to the higher thermo-dynamic stability of the R–Co phases against the disproportionation by hydrogen compared to those of the Nd 2Fe 14B and Sm 2Fe 17phases.Recently,it was shown that HDDR in thermodynamically stabilised compounds such as Sm 2Fe 16Ga,SmCo 5,Sm 2Co 17and Nd 2Co 14B is successful when using high hydrogen pressures [38]or reactive milling in hydrogen [39].In case of Sm 2Co 17,the latter mechanically activated gas-solid reaction leads to the disproportionation of the rhombohedral 2:17phase into Sm-hydride and FCC Co according to the following equation:Sm 2Co 17þð27x ÞH 232SmH 27x þ17Co :ð2ÞIntimate mixtures of R-hydride with grain sizes o 10nm and BCC Fe or FCC Co are obtained after reactive milling which is not possible when applying the conventional HDDR process [33].For SmCo-type alloys,the following desorption treatment at tempera-tures as low as 5001C leads to the recombination to the original structure either of CaCu 5and Th 2Zn 17type.In dependence on Sm content,milling parameters and desorption temperature additional phases are synthe-sised,partly of metastable character,such as the Sm 2Co 7phase.The recombined multiphase material exhibits grain sizes of the scale o 30nm (compare Fig.8)which makes an effective exchange coupling and thus rema-nence enhancement possible.Magnetically single phase demagnetisation loops are observed and a clear tendency of increased coercivity and decreased reman-cence with increasing Sm content is found [40].2.4.Hot deformationHot deformation-induced texturing of nano-grained materials is an option for producing fully dense,anisotropic magnets with maximised energy densities.A grain alignment along the c -axis of the tetragonal 2:14:1phase based on either Nd–Fe–B or Pr–Fe–B alloys perpendicular to the plastic flow is achieved after high temperature compressive deformation [12,13].The production of a fully dense isotropic precursor at about 7251C is followed by placing this compact in an oversized die-cavity where die-upsetting is carried out at similar temperatures.After this second step,an anisotropic magnet is obtained with the alignment of the crystallographic c -axis parallel to the pressing direction.Alternatively,backward extrusion [41]can be carried out as a second step to produce near net-shape ring magnets which can show,especially for smaller dimensions,superior magnetic properties to sintered magnets.A radial preferential orientation is obtained,again with the c -axis alignment perpendicular to the material flow.Small variations in the magnetic properties have been observed along the cross-section and along the axial direction of the ring magnets which were attributed to inhomogeneities in material flow inherent to the deformation process [42].Additions of Co are used to improve the thermal stability and to increase the Curie-temperature in sintered NdFeB magnets.Simultaneously the coercivity is reduced,which again can be compensated by small additions of Ga.The same positive effect of Co and Ga was found in hot deformed NdFeB magnets,prepared from melt-spun material (MQU-F).The addition of Ga decreases melting point and viscosity of the Nd-rich grain boundary phase.This accelerates mass transfer through the liquid and improves the isolation of the grains leading to enhanced coercivities.TEM-EDX analysis showed a preferential solution of Ga intotheFig.8.TEM bright field image of reactively milled and recombined Sm 2Co 17powder.Fig.7.Scanning electron microscopy image in the backscat-tered mode showing the rod-like structure of NdH 27x (A)and a –Fe (B)and finely dispersed Fe 3B (C)obtained after 15min of solid-disproportionation at 9001C.O.Gutfleisch et al./Journal of Magnetism and Magnetic Materials 242–245(2002)1277–12831281Nd-rich grain boundary phase,now a neodymium–iron–gallium phase.Ga reduces the surface energy of this phase resulting in smoothed grain boundaries and a more uniform distribution [43].Thus,lower deformation forces are required for hot deformation and higher B r material can be produced because of an increased volume fraction of the hard magnetic 2:14:1phase with a commensurate reduction in the non-ferromagnetic grain boundary material.Demagnetisation curves of hot pressed and die-upset melt-spun NdFeB-type powders are shown in Fig.9.As a comparison,hot pressed and die-upset intensively milled Pr 14.7Fe 77.3B 8.0powder is also included.The already mentioned much lower spin reorientation temperature make them attractive for low temperature applications such as superconducting bearings.Opti-mised deformation conditions were used for the production of MQ-type magnets [43]and remarkably higher coercivities were found in hot pressed and in hot deformed MQU-F magnets.A reduction in coercivity after die-upsetting can be observed which amounts to 25%in MQU-F magnets and to 40%in MQP-A.The higher coercivity in MQU-F magnets is due to the beneficial effect of the additives resulting in smaller grains after hot deformation.A remanence of B r ¼1:3T and a (BH )max =326kJ/m 3were measured for the MQU-F die-upset magnet.The loop shape ((BH )max =307kJ/m 3)and the hot workability of the Pr 14.7Fe 77.3B 8.0die-upset magnet made from intensively milled powder are excellent and it can be expected that compositional modifications will improve the magnetic properties further.3.ConclusionsNowadays about 85%of the limit for the energy density (BH )max (based on the Nd 2Fe 14B phase)can beachieved in commercially produced sintered Nd–Fe–B grades [44,45].Coercivity values however,rarely exceed 20–30%of the anisotropy field H A .Recent exciting developments include excellent anisotropic HDDR powders for polymer bonded magnets and SmCo-type magnets for application temperatures as high as 5501C.In terms of maximised energy densities,there is still a lot of scope for improvement for bonded and fully dense nanocrystalline magnets,especially considering multi-component systems.In this context,it is just to state that computational micromagnetism based on realistic mi-cro-and nano-structures and modelling of phase diagrams will be of increased importance in order to map the vast number of ternary,quaternary,etc.equilibrium and non-equilibrium phases.Novel proces-sing techniques and microalloying should allow more freedom for tailoring magnetic and non-magnetic properties of nanocrystalline high performance perma-nent magnets.AcknowledgementsThe support of parts of this work by the Deutsche Forschungsgemeinschaft (SFB 463),SfP (Science for Peace,Nato)and the EU (HITEMAG)is gratefully acknowledged.References[1]K.H.J.Buschow,in:K.H.J.Buschow (Ed.),Handbook ofMagnetic Materials,Vol.10,Elsevier Science,North Holland,Amsterdam,1997(Chapter 4).[2]G.B.Clemente,K.E.Keem,J.P.Bradley,J.Appl.Phys.64(1988)5299.[3]R.Coehoorn, D.B.Mooji,J.P.Duchateau,K.H.J.Buschow,J.Phys.49(C8)(1988)669.[4]E.F.Kneller,R.Hawig,IEEE Trans.Magn.27(1991)3588.[5]K.H.M .uller,D.Eckert,A.Handstein,M.Wolf,S.Wirth,L.L.M.Martinez,Proceedings of the Eighth International Symposium Magn.Anisotropy and Coercivity in RE-TM Alloys,Birmingham,UK,1994,p.179.[6]E.C.Stoner, E.P.Wohlfarth,Philos.Trans.R.Soc.London,Ser.A 240(1948)599.[7]J.J.Croat,J.F.Herbst,R.W.Lee,F.E.Pinkerton,J.Appl.Phys.55(1984)2078.[8]M.Sagawa,S.Fujimori,M.Togawa,Y.Matsuura,J.Appl.Phys.55(1984)2083.[9]L.Schultz,J.Wecker, E.Hellstern,J.Appl.Phys.61(1987)3583.[10]T.Takeshita,R.Nakayama,Proceedings of the 10thInternational Workshop on RE Magnets and their Appl.,Kyoto,Japan,1989,p.551.[11]P.J.McGuiness,X.J.Zhang,X.J.Yin,I.R.Harris,J.Less-Common Met.158(1990)379.[12]R.K.Mishra,R.W.Lee,Appl.Phys.Lett.48(1986)733.-3.0-2.5-2.0-1.5-1.0-0.50.00.00.20.40.60.81.01.21.4P o l a r i z a t i o n J (T )Applied field µ0H (T)Fig.9.Demagnetisation curves of hot pressed and die-upset melt-spun NdFeB-type and intensively milled PrFeB-type materials.O.Gutfleisch et al./Journal of Magnetism and Magnetic Materials 242–245(2002)1277–12831282[13]J.J.Croat,IEEE Trans.Magn.25(1989)3550.[14]T.Takeshita,R.Nakayama,12th International Workshopon RE Magnets and their Appl.,Canberra,1992,p.670.[15]S.Hirosawa,Y.Matsuura,H.Yamamoto,S.Fujimura,M.Sagawa,H.Yamauchi,J.Appl.Phys.59(1986)873.[16]V.Neu,U.Klement,R.Sch.a fer,J.Eckert,L.Schultz,Mater.Lett.26(1996)167.[17]H.A.Davies,J.Magn.Magn.Mater.157/158(1996)11.[18]N.Sano,T.Tomida,S.Hirosawa,M.Uehara,H.Kanekiyo,Mater.Sci.Eng.A250(1998)146.[19]G.K.Williamson,W.H.Hall,Acta Metall.1(1953)22.[20]V.Panchanathan,Proceedings of the16th InternationalWorkshop on RE Magnets and their Appl.,Sendai,Japan, 2000,p.431.[21]G.C.Hadjipanayis,W.Gong,J.Appl.Phys.64(1988)5589.[22]H.A.Davies,C.L.Harland,J.I.Betancourt,G.Menoza,MRS Symp.Proceedings‘Advanced Hard and Soft Magnets’,Vol.577,1999,p.27.[23]A.Bollero,A.Kirchner,O.Gutfleisch,K.H.M.uller,L.Schultz,IEEE Trans.Magn.37(2001)2483.[24]D.Goll,I.Kleinschroth,W.Sigle,H.Kronm.uller,Appl.Phys.Lett.76(2000)1054.[25]C.Chen,M.S.Walmer,M.H.Walmer,S.Liu,G.E.Kuhl,G.K.Simon,MRS Symp.Proceedings of the‘AdvancedHard and Soft Magnets,’Vol.577,1999,p.277.[26]J.F.Liu,Y.Zhang,D.Dimitrov,G.C.Hadjipanayis,J.Appl.Phys.85(1999)2800.[27]A.Yan,W.Y.Zhang,H.W.Zhang,B.Shen,J.Magn.Magn.Mater.210(2000)L10.[28]A.Yan,W.Y.Zhang,H.W.Zhang,B.Shen,Mater.Sci.Eng.B68(1999)111.[29]H.Nakamura,S.Sugimoto,M.Okada,M.Homma,Mater.Chem.Phys.32(1992)280.[30]C.N.Christodoulou,T.Takeshita,J.Alloys Comp.196(1993)155.[31]C.Mishima,N.Hamada,H.Mitarai,Y.Honkua,Proceedings of the16th International Workshop on RE Magnets and their Appl.,Sendai,Japan,2000,p.873. [32]C.Mishima,N.Hamada,H.Mitarai,Y.Honkua,IEEETrans.Magn.37(2001)2467.[33]O.Gutfleisch,J.Phys.D33(2000)R157.[34]T.Tomida,N.Sano,K.Hanafusa,H.Tomizawa,S.Hirosawa,Acta Metall.47(1999)875.[35]O.Gutfleisch, B.Gebel,N.Mattern,J.Magn.Magn.Mater.210(2000)5.[36]O.Gutfleisch,A.Teresiak,B.Gebel,K.-H.M.uller,N.B.Cannesan,D.N.Brown,I.R.Harris,IEEE Trans.Magn.37(2001)2471.[37]R.N.Faria,A.J.Williams,I.R.Harris,J Alloys Comp.287(1999)L10.[38]M.Kubis,O.Gutfleisch,K.H.M.uller,I.R.Harris,L.Schultz,J.Appl.Phys.83(1998)6905.[39]O.Gutfleisch,M.Kubis,A.Handstein,K.-H.M.uller,L.Schultz,Appl.Phys.Lett.73(1998)3001.[40]O.Gutfleisch,A.Bollero,D.Eckert,B.Gebel,M.Kubis,K.-H.M.uller,L.Schultz,Proceedings of the16th International Workshop on RE Magnets and their Appl., Sendai,Japan,2000,p.883.[41]N.Yoshikawa,H.Yamada,Y.Iwasaki,K.Nagata,Y.Kasai,Proceedings of the13th International Workshop on RE Magnets and their Appl.,Birmingham,UK,1994, p.635.[42]W.Gr.unberger,D.Hinz,D.Schl.a fer,L.Schultz,J.Magn.Magn.Mater.157/158(1996)41.[43]A.Kirchner,D.Hinz,V.Panchanathan,O.Gutfleisch,K.H.M.uller,L.Schultz,IEEE Trans.Magn.36(2000) 3288.[44]Y.Kaneko,IEEE Trans.Magn.36(2000)3275.[45]W.Rodewald,R.Blank,B.Wall,G.W.Reppel,H.D.Zilg,Proceedings of16th International Workshop on RE Magnets and their Appl.,Sendai,Japan,2000,p.119.O.Gutfleisch et al./Journal of Magnetism and Magnetic Materials242–245(2002)1277–12831283。
材料专业英语常见词汇(一Structure 组织Ceramic 陶瓷Ductility 塑性Stiffness 刚度Grain 晶粒Phase 相Unit cell 单胞Bravais lattice 布拉菲点阵Stack 堆垛Crystal 晶体Metallic crystal structure 金属性晶体点阵Non-directional 无方向性Face-centered cubic 面心立方Body-centered cubic 体心立方Hexagonal close-packed 密排六方Copper 铜Aluminum 铝Chromium 铬Tungsten 钨Crystallographic Plane 晶面Crystallographic direction 晶向Property 性质Miller indices 米勒指数 Lattice parameters 点阵参数Tetragonal 四方的Hexagonal 六方的Orthorhombic 正交的Rhombohedra 菱方的Monoclinic 单斜的Prism 棱镜Cadmium 镉Coordinate system 坐Point defec点缺陷Lattice 点阵Vacancy 空位Solidification 结晶Interstitial 间隙Substitution 置换Solid solution strengthening 固溶强化Diffusion 扩散Homogeneous 均匀的Diffusion Mechanisms 扩散机制Lattice distortion 点阵畸变Self-diffusion 自扩散Fick’s First Law菲克第一定律Unit time 单位时间Coefficient 系数Concentration gradient 浓度梯度Dislocations 位错Linear defect 线缺陷Screw dislocation 螺型位错Edge dislocation 刃型位错Vector 矢量Loop 环路Burgers’vector柏氏矢量Perpendicular 垂直于Surfacedefect 面缺陷Grain boundary 晶界Twin boundary 晶界Shear force 剪应力Deformation 变形Small ( or low) angel grain boundary 小角度晶界Tilt boundary 倾斜晶界Supercooled 过冷的Solidification 凝固Ordering process 有序化过程Crystallinity 结晶度Microstructure 纤维组织Term 术语Phase Diagram 相图Equilibrium 平衡Melt 熔化Cast 浇注Crystallization 结晶Binary Isomorphous Systems 二元匀晶相图Soluble 溶解Phase Present 存在相Locate 确定Tie line 连接线Isotherm 等温线Concentration 浓度Intersection 交点The Lever Law 杠杆定律Binary Eutectic System 二元共晶相图Solvus Line 溶解线Invariant 恒定Isotherm 恒温线Cast Iron 铸铁Ferrite 珠光体Polymorphic transformation 多晶体转变Austenite 奥氏体Revert 回复Intermediate compound 中间化合物Cementite 渗碳体Vertical 垂线Nonmagnetic 无磁性的Solubility 溶解度Brittle 易脆的Eutectic 共晶Eutectoid invariant point 共析点Phase transformation 相变Allotropic 同素异形体Recrystallization 再结晶Metastable 亚稳的Martensitic transformation 马氏体转变Lamellae 薄片Simultaneously 同时存在Pearlite 珠光体Ductile 可塑的Mechanically 机械性能Hypo eutectoid 过共析的Particle 颗粒Matrix 基体Proeutectoid 先共析Hypereutectoid 亚共析的Bainite 贝氏体Martensite 马氏体Linearity 线性的Stress-strain curve 应力-应变曲线Proportional limit 比例极限Tensile strength 抗拉强度Ductility 延展性Percent reduction in area 断面收缩率Hardness 硬度Modulus of Elasticity 弹性模量Tolerance 公差Rub 摩擦Wear 磨损Corrosion resistance 抗腐蚀性Aluminum 铝Zinc 锌Iron ore 铁矿Blast furnace 高炉Coke 焦炭Limestone 石灰石Slag 熔渣Pig iron 生铁Ladle 钢水包Silicon 硅Sulphur 硫Wrought 可锻的Graphite 石墨Flaky 片状Low-carbon steels 低碳钢Case hardening 表面硬化Medium-carbon steels 中碳钢Electrode 电极As a rule 通常Preheating 预热Quench 淬火Body-centered lattice 体心晶格Carbide 碳化物Hypereutectoid 过共晶Chromium 铬Manganese 锰Molybdenum 钼Titanium 钛Cobalt 钴Tungsten 钨Vanadium 钒Pearlitic microstructure 珠光体组织Martensitic microstructure 马氏体组织Viscosity 粘性Wrought 锻造的Magnesium 镁Flake 片状Malleable 可锻的Nodular 球状Spheroidal 球状Superior property 优越性Galvanization 镀锌Versatile 通用的Battery grid 电极板Calcium 钙Tin 锡Toxicity 毒性Refractory 耐火的Platinum 铂Polymer 聚合物Composite 混合物Erosive 腐蚀性Inert 惰性Thermo chemically 热化学Generator 发电机Flaw 缺陷Variability 易变的Annealing 退火Tempering 回火Texture 织构Kinetic 动力学Peculiarity 特性Critical point 临界点Dispersity 弥散程度Spontaneous 自发的Inherent grain 本质晶粒Toughness 韧性Rupture 断裂Kinetic curve of transformation 转变动力学曲线Incubation period 孕育期Sorbite 索氏体Troostite 屈氏体Disperse 弥散的Granular 颗粒状Metallurgical 冶金学的Precipitation 析出Depletion 减少Quasi-eutectoid 伪共析Superposition 重叠Supersede 代替Dilatometric 膨胀Unstable 不稳定Supersaturate 使过饱和Tetragonality 正方度Shear 切变Displacement 位移Irreversible 不可逆的金属材料工程专业英语acid-base equilibrium酸碱平衡 acid-base indicator酸碱指示剂 acid bath酸槽acid(Bessemer)converter酸性转炉 acid brick酸性耐火砖 acid brittleness酸洗脆性、氢脆性 acid burden酸性炉料 acid clay酸性粘土 acid cleaning(同pickling)酸洗 acid concentration酸浓度 acid converter酸性转炉 acid converter steel酸性转炉钢 acid content酸含量 acid corrosion酸腐蚀 acid deficient弱酸的、酸不足的 acid dip酸浸acid dip pickler(沉浸式) 酸洗装置 acid(dip)tank酸液(浸洗)槽acid drain tank排酸槽acidless descaling无酸除鳞acid medium酸性介质acid mist酸雾acid-proof paint耐酸涂料(漆)acid-proof steel耐酸钢acid-resistant耐酸钢acid-resisting vessel耐酸槽acid strength酸浓度acid supply pump供酸泵acid wash 酸洗acid value酸值acid wash solution酸洗液acieration渗碳、增碳Acm point Acm 转变点(渗碳体析出温度)acorn nut螺母、螺帽acoustic absorption coefficient声吸收系数acoustic susceptance声纳actifier再生器action line作用线action spot作用点activated atom激活原子activated bath活化槽activated carbon活性碳activating treatment活化处理active corrosion活性腐蚀、强烈腐蚀active area有效面积active power有功功率、有效功率active product放射性产物active resistance有效电阻、纯电阻active roll gap轧辊的有效(或工作)开口度active state活性状态active surface 有效(表)面activity coefficient激活系数、活度系数actual diameter(钢丝绳)实际直径actual efficiency实际效率actual error实际误差actual time实时actual working stress实际加工应力actuating device调节装置、传动装置、起动装置actuating lever驱动杆、起动杆actuating mechanism 动作机构、执行机构actuating motor驱动电动机、伺服电动机actuating pressure作用压力actuation shaft起动轴actuator调节器、传动装置、执行机构acute angle锐角adaptive feed back control自适应反馈控制adaptive optimization自适应最优化adaptor接头、接合器、连结装置、转接器、附件材料科学基础专业词汇:第一章晶体结构原子质量单位 Atomic mass unit (amu) 原子数 Atomic number 原子量 Atomic weight 波尔原子模型 Bohr atomic model 键能 Bonding energy 库仑力 Coulombic force共价键 Covalent bond 分子的构型 molecular configuration电子构型electronic configuration 负电的 Electronegative 正电的 Electropositive基态 Ground state 氢键 Hydrogen bond 离子键 Ionic bond 同位素 Isotope金属键 Metallic bond 摩尔 Mole 分子 Molecule 泡利不相容原理 Pauli exclusion principle元素周期表 Periodic table 原子 atom 分子 molecule 分子量 molecule weight极性分子 Polar molecule 量子数 quantum number 价电子 valence electron范德华键 van der waals bond 电子轨道 electron orbitals 点群 point group对称要素 symmetry elements 各向异性 anisotropy 原子堆积因数 atomic packing factor(APF)体心立方结构 body-centered cubic (BCC) 面心立方结构 face-centered cubic (FCC) 布拉格定律bragg’s law 配位数 coordination number 晶体结构 crystal structure 晶系crystal system 晶体的crystalline 衍射diffraction 中子衍射neutron diffraction电子衍射electron diffraction 晶界grain boundary 六方密堆积hexagonal close-packed (HCP)鲍林规则Pauling’s rules NaCl型结构 NaCl-type structureCsCl型结构Caesium Chloride structure 闪锌矿型结构 Blende-type structure纤锌矿型结构 Wurtzite structure 金红石型结构 Rutile structure萤石型结构 Fluorite structure 钙钛矿型结构 Perovskite-type structure尖晶石型结构 Spinel-type structure 硅酸盐结构 Structure of silicates岛状结构 Island structure 链状结构 Chain structure 层状结构 Layer structure架状结构 Framework structure 滑石 talc 叶蜡石 pyrophyllite 高岭石 kaolinite石英 quartz 长石 feldspar 美橄榄石 forsterite 各向同性的 isotropic各向异性的anisotropy晶格lattice 晶格参数lattice parameters 密勒指数miller indices 非结晶的noncrystalline多晶的 polycrystalline 多晶形 polymorphism 单晶single crystal 晶胞 unit cell 电位 electron states(化合)价 valence 电子 electrons 共价键 covalent bonding金属键 metallic bonding 离子键Ionic bonding 极性分子 polar molecules原子面密度 atomic planar density 衍射角 diffraction angle 合金 alloy粒度,晶粒大小 grain size 显微结构 microstructure 显微照相 photomicrograph扫描电子显微镜 scanning electron microscope (SEM)透射电子显微镜 transmission electron microscope (TEM) 重量百分数 weight percent 四方的 tetragonal 单斜的monoclinic 配位数 coordination number材料科学基础专业词汇:第二章晶体结构缺陷缺陷 defect, imperfection 点缺陷 point defect 线缺陷 line defect, dislocation 面缺陷 interface defect 体缺陷 volume defect 位错排列 dislocation arrangement 位错线 dislocation line 刃位错 edge dislocation 螺位错 screw dislocation混合位错 mixed dislocation 晶界 grain boundaries 大角度晶界 high-angle grain boundaries小角度晶界 tilt boundary, 孪晶界 twin boundaries 位错阵列 dislocation array位错气团 dislocation atmosphere 位错轴dislocation axis 位错胞 dislocation cell 位错爬移dislocation climb 位错聚结dislocation coalescence 位错滑移dislocation slip位错核心能量 dislocation core energy 位错裂纹 dislocation crack位错阻尼 dislocation damping 位错密度 dislocation density原子错位 substitution of a wrong atom 间隙原子 interstitial atom晶格空位 vacant lattice sites 间隙位置 interstitial sites 杂质 impurities弗伦克尔缺陷 Frenkel disorder 肖脱基缺陷 Schottky disorder 主晶相 the host lattice错位原子 misplaced atoms 缔合中心 Associated Centers. 自由电子 Free Electrons 电子空穴Electron Holes 伯格斯矢量 Burgers 克罗各-明克符号 Kroger Vink notation 中性原子 neutral atom材料科学基础专业词汇:第二章晶体结构缺陷-固溶体固溶体 solid solution 固溶度 solid solubility 化合物 compound间隙固溶体 interstitial solid solution 置换固溶体 substitutional solid solution 金属间化合物 intermetallics 不混溶固溶体 immiscible solid solution转熔型固溶体 peritectic solid solution 有序固溶体 ordered solid solution无序固溶体 disordered solid solution 固溶强化 solid solution strengthening取代型固溶体 Substitutional solid solutions 过饱和固溶体 supersaturated solid solution非化学计量化合物 Nonstoichiometric compound材料科学基础专业词汇:第三章熔体结构熔体结构 structure of melt过冷液体 supercooling melt 玻璃态 vitreous state软化温度 softening temperature 粘度 viscosity 表面张力 Surface tension介稳态过渡相 metastable phase 组织 constitution 淬火 quenching退火的 softened 玻璃分相 phase separation in glasses 体积收缩 volume shrinkage材料科学基础专业词汇:第四章固体的表面与界面表面 surface 界面 interface 同相界面 homophase boundary异相界面 heterophase boundary 晶界 grain boundary 表面能 surface energy小角度晶界 low angle grain boundary 大角度晶界 high angle grain boundary共格孪晶界 coherent twin boundary 晶界迁移 grain boundary migration错配度 mismatch 驰豫 relaxation 重构 reconstuction 表面吸附 surface adsorption 表面能 surface energy 倾转晶界 titlt grain boundary 扭转晶界 twist grain boundary 倒易密度 reciprocal density 共格界面 coherent boundary 半共格界面 semi-coherent boundary 非共格界面 noncoherent boundary 界面能 interfacial free energy应变能 strain energy 晶体学取向关系 crystallographic orientation惯习面habit plane材料科学基础专业词汇:第五章相图相图 phase diagrams 相 phase 组分 component 组元 compoonent相律 Phase rule 投影图 Projection drawing 浓度三角形 Concentration triangle冷却曲线 Cooling curve 成分 composition 自由度 freedom相平衡 phase equilibrium 化学势 chemical potential 热力学 thermodynamics相律 phase rule 吉布斯相律 Gibbs phase rule 自由能 free energy吉布斯自由能 Gibbs free energy 吉布斯混合能 Gibbs energy of mixing吉布斯熵 Gibbs entropy 吉布斯函数 Gibbs function 热力学函数 thermodynamics function热分析 thermal analysis 过冷 supercooling 过冷度 degree of supercooling杠杆定律 lever rule 相界 phase boundary 相界线 phase boundary line相界交联 phase boundary crosslinking 共轭线 conjugate lines相界有限交联 phase boundary crosslinking 相界反应 phase boundary reaction相变 phase change 相组成 phase composition 共格相 phase-coherent金相相组织 phase constentuent 相衬 phase contrast 相衬显微镜 phase contrast microscope相衬显微术 phase contrast microscopy 相分布 phase distribution相平衡常数 phase equilibrium constant 相平衡图 phase equilibrium diagram相变滞后 phase transition lag 相分离 phase segregation 相序 phase order相稳定性 phase stability 相态 phase state 相稳定区 phase stabile range相变温度 phase transition temperature 相变压力 phase transition pressure同质多晶转变 polymorphic transformation 同素异晶转变 allotropic transformation 相平衡条件phase equilibrium conditions 显微结构microstructures 低共熔体eutectoid不混溶性 immiscibility材料科学基础专业词汇:第六章扩散活化能 activation energy 扩散通量 diffusion flux 浓度梯度 concentration gradient 菲克第一定律Fick’s first law 菲克第二定律Fick’s second law 相关因子correlation factor稳态扩散 steady state diffusion 非稳态扩散 nonsteady-state diffusion扩散系数 diffusion coefficient 跳动几率 jump frequency填隙机制 interstitalcy mechanism 晶界扩散 grain boundary diffusion短路扩散 short-circuit diffusion 上坡扩散 uphill diffusion 下坡扩散 Downhill diffusion互扩散系数 Mutual diffusion 渗碳剂 carburizing 浓度梯度 concentration gradient 浓度分布曲线 concentration profile 扩散流量 diffusion flux 驱动力 driving force 间隙扩散interstitial diffusion 自扩散self-diffusion 表面扩散surface diffusion空位扩散 vacancy diffusion 扩散偶 diffusion couple 扩散方程 diffusion equation 扩散机理 diffusion mechanism 扩散特性 diffusion property 无规行走 Random walk 达肯方程 Dark equation 柯肯达尔效应 Kirkendall equation本征热缺陷 Intrinsic thermal defect 本征扩散系数 Intrinsic diffusion coefficient 离子电导率 Ion-conductivity 空位机制 Vacancy concentration材料科学基础专业词汇:第七章相变过冷 supercooling 过冷度 degree of supercooling 晶核 nucleus 形核 nucleation形核功 nucleation energy 晶体长大 crystal growth 均匀形核 homogeneous nucleation 非均匀形核 heterogeneous nucleation 形核率 nucleation rate 长大速率 growth rate 热力学函数 thermodynamics function 临界晶核 critical nucleus临界晶核半径 critical nucleus radius 枝晶偏析 dendritic segregation局部平衡 localized equilibrium 平衡分配系数 equilibrium distributioncoefficient 有效分配系数effective distribution coefficient 成分过冷constitutional supercooling引领(领先)相 leading phase 共晶组织 eutectic structure 层状共晶体 lamellar eutectic伪共晶 pseudoeutectic 离异共晶 divorsed eutectic 表面等轴晶区 chill zone柱状晶区 columnar zone 中心等轴晶区 equiaxed crystal zone定向凝固unidirectional solidification 急冷技术splatcooling 区域提纯zone refining单晶提拉法 Czochralski method 晶界形核 boundary nucleation位错形核 dislocation nucleation 晶核长大 nuclei growth斯宾那多分解 spinodal decomposition 有序无序转变 disordered-order transition 马氏体相变 martensite phase transformation 马氏体 martensite材料科学基础专业词汇:第八、九章固相反应和烧结固相反应solid state reaction 烧结sintering 烧成fire 合金alloy 再结晶Recrystallization二次再结晶 Secondary recrystallization 成核 nucleation 结晶 crystallization子晶,雏晶 matted crystal 耔晶取向 seed orientation 异质核化 heterogeneous nucleation均匀化热处理 homogenization heat treatment 铁碳合金 iron-carbon alloy渗碳体 cementite 铁素体 ferrite 奥氏体austenite 共晶反应 eutectic reaction固溶处理 solution heat treatment。
Solid State Nuclear Magnetic Resonance 33(2008)41–56International Union of Pure and Applied Chemistry,Physical and Biophysical Chemistry DivisionFurther conventions for NMR shielding and chemical shiftsIUPAC recommendations 2008$Prepared for publication by Robin K.Harris a,Ã,Edwin D.Becker b ,Sonia M.Cabral De Menezes c ,Pierre Granger d ,Roy E.Hoffman e ,Kurt W.Zilm faDepartment of Chemistry,University of Durham,South Road,Durham DH13LE,UKbNational Institutes of Health,Bethesda,MD 20892-0520,USAcPETROBRAS/CENPES/QM,Av.Horacio Macedo 950,Cidade Universita´ria,21941-598,Rio de Janeiro,RJ,Brazil dInstitute of Chemistry,University Louis Pasteur,Strasbourg,1rue Blaise Pascal,67008Strasbourg,Cedex,France eDepartment of Organic Chemistry,The Hebrew University of Jerusalem,Safra Campus,Givat Ram,Jerusalem 91904,IsraelfDepartment of Chemistry,Yale University,P.O.Box 208107,New Haven,CT 06520-8107,USAReceived 6February 2008Available online 20February 2008AbstractIUPAC has published a number of recommendations regarding the reporting of nuclear magnetic resonance (NMR)data,especially chemical shifts.The most recent publication [Pure Appl.Chem.73,1795(2001)]recommended that tetramethylsilane (TMS)serve as a universal reference for reporting the shifts of all nuclides,but it deferred recommendations for several aspects of this subject.This document first examines the extent to which the 1H shielding in TMS itself is subject to change by variation in temperature,concentration,and solvent.On the basis of recently published results,it has been established that the shielding of TMS in solution [along with that of sodium-3-(trimethylsilyl)propanesulfonate,DSS,often used as a reference for aqueous solutions]varies only slightly with temperature but is subject to solvent perturbations of a few tenths of a part per million (ppm).Recommendations are given for reporting chemical shifts under most routine experimental conditions and for quantifying effects of temperature and solvent variation,including the use of magnetic susceptibility corrections and of magic-angle spinning (MAS).This document provides the first IUPAC recommendations for referencing and reporting chemical shifts in solids,based on high-resolution MAS studies.Procedures are given for relating 13C NMR chemical shifts in solids to the scales used for high-resolution studies in the liquid phase.The notation and terminology used for describing chemical shift and shielding tensors in solids are reviewed in some detail,and recommendations are given for best practice.r 2008IUPAC.Published by Elsevier Inc.All rights reserved.Keywords:Nuclear magnetic resonance;Recommendations;Chemical shifts;Conventions;IUPAC physical and biophysical chemistry division;Shielding tensors1.IntroductionIUPAC has published a number of recommendations for handling data relating to nuclear magnetic resonance (NMR)[1–4].The most recent recommendations in 2001[4]focused particularly on conventions for reporting chemical shifts.These recommendations included a minor redefinition of the chemical shift d for a nuclide X:d sample ðX Þ¼½n sample ðX ÞÀn reference ðX Þ =n reference ðX Þ(1)Eq.(1)differs from previous definitions in deleting a factor of 106,for reasons explained in Ref.[4].Because the/locate/ssnmr0926-2040/$-see front matter r 2008IUPAC.Published by Elsevier Inc.All rights reserved.doi:10.1016/j.ssnmr.2008.02.004Abbreviations:TMS,tetramethylsilane;DSS,sodium-3-(trimethylsilyl)-propanesulfonate—commonly called sodium-2,2-dimethyl-2-silapentane-5-sulfonate,sodium salt;TSP,sodium-3-(trimethylsilyl)propionate;DMSO,dimethyl sulfoxide;THF,tetrahydrofuran;NMR,nuclear magnetic resonance;MAS,magic-angle spinning;ZAS,zero-angle spinning;PAS,principal axis system;SA,shielding anisotropy;CSA,chemical shift anisotropy;cgs,centimeter gram second system of units.$Reprinted with permission from Pure Appl.Chem.80(2008)59,which may be freely accessed and downloaded from /publications/pac/80/1/0059.Membership of the relevant IUPAC Commit-tee is listed therein.ÃCorresponding author.E-mail address:r.k.harris@numerator is normally expressed in Hz whereas the denominator is given in MHz,this formulation leads to values readily expressed in ppm.The suffix ‘‘ppm’’is interchangeable with ‘‘Â10À6’’in equations,just as ‘‘%’’is interchangeable with ‘‘Â0.01’’.The signs that can be attached to Larmor frequencies are ignored herein.Also recommended [4]was a unified scale for reporting chemical shifts of any nuclide X (other than 1H)in any sample relative to a primary internal reference,viz.the proton resonance of tetramethylsilane (TMS)1in a dilute solution in CDCl 3(volume fraction j o 1%).To relate data on the unified scale to chemical shifts expressed relative to a secondary reference of the same nuclide X,a quantity X (Greek capital Xi)was defined as the ratio of the secondary (isotope-specific)frequency,n obs (X),to that for 1H of TMS in CDCl 3,n obs TMS ,in the same magnetic field:X ¼n obs sample ðX Þ=n obs TMS(2)As pointed out in Ref.[4],X can conveniently be expressed as a percentage.The tables of X ,reported therein,for the secondary references of all nonradioactive (together with a few radioactive)but NMR-active nuclides,are condensed to a convenient form for reference in Appendix A.The document [4]discussed the use of three techniques for referencing chemical shifts:(a)internal reference;(b)external reference;and (c)substitution method,with the field locked on an internal deuterium resonance for both sample and reference measurements.Methods a and c were recommended,where feasible,because they avoid the magnetic susceptibility artifact introduced by method b.An alternative substitution method,with no field-frequency lock (or an external lock)was not discussed there but will be covered in this document primarily because it is commonly used for solids.The 2001recommendations document set aside tem-porarily a number of more specialized (but nevertheless important)areas for later discussion.As a result,an IUPAC task group has now addressed several matters,as follows:temperature dependence of the 1H chemical shift of TMSshape factor for making magnetic susceptibility correc-tions when an external reference must be used and samples cannot be considered as infinite cylinders solvent dependence of the 1H chemical shift of TMS alternative scenarios for referencing (with relevant X values)for certain nuclides,including 15N aspects of MAS for both liquids and solidsprocedures for chemical shift referencing in solid samplesterminology for reporting chemical shift/shielding tensorsEach of these subjects is considered in this document,along with related comments and relevant recommenda-tions for future practice.Section 2discusses general concepts,whereas Sections 3–8relate mostly to solutions.Sections 9and 10refer mostly to solids.2.General aspects of chemical shiftsThe definition of chemical shift (symbol d ),as expressed in Eq.(1),is based on observation,not theory;that is,d describes a measured value for the nuclide.The value of d obtained by applying Eq.(1)to a particular nuclide in a given chemical compound can vary substantially,depend-ing on the conditions used for measuring the sample and reference frequencies.The basic requirement for a valid measurement is that the resonance frequencies for sample and reference be obtained under precisely the same value of the magnetic induction,B 0.In some experimental measure-ments,as described below,B 0(sample)¼B 0(reference)as a result of bulk (isotropic)magnetic susceptibility (BMS)effects,which give rise to demagnetizing fields [5].In these circumstances,it is essential to apply a suitable correction,as described in Section 5,and it is appropriate to designate a ‘‘corrected’’or ‘‘true’’chemical shift to distinguish it from the ‘‘apparent’’or observed value obtained by rote application of Eq.(1)when an external referencing procedure is employed.At the theoretical level,the shielding s that is the basis for the chemical shift is known to depend on complex intramolecular factors and,except for gases at very low pressure,on many intermolecular factors as well.It is,therefore,important to record any experimental conditions (e.g.,solvent,temperature,concentration,pressure)that are thought to be significant for the particular investigation and to recognize that the value of d may vary as these parameters are changed.However,it is generally not desirable to speak of ‘‘correcting’’a chemical shift that has been properly measured under a particular set of conditions or of converting that value to a ‘‘true’’chemical shift (except as mentioned above for BMS effects).Provided the measurements are made as described in the preceding paragraph,no measured chemical shift is more ‘‘correct’’than another.Nevertheless,it is often highly desirable to compare chemical shifts (even for the same resonance)obtained under different experimental conditions.To make such comparisons or to interpret variations in observed shifts in terms of possible molecular mechanisms,it is important to know whether and how the resonance frequency of a reference,especially that of the universal reference TMS,varies with change in parameters such as temperature and solvent.Those subjects will be addressed in Sections 4–6.3.ReferencingFor internal referencing in isotropic liquids,the sample and reference compound are molecularly dispersed in a1To be more precise,the dominant proton resonance line from 12C 41H 1228Si.Resonances at slightly different chemical shifts can be observed from other isotopomers (usually as 13C and 29Si ‘‘satellites’’).R.K.Harris et al./Solid State Nuclear Magnetic Resonance 33(2008)41–5642homogeneous liquid contained in a single sample tube (usually cylindrical),within which B0is constant(except for unavoidable gradients,which apply equally to sample and reference).Thus,the measured values of n sample and n reference can be used directly in Eq.(1)to provide a chemical shift,albeit one that may be highly dependent on intermolecular effects.2For external referencing,the sample and reference substances are physically confined in separate containers within the same magnet gap,often in coaxial cylindrical tubes.If the applied magneticfield H0is sufficiently homogeneous(as is normally true),both sample and reference experience the same externalfield.However,the magnetic inductionfield(B0)within each substance depends on its bulk volume magnetic susceptibility,k sample and k reference,which are normally not identical,and the effect of average shape factors¯a sample and¯a reference,which are normally very similar.Hence,the measured frequencies must be adjusted to take into account the different magnitudes of B0—a subject that will be discussed in detail in Section5.Two quite different scenarios arise for chemical shifts measured by the substitution method.The substitution method implies that the reference is substituted for the sample in the probe,so the measurements of n sample and n reference are made consecutively,not concurrently.If the magneticfield is thought to have adequate stability for the measurement being conducted,as in most experiments with solid samples and occasionally with some high-resolution studies of liquid samples,the experimenter might rely on this stability,without afield/frequency lock,to ensure that H0remains the same for the two measurements.This then results in the same situation as in external referencing:in general,B0(sample)¼B0(reference),and a correction is needed for the effect of BMS.(If the sample and reference are both very dilute solutions in the same solvent,then the susceptibility correction may,of course,be negligible).One important restriction in using the substitution method without a lock is that the magneticfield must not be re-shimmed between the two measurements,since a small but unknown z0component often accompanies higher-order field gradient shims.The second substitution method uses afield/frequency lock based on a substance(usually involving the2H signal of a deuterated solvent)contained within each of the two tubes being measured(containing sample of interest and reference,respectively).This internally locked substitution method presents an entirely different situation.Here,the lock ensures that the instrument alters H0in order to maintain B0within the tube at a constant magnitude.If the lock substance is identical for the sample and refer-ence measurements and is not influenced appreciably by different intermolecular interactions in the two instances, then d sample(D)¼d reference(D),B0is constant,and the measured frequencies may be used in Eq.(1).However,if different lock substances are used,then a correction must be applied to account for the different chemical shifts of these two materials.This matter was discussed in some detail in the2001recommendations document[4].With most recently installed spectrometers,the manufacturers have built such corrections into the software,but it is important for the experimenter to ascertain whether that has been done and what values of the chemical shifts for the lock compounds have been entered into the spectro-meter’s look-up tables.4.Temperature dependence of the1H chemical shift of tetramethylsilaneMost NMR studies are carried out at a single temperature,often the ambient temperature of the probe. In some instances,however,it is important to examine the variation of one or more chemical shifts within a sample as the probe temperature is varied.Such chemical shifts are measured with respect to TMS,and the implicit assump-tion is often made that the1H chemical shift of TMS does not vary with temperature.However,that assumption has no theoretical basis,since excitation of vibrational and rotational modes with increased temperature may alter the intramolecular shielding of TMS,and changes in solvent effects may also influence the intermolecular shielding of TMS.The only method that,at present,seems feasible for determining the temperature dependence of the chemical shift of TMS is to measure the1H TMS resonance as a function of temperature relative to a substance that is believed to have a resonance frequency independent of temperature.This concept was introduced by Jameson and Jameson in1973[6],when they measured the1H resonance of neat TMS relative to the resonance of129Xe in xenon gas.An isolated Xe atom has no vibrational or rotational modes that can be excited,and collisional effects on the resonance frequency,which can be substantial in129Xe, could in principle be negated by extrapolation to zero pressure.Those studies[6,7],extended by Morin et al.in 1982[8]to account for the magnetic susceptibility of TMS, reported a rather significant temperature coefficient for the TMS chemical shift.However,these investigations suffered from the shortcomings in sensitivity and reliability inherent in the use of the90-and100-MHz NMR instruments of that period.In reviewing the literature,we determined that the existing data were inadequate to serve as the basis for an IUPAC recommendation.Accordingly,members of our task group undertook new experimental observations, based on the Jameson and Jameson concept but using 3He gas at low pressure,together with modern400-MHzNMR instrumentation[9].3He has higher NMR sensitivity than129Xe and is far less susceptible to interatomic2Care must be taken when dealing with situations involving hydrogenbonding or with ionic interactions in aqueous solutions(including thoseinvolving DSS or TSP as references)and when measuring stabilityconstants by means of NMR.R.K.Harris et al./Solid State Nuclear Magnetic Resonance33(2008)41–5643interactions.In fact,its resonance frequency was found not to have any significant pressure dependence from about0.1 to2.1atmosphere(0.01to0.21MPa).Thus,we believe that 3He is an excellent temperature-independent standard.In this investigation[9],the1H chemical shift of TMS in dilute solution in CDCl3(the primary reference recom-mended in Ref.[4])was found to vary only slightly with temperature(with an average temperature coefficient of approximatelyÀ5Â10À4ppm/K)over a temperature range of more than200K(À75to+1301C).This is approximately a factor of6smaller than the temperature coefficient reported for neat TMS in1982[8]. Subsequently,Hoffman[10]repeated some measure-ments and extended the work to cover TMS in a number of commonly used organic solvents(CDCl3,CD3OD, CD3CN,[2H6]DMSO,[2H6]acetone,and[2H8]THF).He also investigated aqueous solutions,using TMS and two more soluble derivatives,DSS and TSP.Although the published results show nonlinear behavior,particularly at low temperatures,overall the results can be approximated over wide temperature ranges by average temperature coefficients for TMS in the range of0toÀ6Â10À4ppm/K. These studies necessitated the use of external referencing, since the3He gas and the solutions of TMS were in separate compartments of coaxial sample tubes.The authors corrected for the temperature variation of volume magnetic susceptibility,an effect that was comparable in magnitude with the observed changes in chemical shift and of opposite sign.Because of uncertainties in the magni-tudes of magnetic susceptibilities and in temperature calibration,we believe that the resulting chemical shift data must be used with caution.However,the totality of these results makes it clear that the chemical shift of TMS (as well as that of DSS,the reference recommended for aqueous solutions[3])has a very small temperature dependence,usually amounting to only0.01ppm over a temperature range of about20K,which is often smaller than other experimental uncertainties.Thus,the vast majority of NMR data referenced to TMS and DSS require no adjustment to account for differing tempera-tures of acquisition.Thesefindings permit us to make two recommendations, as follows:Recommendation1:The acquisition temperature should be stated(including an estimate of‘‘ambient’’probe temperature)when chemical shift data are reported,but for temperatures in the region of251C it is neither necessary nor desirable to adjust the observed chemical shift data to any‘‘standard’’temperature.Recommendation2:In instances where it is desired to make comparisons of chemical shifts measured with respect to the1H resonance of TMS over a large temperature range betweenÀ20and801C(253to 353K),IUPAC recommends that a value ofÀ5Â10À4ppm/K for the temperature coefficient of thechemical shift of TMS be used,or that data from Refs.[9,10]be consulted for values at specific temperatures and for temperatures outside this range.5.Magnetic susceptibility correction:shape factorThe observed shift,d obs,of a signal arising from a homogeneous liquid sample consists of two components: chemical shift d(including the effects of intermolecular interactions),and BMS shift d k[11].3The latter is typically 3ppm but usually varies by less than1ppm between solvents.The BMS shift is identical for all signals in a homogeneous sample(independent of the nuclide observed if expressed as a ratio,rather than as a frequency).In this case,no susceptibility measurement or correction is required if the chemical shift is reported relative to an internal Ref.[4].However,the BMS shift needs to be taken into account when comparing samples that are physically separated,such as in external referencing,as described in Section3.The BMS shift depends on the shape factor and magnetic susceptibility,as quantified in Eq.(3)(in SI electromagnetic units),4d¼d obsþd k¼d obsþð13À¯aÞðkÀk refÞ(3) where¯a is the effective average shape factor,k is the dimensionless volume magnetic susceptibility of the sam-ple,and k ref is the susceptibility of the reference liquid or solution.Knowledge of theoretical shape factors and experimental magnetic susceptibilities is clearly necessary to carry out external referencing procedures.SI units and conventions for susceptibility and shape factor are used throughout this document in line with IUPAC recommen-dations.However,most published tables of magnetic susceptibilities(e.g.,[12,13])are in cgs units.To convert from cgs units to SI,magnetic susceptibilities must be multiplied by4p and shape factors must be divided by4p. Table1lists the theoretical shape factors for some simple sample shapes.Whilst nearly all solution-state NMR experiments are conducted with cylindrical samples(gen-erally of effectively infinite length)oriented parallel to the applied magneticfield,there is particular significance in the shape factor for cylindrical samples with the cylinder axisat the magic angle,54.7361,to B0since this is13,which means that d k,the correction for BMS,is zero.This fact becomes clearer when d k for an infinite cylinder is put into a form familiar to solid-state NMR spectroscopists,d k¼k33cos2yÀ12(4)3In solids,liquid crystals,and other non-isotropic systems,a chemical shift anisotropy component also exists,as will be discussed in Section9. 4Eq.(3)assumes that the magnetic susceptibility is independent of magneticfield.This is true of most diamagnetic and paramagnetic systems but not for ferromagnetic and superconductive materials.In any case,the BMS shift is usually much larger than the chemical shift for ferromagnetic and superconductive materials,so chemical shifts cannot be measured reliably.R.K.Harris et al./Solid State Nuclear Magnetic Resonance33(2008)41–56 44where y is the angle between the cylinder axis and the applied magnetic field B 0.This situation holds also for points along the central axis of any cylindrically symmetrical object aligned with the magic angle.Moreover,for infinite cylinders inclined at the magic angle with respect to B 0,even points away from the central axis have a time-averaged shape factor of 13,during sample rotation,and hence the shift effect of isotropic magnetic susceptibility averages to zero.Indeed,this is true for a cylindrical sample tube of finite length and for any shape cylindrically symmetrical about the magic angle.However,spinning at the magic angle is necessary to eliminate off-axis and end effects.The required spin rates are discussed in [14].Then,chemical shift measurements made at the magic angle by replacement require no (isotropic)BMS corrections,a feature which is of particular significance for solids (see Section 9)but is also valid for solutions.MAS measurements,therefore,provide a superior method of external referencing.The idea of external referencing for both 1H and 13C using TMS,volume fraction 1%,in deuterochloroform in conjunction with the recommended X values is thus a straightforward proposition for MAS NMR studies.For all but the simplest shapes,the calculation and measurement of shape factors are complex issues that are beyond the scope of these recommendations.However,Hoffman [15]recently applied the basic theory to determine the shape factor for typical NMR sample tubes,using the geometry and receiver coil configuration of asuperconducting magnet.For a 5-mm NMR sample tube with liquid 20mm above and 20mm below the center of the receiver coil,the effective average shape factor,expressed in SI units,is approximately 0.007,as indicated in Fig.1,which is adapted from Ref.[15].The factor ð13À¯a Þthus differs by only 2%from the theoretical value of 13.For many purposes,this difference is negligible,but it may be significant when the BMS must be determined in order to compare chemical shifts in solvents of considerably different magnetic susceptibility.Moreover,the shape factor may be considerably larger for sample volumes or instrument parameters (including size and location of receiver coil)that differ from the parameters used to derive Fig.1.The volume susceptibility of most solvents,in SI units,lies in the range À4.91ppm for nitromethane to À14.53ppm for di-iodomethane,where ppm indicates ‘‘Â10À6’’[12].For common NMR solvents at room temperature (RT),it ranges from À5.66ppm for [2H 6]acet-one to À9.15ppm for [2H]chloroform [15,16].Estimates for magnetic susceptibility at other temperatures can usually be made by assuming a constant molar susceptibility and applying corrections for solvent density.Most tabulated values of bulk isotropic magnetic susceptibility have been measured using a magnetic susceptibility balance [17].In addition,various NMR methods have been proposed for measuring magnetic susceptibility,some depending on the use of the geometry of an iron-core magnet in which the sample tube axis is at 901to the magnetic field axis [18,19].Others employ a spherical sample holder inside a cylindrical sample tube [19,20]or rely on gross distortion of line-shape when the bottom of the sample tube is close to the receiver coil [16].A more promising modern NMR method for measuring susceptibility makes use of measurements from coaxial cylindrical sample tubes spun (a)about at an axis oriented parallel to the magnetic field axis and (b)at the magic angle.The true chemical shift (d in Eq.(3))can be measured directly by MAS because the BMS shift is zero.Table 1Theoretical shape factors for selected samples Shape in a vertical magnetic fieldShape factor Infinite vertical cylinderSphere,infinite cylinder at the magic angle,or any shape cylindrically symmetrical about the magic angle 13Infinite horizontal cylinder12Infinite cylinder at angle y to the field12(1Àcos 2y)Fig.1.Shape factors for a 5-mm NMR tube whose bottom is at various depths (14,16,18,and 20mm)below the receiver-coil center.This figure is adapted from Ref.[15]and depends on a number of parameters assumed there to account for instrument geometry and receiver coil sensitivity.R.K.Harris et al./Solid State Nuclear Magnetic Resonance 33(2008)41–5645Small errors in the magic angle lead to large changes in resonance frequency,but the magic angle can be set accurately,as discussed in Section9,to yield a precision in d of0.0004ppm.Since d obs,vertical depends only on differences in susceptibilities,the measurement is normally repeated with a sample of accurately known susceptibility, such as water.The differences D d,along with the known susceptibility k0,are then used in Eq.(5)to determine k:k¼D d obs;verticalÀD d magic13À¯aþk0(5)In Section6,we shall apply this technique to investigate the effect of solvent variation on the TMS chemical shift. Two recommendations follow from the discussion in this section:Recommendation3:In situations where it is necessary to use an external reference or to compare chemical shifts of samples in separate tubes oriented parallel to B0,the BMS shift,symbol d k,should be quantified and subtracted from the observed shift,symbol d obs,to yield the chemical shift,symbol d.The BMS shift may be calculated from Eq.(3),with¯a approximated as indicated in the text.Recommendation4:In line with general IUPAC recommendations,SI units and conventions should be used for average shape factor,symbol¯a,and volume magnetic susceptibility,symbol k.Because cgs unitshave been widely used in tabulations of susceptibility data,the convention should always be explicitly stated.The diamagnetic susceptibilities of common NMR solvents are small(of the order of10À6)and are conveniently quoted in ppm.6.Solvent effects on the1H chemical shift of tetramethylsilaneThe proton chemical shift of TMS in any solvent is by definition(Eq.(1))exactly zero when TMS is used as an internal reference or as a reference in the substitution method with an internally lockedfield.However,the magnetic shielding of the protons in TMS,measured relative to some‘‘absolute’’reference,such as a bare proton or low-pressure monatomic gas,depends not only on intramolecular electron currents but also on perturba-tions from the solvent environment.In some instances,where solvent effects on the chemical shift of a sample are significant in the interpretation of data,it may be important to take into account the change in shielding of TMS with solvent variation.Clearly,such changes can be measured only with samples that are physically separated from each other,thus requiring either correction for magnetic susceptibility or measurements at precisely the magic angle.Table2provides results for TMS in10solvents(as well as for neat TMS and for DSS in D2O),where corrections for magnetic susceptibility have been made using Eq.(3).The last column provides data obtained by MAS for nine of the samples,where no correction is required.The agreement is excellent. Although the results in Table2should not be regarded as having the quantitative reliability of critically evaluated data from several independent studies and are subject to correction in the future,they illustrate quite well the magnitude of change in shielding of the protons in TMS with change of solvent.As a nonpolar molecule,with approximately tetrahedral geometry,TMS is expected to interact with solvent molecules only rather weakly.Never-theless,the results in Table2show that the1H resonance of TMS in a variety of non-aromatic solvents varies over a range of more than0.2ppm at RT(251C).For aromatic solvents,the variation is appreciably larger,as expected because of well-known ring current effects.7.A standard state for the1H TMS reference?The2001recommendations document[4]pointed out the desirability in principle of having a physicochemical standard state for TMS,in which relevant parameters such as concentration,temperature,and pressure are specified.A study reported in that document showed that the chemical shift of TMS in CDCl3was constant below a volume fraction j E1%;hence,a precise‘‘standard’’concentration was considered unnecessary for most pur-poses.We now know(Section4)that the temperature Table2Change of the1H chemical shift in TMS with variation of solvent Solvent d obs/ppm a k/ppm b d/ppm c d MAS/ppm d [2H]Chloroform0.00À9.1530.000.000[2H6]Acetone0.97À5.700À0.16À0.160[2H3]Acetonitrile0.83À6.597À0.01À0.011[2H6]DMSO0.54À7.7300.070.062[2H4]Methanol0.72À6.606À0.11À0.106e [2H8]THF0.31À7.914À0.10À0.109[2H6]BenzeneÀ0.01À7.82À0.45—fNitro[2H5]benzeneÀ0.03À7.28À0.64—f[2H8]Toluene0.05À7.72À0.42—fTMS(neat liquid)0.58gÀ6.90À0.15À0.124hD2O(saturated solution)0.01À8.840À0.09À0.071h DSS in D2O(10mmol/dm3)i0.03À8.840À0.07À0.056ha Apparent1H chemical shift of TMS in various solvents in coaxial tubes spun parallel to B0,relative to TMS in CDCl3as an external reference; based on experimental data from Refs.[10,16]except where noted.b Volume magnetic susceptibility,where‘‘ppm’’is equivalent to ‘‘Â10À6’’,from various published sources but presented here in SI units [12,13,15,16].c d from Eq.(3),using a shape factor of0.007.d1H chemical shift of TMS in various solvents relative to TMS in CDCl3 in coaxial tubes spun at the magic angle;from Ref.[21]except where noted.e Measured using nondeuterated methanol as the solvent.f Not determined.g Unpublished result supplied by R.Hoffman.h Unpublished data supplied by F.Ziarelli and A.Thevand,University of Aix-Marseille.i Included for comparison of X and X DSS;see Section8.R.K.Harris et al./Solid State Nuclear Magnetic Resonance33(2008)41–56 46。
专业词汇列表晶体结构(structure of crystal)原子质量单位 Atomic mass unit (amu)原子量 Atomic weight键能 Bonding energy共价键 Covalent bond电子构型 electronic configuration正电的 Electropositive氢键 Hydrogen bond同位素 Isotope摩尔 Mole泡利不相容原理 Pauli exclusion principle原子 atom分子量 molecule weight量子数 quantum number范德华键 van der waals bond点群 point group各向异性 anisotropy体心立方结构 body-centered cubic (BCC)布拉格定律bragg’s law晶体结构 crystal structure晶体的 crystalline中子衍射 neutron diffraction晶界 grain boundary鲍林规则Pauling’s rulesCsCl型结构 Caesium Chloride structure纤锌矿型结构 Wurtzite structure萤石型结构 Fluorite structure尖晶石型结构 Spinel-type structure岛状结构 Island structure层状结构 Layer structure滑石 talc高岭石 kaolinite长石 feldspar各向同性的 isotropic晶格 lattice密勒指数 miller indices多晶的 polycrystalline原子数 Atomic number波尔原子模型 Bohr atomic model库仑力 Coulombic force分子的构型 molecular configuration负电的 Electronegative基态 Ground state离子键 Ionic bond金属键Metallic bond分子 Molecule元素周期表 Periodic table极性分子 Polar molecule价电子 valence electron电子轨道 electron orbitals对称要素 symmetry elements原子堆积因数 atomic packing factor(APF)面心立方结构 face-centered cubic (FCC)配位数 coordination number晶系 crystal system衍射 diffraction电子衍射 electron diffraction六方密堆积 hexagonal close-packed (HCP)NaCl型结构 NaCl-type structure闪锌矿型结构 Blende-type structure金红石型结构 Rutile structure钙钛矿型结构 Perovskite-type structure硅酸盐结构 Structure of silicates链状结构 Chain structure架状结构 Framework structure叶蜡石 pyrophyllite石英 quartz美橄榄石 forsterite各向异性的 anisotropy晶格参数 lattice parameters非结晶的 noncrystalline多晶形 polymorphism单晶 single crystal电位 electron states电子 electrons金属键 metallic bonding极性分子 polar molecules衍射角 diffraction angle粒度,晶粒大小 grain size显微照相 photomicrograph透射电子显微镜 transmission electron microscope (TEM)四方的 tetragonal配位数 coordination number晶胞 unit cell(化合)价 valence共价键 covalent bonding离子键 Ionic bonding原子面密度 atomic planar density合金 alloy显微结构 microstructure扫描电子显微镜 scanning electron microscope (SEM)重量百分数weight percent单斜的monoclinic晶体结构缺陷(defect of crystal structure)缺陷 defect, imperfection线缺陷 line defect, dislocation体缺陷 volume defect位错线 dislocation line螺位错 screw dislocation晶界 grain boundaries小角度晶界 tilt boundary,位错阵列 dislocation array位错轴 dislocation axis位错爬移 dislocation climb位错滑移 dislocation slip位错裂纹 dislocation crack位错密度 dislocation density间隙原子 interstitial atom间隙位置 interstitial sites弗伦克尔缺陷 Frenkel disorder主晶相 the host lattice缔合中心 Associated Centers.电子空穴 Electron Holes克罗各-明克符号 Kroger Vink notation固溶体 solid solution化合物 compound置换固溶体 substitutional solid solution不混溶固溶体 immiscible solid solution有序固溶体 ordered solid solution固溶强化 solid solution strengthening点缺陷 point defect面缺陷 interface defect位错排列 dislocation arrangement刃位错 edge dislocation混合位错 mixed dislocation大角度晶界 high-angle grain boundaries孪晶界 twin boundaries位错气团 dislocation atmosphere位错胞 dislocation cell位错聚结 dislocation coalescence位错核心能量 dislocation core energy位错阻尼 dislocation damping原子错位 substitution of a wrong atom晶格空位 vacant lattice sites杂质 impurities肖脱基缺陷 Schottky disorder错位原子 misplaced atoms自由电子 Free Electrons伯格斯矢量 Burgers中性原子 neutral atom固溶度 solid solubility间隙固溶体 interstitial solid solution金属间化合物 intermetallics转熔型固溶体 peritectic solid solution无序固溶体 disordered solid solution取代型固溶体 Substitutional solid solutions过饱和固溶体 supersaturated solid solution非化学计量化合物 Nonstoichiometric compound表面结构与性质(structure and property of surface)表面 surface同相界面 homophase boundary晶界 grain boundary小角度晶界 low angle grain boundary共格孪晶界 coherent twin boundary错配度 mismatch重构 reconstuction表面能 surface energy扭转晶界 twist grain boundary共格界面 coherent boundary非共格界面 noncoherent boundary应变能 strain energy惯习面 habit plane界面 interface异相界面 heterophase boundary表面能 surface energy大角度晶界 high angle grain boundary晶界迁移 grain boundary migration驰豫 relaxation表面吸附 surface adsorption倾转晶界 titlt grain boundary倒易密度 reciprocal density半共格界面 semi-coherent boundary界面能 interfacial free energy晶体学取向关系 crystallographic orientation非晶态结构与性质(structure and property of uncrystalline) 熔体结构 structure of melt玻璃态 vitreous state粘度 viscosity介稳态过渡相 metastable phase淬火 quenching玻璃分相 phase separation in glasses 过冷液体 supercooling melt软化温度 softening temperature表面张力 Surface tension组织 constitution退火的 softened体积收缩 volume shrinkage扩散(diffusion)活化能 activation energy浓度梯度 concentration gradient菲克第二定律Fick’s second law稳态扩散 steady state diffusion扩散系数 diffusion coefficient填隙机制 interstitalcy mechanism短路扩散 short-circuit diffusion下坡扩散 Downhill diffusion扩散通量 diffusion flux菲克第一定律Fick’s first law相关因子 correlation factor非稳态扩散 nonsteady-state diffusion 跳动几率 jump frequency晶界扩散 grain boundary diffusion上坡扩散 uphill diffusion互扩散系数 Mutual diffusion渗碳剂 carburizing浓度分布曲线 concentration profile 驱动力 driving force自扩散 self-diffusion空位扩散 vacancy diffusion扩散方程 diffusion equation扩散特性 diffusion property达肯方程 Dark equation本征热缺陷 Intrinsic thermal defect 离子电导率 Ion-conductivity浓度梯度 concentration gradient扩散流量 diffusion flux间隙扩散 interstitial diffusion表面扩散 surface diffusion扩散偶 diffusion couple扩散机理 diffusion mechanism无规行走 Random walk柯肯达尔效应 Kirkendall equation本征扩散系数 Intrinsic diffusion coefficient 空位机制 Vacancy concentration腐蚀与氧化(corroding and oxidation)氧化反应 Oxidation reaction还原反应 Reduction reaction价电子 Valence electron腐蚀介质 Corroding solution电动势 Electric potential推动力 The driving force腐蚀系统 Corroding system腐蚀速度 Corrosion penetration rate电流密度 Current density电化学反应 Electrochemical reaction极化作用 Polarization过电位 The over voltage浓差极化 Concentration polarization电化学极化 Activation polarization极化曲线 Polarization curve缓蚀剂 Inhibitor原电池 galvanic cell电偶腐蚀 galvanic corrosion电位序 galvanic series应力腐蚀 Stress corrosion冲蚀 Erosion-corrosion腐蚀短裂 Corrosion cracking防腐剂 Corrosion remover腐蚀电极 Corrosion target隙间腐蚀 Crevice corrosion均匀腐蚀 Uniform attack晶间腐蚀 Intergranular corrosion焊缝破坏 Weld decay选择性析出 Selective leaching氢脆损坏 Hydrogen embitterment阴极保护 Catholic protection穿晶断裂 Intergranular fracture固相反应和烧结(solid state reaction and sintering) 固相反应 solid state reaction烧成 fire再结晶 Recrystallization成核 nucleation子晶,雏晶 matted crystal异质核化 heterogeneous nucleation铁碳合金 iron-carbon alloy铁素体 ferrite共晶反应 eutectic reaction烧结 sintering合金 alloy二次再结晶 Secondary recrystallization结晶 crystallization耔晶取向 seed orientation均匀化热处理 homogenization heat treatment渗碳体 cementite奥氏体 austenite固溶处理 solution heat treatment相变 (phase transformation)过冷 supercooling晶核 nucleus形核功 nucleation energy均匀形核 homogeneous nucleation形核率 nucleation rate热力学函数 thermodynamics function临界晶核 critical nucleus枝晶偏析 dendritic segregation平衡分配系数 equilibrium distribution coefficient成分过冷 constitutional supercooling共晶组织 eutectic structure伪共晶 pseudoeutectic表面等轴晶区 chill zone中心等轴晶区 equiaxed crystal zone急冷技术 splatcooling单晶提拉法 Czochralski method位错形核 dislocation nucleation斯宾那多分解 spinodal decomposition马氏体相变 martensite phase transformation成核机理 nucleation mechanism过冷度 degree of supercooling形核 nucleation晶体长大 crystal growth非均匀形核 heterogeneous nucleation长大速率 growth rate临界晶核半径 critical nucleus radius局部平衡 localized equilibrium有效分配系数 effective distribution coefficient 引领(领先)相 leading phase层状共晶体 lamellar eutectic离异共晶 divorsed eutectic柱状晶区 columnar zone定向凝固 unidirectional solidification区域提纯 zone refining晶界形核 boundary nucleation晶核长大 nuclei growth有序无序转变 disordered-order transition马氏体 martensite成核势垒 nucleation barrier相平衡与相图(Phase equilibrium and Phase diagrams)相图 phase diagrams组分 component相律 Phase rule浓度三角形 Concentration triangle成分 composition相平衡 phase equilibrium热力学 thermodynamics吉布斯相律 Gibbs phase rule吉布斯自由能 Gibbs free energy吉布斯熵 Gibbs entropy热力学函数 thermodynamics function过冷 supercooling杠杆定律 lever rule相界线 phase boundary line共轭线 conjugate lines相界反应 phase boundary reaction相组成 phase composition金相相组织 phase constentuent相衬显微镜 phase contrast microscope 相分布 phase distribution相平衡图 phase equilibrium diagram 相分离 phase segregation相 phase组元 compoonent投影图 Projection drawing冷却曲线 Cooling curve自由度 freedom化学势 chemical potential相律 phase rule自由能 free energy吉布斯混合能 Gibbs energy of mixing 吉布斯函数 Gibbs function热分析 thermal analysis过冷度 degree of supercooling相界 phase boundary相界交联 phase boundary crosslinking相界有限交联 phase boundary crosslinking 相变 phase change共格相 phase-coherent相衬 phase contrast相衬显微术 phase contrast microscopy相平衡常数 phase equilibrium constant相变滞后 phase transition lag相序 phase order相稳定性 phase stability相稳定区 phase stabile range相变压力 phase transition pressure同素异晶转变 allotropic transformation 显微结构 microstructures不混溶性 immiscibility相态 phase state相变温度 phase transition temperature同质多晶转变 polymorphic transformation 相平衡条件 phase equilibrium conditions。